变频器在水泥厂中的应用

变频器在水泥厂中的应用
变频器在水泥厂中的应用

变频器在水泥厂中的应用

随着节能法的颁布与实施,节能作为企业增效降耗、降低经营成本的重要手段,已普遍被人们所认识和接受,在利国利民的同时,也有利于树立企业社会形象,提高设备自动化水平。

根据水泥制造工艺要求,结合水泥厂所使用的生产设备,我们得到如下结论:大部分水泥厂的一些设备尤其是大功率设备在生产过程中绝大部分时间都不是满负荷,设备运行的自动化程度相当低,几乎完全靠人工调节,如立窑供风系统、成球预加水系统、生料均化给料系统、水泥选粉系统、机立窑卸料系统等。

我司是多年从事变频节能技术研究、开发与应用的专业公司,结合曾经成功为多家企业进行节能改造项目的实践经验,开发出比较成熟的水泥厂七大生产系统变频调速控制的改造方案。此方案的优点明显,1、投资少;2、安装、调试及控制方便;3、及时保护电机和其他设备,保证设备可靠运行;4、节电效果明显,回收成本快;5、提高了生产过程的自动化程度;6、提高了生产过程的加工工艺精度。从总体的效果来看,改造后的实际系统在水泥制造行业深受客户的普遍欢迎。为其取得了显著的经济效益和良好的社会效应。

1、变频器在立窑罗茨风机上的应用经验

在水泥厂的立窑风机上,一般都是采用挡风板进行调节,其原理是调节阀门的开度,亦即利用风道的阻力特性调节风量,其缺点是:风机始终在全速运转,无法根据需求准确地调节其风量,因此造成风量的跑、冒、漏严重,也使电机作为无用功而大量白白地消耗。

立窑煅烧熟料所耗的电能中,罗茨鼓风机的电耗一般

占60% 左右,随着电价的调整,电费在水泥生产成本中所占的比例越来越高。因此,降低鼓风机的能耗成为提高企业经济效益的重要一环。

一、节能原理简介:

1、变频节能功能

通常在设计中,用户风机设计风量比实际需要的高出很多,这样容易形成了人们常说的“大马拉小车”的现象,造成电能的浪费,而且无计可施,利用变频器可以通过适当降低风机电机的运行频率,恰到好处地满足风量的需求,从而轻易地将此部分电能节约下来。

2、动态功率补偿功能

无功功率不但增加线损和设备的发热,更主要的是功率因数的降低,降低了电网的有功功率,S2=P2+Q2,当COSФ≈1 时,Q=S×sin Ф≈0,此时有功功率P≈S。变频器的动态功率因数补偿功能可使无功功率近似为0,从而增大电网的有功功率,减少了无功损耗。另外,功率因数的改善还可节省很大一部分电网容量,直观的体现在风机电机温升降低、噪音降低,供电发电机机组温升降低、噪音降低、耗油量大幅度降低,大大地延长设备维修周期及使用寿命。

二、设备参数:

某厂有立窑罗茨风机185KW一台,最大运行电流200A,最小运行电流160A,额定电流为355A,频率50HZ,用风板调节风量最大调节60%,

每天运行24 小时,每月运行20 天,每年需运行11个月,电费0.58 元/度。

三、改造方案:

用变频器带动风机电动机传动,对风机实现无级调速,放弃传统的挡风板,既降低电机转速,又达到节能目的。

四、投资分析

投资回收分析:

对风机、泵类负载

P(功率)=Q(流量)×H(扬程)

当电机转速从n 降至n’时,流量Q、扬程H 及轴功率P 的关系如下:

Q’=Q(n/n)

H’=H(n/n)2

P’= P(n/n)3

显然,当电机转速下降时,流量按线性关系变化,而电功率却按立方,根据我司长期的经验,我们认为该厂风机系统节能在30%以上

是完全可能和可行的。即单台185KW 风机系统按每年运行11 个月,每月20天,每天24 小时计算,每度电按0.58元计费,每年电费为:P= ×11×20×24×0.58=321552,按节电30%计算,每年节约电费为:321552×0.3=96465.6 元.工程改造费用需9.35 万元.即12 个月左右即可收回全部投资。

五、系统特点:

1、由于采用电位器控制,因此可靠性高,稳定性好,容易操作。

2、由于加装变频调速器,减小启动时启动电流对电机冲击,延长机械使用寿命,减小维修工作强度。

3、提高了电网功率因数,避免增加电网增容费。

2 、在离心风机上的应用

有某些水泥厂是采用高压离心式风机进行供风的,该种水泥窑的风量调节是通过风门开启度对风量进行调节。对于离心式风机、水泵的变频调速改造同样有巨大的节能潜力。我们通过沸腾式锅炉高压离心式风机应用变频调速的方法调节风量,实践证明其节能效果在30~50%。对于水泵的变频改造节能效果高达70%。为什么离心式风机,泵类设备通过调速调节风量或流量有如此惊人的节能呢?在此将其原理加以阐明。离心式风机、泵类设备的流量与转速成正比,如公式(3-1)压力与转速平方成正比,如公式(3-2)功率与转速的立方成正比,如公式(3-3)

Q∝N 式3-1 Q:表示流量

H∝N2 式3-2 N:表示转速P∝N3 式3-3 H:表示压力

P:表示功率将经上3个公式绘成一张图,如图3-1可 压力关系以清楚看到,改变转速其流量线性变化的,而功耗则是立方

关系变化,因此在调节风量或流量时如降低20%的风量或流量,功

耗(图3-1)则会下降50%。但是必须注意,转速与压力是平方关

系,当转速下降20%压力则会下降64%,因此必须要注意工艺要

求压力范围不能象罗茨风机那样,不用考虑转速与风压的关系。

离心风机、泵类设备传统的风量、流量 风门控制控制的,大量的能源耗在风门或截流阀的阻力上,如公式(3

-4),风门或截流阀控制流量的功耗与

流量关系:

P=P0+K·Q 式3-4变速控制

Q:表示流量 K:为系数

P:表示功耗 P0:表示基本功率 由图3-2比较风门或截流阀控制与变频调速调节,可以看到在

流量变化范围,采用变频调速的方法具有很大的节能潜力,因此在水

泥厂的供水泵或其它离心风机上进行变频器改造同样会取得很大的

节能效果。

p 0 N

3 在立窑卸料机上的应用

立窑卸料机若采用滑差调速电机,其转速通常控制

在300~1000rpm (工艺上根据窑的情况,对卸料速度进行控制的)。采用变频调速的方法取代滑差电机,经过多个厂家应用结果表明,平均节能达40% 左右,这是因为滑差调速是一种耗能的低效调速方法。

由下列公式可知:

滑差电机主电机轴的输出功

率:P 0 = KM 0 N 0 (P 0 表示输出功率,M 0 表示负载转速,N 0 表示电机转速,K 为常数)

滑差头输出功率P 1 = KM 0 N 1 (P 1 表示输出功率,N 1 表示滑差头转速)

滑差头损耗功

率:P = P 0- P 1= KM 0 (N 0 —N 1 )由此可见,滑差电机的转速越低,浪费能源越大,而卸料机的转速通常在400rpm 左右运行,因此改用变频调速的方法会

有50~60% 的节能效果。

4 在空气压缩机上的节能应用

气压缩机恒压供气使用变频器与压力控制构成闭环控制系统,使压力波动减少 1.5% ,降低噪音、减少振动。保证设备长期稳

定运行,从而减少了设备维护工作量,延长了设备使用寿命。用变频器后,空压机可在任何压力下随意起动,打破了以前不允许带压起动的规定,起动电流也较以前大大降低。通过使用变频器后的实例,多数压缩机节电率约在20% 左右,比节电率较大的风机低,但压缩机的电动机功率都较大,从几十瓦直到几百瓦甚至几千瓦,其节电量值较大,经济效益十分显著,同时控制平质大为提高,可使压缩空气的压力始终保持恒定,用户感到十分满意。总之压缩机使用变频实现节能计改项目使值得推广的。

5 在预加水成球系统中的应用

目前,预加水成球技术在立窑水泥厂中应用已相当普遍。它在提高成球质量,改善煅烧操作条件,提高立窑熟料产量和质量方面取得了比较明显的效果。其结合微机双回路调节器,就能实现水料比例自动跟踪,自动调节,做到恒压供水。调节及时,极大地减轻了工人的劳动强度,同时也改善了成球质量,使预加水系统真正起到预湿成球的作用,为立窑生产出优质高产的熟料创造了条件。

6 在选粉机上的应用

某水泥有限公司的旋风式选粉机,原设计

由JZT392-4 型75KW 电磁调速异步电动机(滑差电机)拖动,其优点是调速系统简单。价格低廉,有一定的调速范围,缺点也较多:电机本体噪音高、振动大能、耗高、无功损耗大、轴

承故障率特别高,滑差控制仪安装于粉尘飞扬的电机旁边,多次出现带负荷起动,不能调速和突然失速等故障,现场维护量大,影响整个系统的安全运行。

针对上述问题,结合生料车间选粉机负荷转速不超

过600r/min 的特点,对选粉机电气部分进行变频调速技术改造。经实际测量,选粉机改造前,运行速度在594r/min 时,输入电

压385V ,输入电流72A ,功率因数0.82 ,故输入功率

为40KW ;改造后,运行速度在594r/min 时,输入电

压387V ,输入电流18A ,(热继电器也做了相应调整),功率因数0.92 (变频器加装了直接电抗器)则输入功率为11KW 。改造后一年中,没发生过任何故障,保证了系统的安全运行,大大减少了维护工作量和维修费用,而且节能效果十分显著。

变频器在水泥厂的应用还不止这些,比如说回转窑球磨

机、卸料圆、盘给料机、双管绞刀裙、板喂料机调速皮带称喂、煤绞刀、蓖冷机等一切需交流调速的设备都可以采用变频调速器。

从以上应用情况可以看出,水泥厂使用变频器有以下突出优

点:

A .满足调速的工艺要求,变频调速器的调速范围

在10 : 1 以上,而水泥生产工艺过程中调速范围

在10 : 1 范围内即可满足要求。

B .便于实现自动化控制,由于变频器本身是由一

个16 (或32 )位微处理器所控制,设

有RS485 (或422 ),A/D 输入,D/A 输出接口,为自动控制(与上位机联网)创造了充分的条件。

C .获得可观的节能效果。

D .降低工人的劳动强度,由于调速系统整体可靠性提高,故障率低,免维护周期较长,可减轻有关维护人员的工作量。

E .提高产品质量及产量。

7、在水泥粉磨工艺中应用

在水泥粉磨工艺中球磨机入磨物料粒度的大小,对其台时产量影响较大,预破碎工艺作为提高磨机台时产量、降低粉磨电耗的重要途径,引起了许多水泥企业的重视。根据工艺要求,水泥立窑放料每次持续2~3 min,间隔2~3 min,但目前几乎所有水泥企业中破碎机处于工频恒速运行状态,24 h连续运转,造成电能的巨大浪费,并影响电机和破碎机的使用寿命。另一方面,由于破碎机具有十分大的惯性,不易频繁启停,所以即使使用变频器也难以解决系统制动时产生的泵升电压引起保护电路动作,使系统无法正常工作。

针对系统的以上特点,利用系列变频器实现破碎机的变频调速和软启动;利用再生能量回馈单元克服破碎机制动过程中产生的过高的

泵升电压;利用PLC实现系统的逻辑闭环控制,使破碎机的工作与立窑放料同步,实现间歇运行。从而在改善工艺控制质量的同时,最大限度地节约了电能,降低了生产成本。现场调试和运行结果表明,系统运行可靠,节电率可达60%以上。

上述系统已在某水泥厂投入实际运行。系统根据送料信号自动实现启制动运行,破碎机运行速度连续可调。电机可以实现频繁软启动,基本无启动电流冲击,启动力矩足够。系统在变频运行条件下,若变频器突然故障,则自动切换至“工频”状态继续运行,同时发出声光报警信号(内部可选)。根据现场工况需要,将有放料信号时变频运行给定频率设为43 Hz,系统运行电流为27 A,运行电压280 V,改造后的系统平均每年耗电5.7万度。根据现场记录,系统在改造前工作频率为工频50 Hz,运行电流为32 A,运行电压400 V,平均每年耗电19.42万度。改造后的节电率为70.6%。该系统的突出优点如下:

1、利用变频调速技术改造了水泥熟料破碎机的拖动系统,满足了破碎机的低速、间歇运行特点,保证了工艺控制质量,节能效果明显,并有利于延长破碎机和电机的使用寿命。

2、利用能量回馈控制技术克服破碎机大惯性引起的泵升电压,有效地保证了变频器的安全运行。系统除了变频器和能量回馈装置所具有的20余种保护功能和故障自诊断功能外,还增设了电机过热、控制回路保护及报警。

3、利用可编程控制器PLC实现了各种逻辑控制、变频器启制动自动控制及手动/自动、工频/变频转换和故障自切换等功能,使系统控制灵活方便,功能齐全

成功的经验充分说明了水泥行业变频改造的巨大潜力,变频改造后在短短几个月的时间里仅仅靠节约电费就收回整体投资,在以后的生产经营中也能够以较低的生产成本在市场的竞争中处于更有力的位置。水泥制造的变频改造势在必行,一方面体现出公司强大的经济实力和公司领导层非凡的远见卓识,另一方面能够给公司带来丰厚的利益回报,并提高了公司生产方面的自动化程度。

我司愿与贵公司携手共进,在节能领域中共创美好未来!附:安装、调试、使用变频器应注意的几个问题

1、变频器通常是安装在配电室内,环境温度不要超过40℃,灰尘要较为小,特别注意避免导电性、保湿性和腐蚀性,粉尘和气体的环境安装设备。

2、电气安装时要特别注意,电源输入输出线绝对禁止错接,将电源输入线接上变频器的输出,如发生错误即马上损坏设备。

3、远距离控制线必须采用屏敝线,并且在布线范围内必须与电力动力线相距一米,相交时必须转90°角,更不要将控制线与动力线放在同一个线框内,被免控制信号受到干扰。

4、变频器开机调试前必须根据负载特点,将所有参数设定好,检查无错误方可开机运行,特别注意变频器输出电流,在起动过程中,恒转速过程中,减速过程中,认真观察,如果第一次设定的参数不是十分理想时,应逐步接近。具体调试规则请参看本公司的《变频器调试手册》。

5、总结各家水泥厂在罗茨风机、立窑卸料机、水泵等设备应用,变频器所碰到的问题以及解决方法在此向各厂家作一个简介。

⑴、机械共振问题:有个别厂家在使用变频器前,无机械共振现象的。但利用变频调速之后,在某些频率,机械共振很强烈,有的甚至影响到整座建筑,其原因是原风机系统只是设计在50HZ市电下运行,改变频后,则在15-50HZ之间无级变化。因此在某些频率点上造成机械共振,调试时必须细心检查是否存在机械共振的问题,如果有应采用频率回避的方法,即在发生共振的频率范围,跳过该频率范围使变频器不输出发生共振的频率范围。

⑵、电机低速运行的散热问题:由于电机的散热是由电机转子带的风叶吹风进行的,电机的转速降低时,吹风量减小,低速时,散热风量不够,长期运行会造成电机过热,因此在长期低速运行时,必须另加散热风扇。

中压变频在水泥行业的应用(谷风资料)

中压变频器在水泥行业的应用水泥生产企业是国民经济生产中的能源消耗大户,水泥行业已被列为国家节约资源的重点领域之一。在国务院提出加快建设节约型社会的政策环境下,提高水泥行业的节约型制造和应用水平,建立节约型水泥工业体系意义重大。在当前国内外能源供需矛盾突出的情况下,水泥生产企业必须通过各种途径降低能耗,以获得最佳的经济效益和最高的劳动生产率。在水泥的生产中,电动机负载电耗占生产成本近30%,而拖动风机用的高压电动机在电机负载中占有很大的比重。对于一条水泥生产线其中有35%~40% 的电能是用于拖动各种类型风机上,因此做好风机电动机的降耗增效工作就显得极为重要。目前很多水泥厂的风机大马拉小车现象严重,同时由于工况、产量的变化,系统所需求的风量也随之变化,大部分风机采用调节进、出口阀门开度的传统做法来实现,而该方法存在人为增加风阻、风机效率低、损耗严重等缺点。如果利用变频调速技术通过改变电机的运行速度,以调节风量的大小,可以既满足生产要求,又达到节约电能,同时减少因调节阀门而造成的挡板磨损和管道磨损,以及经常停机检修所造成的额外经济损失。随着电力电子技术及电子技术的发展,变频技术日趋成熟,国际上对于风机的风量、风压调节已普遍摒弃靠调整配套的风门开度的手段,改而采用变频调速的电气传动调节,变频调速已成为风机、泵类节能降耗的最佳、首选的电气传动方案。

一、大型风机变频改造的必要性 徐州中联水泥有限公司10000t/d回转窑共有ABB中压变频器5台:窑尾高温风机2台ABB ACS5000中压变频器、煤磨排风机2台ABB ACS1000中压变频器及正在改造的1台窑头排风机ACS5000中压变频器。窑尾高温风机原系统的风压控制由液力耦合器调节,液力耦合器本身能耗达10%以上,而且需要油泵及冷却水来辅助运行,故障率较高,特别是在夏季因耦合器产生热量较大,需加入四组冷油器,用循环水强降温,水消耗量大,资源浪费严重。而两台煤磨排风机及窑头排风机都是通过风门调节风量的都存在能好浪费现象;一方面风机电机采用液体电阻降压启动(即水电阻),应用水电阻启动过程中,存在以下两个方面的问题:1、转子部分带有集电环、碳刷等配件,运行过程中需要对这些配件进行更换或处理,运行维护量大,故障率高。2、转子部分不能完全切除,在转子还存在部分电压和电流,导致大量的无功电能消耗在水电阻上。我公司通过多方了解认为ABB公司的ACS5000系列电压源型36 脉冲整流输入9 电平输出变频器是目前技术最先进的高压变频器之一。其使用的新型功率半导体器件 IGCT(集成门极换流型晶闸管)是ABB 公司专为高压变频器市场研制开发的。IGCT具有IGBT(绝缘门极双极性晶体管)的高开关频率特性,同时还具有GTO(可关断晶闸管)的高阻断电压和低导通损失率特性。因此IGCT是无须串联即可直接应用于高压电网的高速低损耗的功率半导体器件。IGCT继承并超越了IGBT

变频器在水泵行业的应用

变频器在水泵行业的应用 一、概述 交流电机变频调速技术是一项业已广泛应用的节能技术。由于电子技术的飞速发展,户变频器的性能有了极大提高,它可以实现控制设备软启软停,不仅可以降低设备故障率,还可以大幅减少电耗,确保系统安全、稳定、长周期运行。长期以来区域的供水系统都是由市政管网经过二次加压和水塔或天面水池来满足用户对供水压力的要求。在小区供水系统中加压泵通常是用最不利用水点的水压要求来确定相应的扬程设计,然后泵组根据流量变化情况来选配,并确定水泵的运行方式。由于小区用水有着季节和时段的明显变化,日常供水运行控制就常采用水泵的运行方式调整加上出口阀开度调节供水的水量水压,大量能量因消耗在出口阀而浪费,而且存在着水池“二次污染”的问题。变频调速技术在给水泵站上应用,成功地解决了能耗和污染的两大难题。用水的多少是经常变动的,因此供水不足或供水过剩的情况时有发生。而用水和供水之间的不平衡集中反映在供水的压力上,即用水多而供水少,则压力低;用水少而供水多,则压力大。保持供水压力的恒定,可使供水和用水之间保持平确保系统安全、稳定、长周期运行。即用水多时供水也多,用水少时供水也少,从而提高了供水的质量。 恒压供水系统对于某些工业或特殊用户是非常重要的。例如在某些生产过程中,若自来水供水因故压力不足或短时断水,可能影响产品质量,严重时使产品报废和设备损坏。又如发生火灾时,若供水压力不足或或无水供应,不能迅速灭火,可能引起重大经济损失和人员伤亡。所以,某些用水区采用恒压供水系统,具有较大的经济和社会意义。。 随着电力技术的发展,变频调速技术的日臻完善,以变频调速为核心的智能供水控制系统取代了以往高位水箱和压力罐等供水设备,起动平稳,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击;由于泵的平均转速降低了,从而可延长泵和阀门等东西的使用寿命;可以消除起动和停机时的水锤效应。其稳定安全的运行性能、简单方便的操作方式、以及齐全周到的功能,将使供水实现节水、节电、节省人力,最终达到高效率的运行目的。 二、恒压供水的变频应用方式 1、变频恒压供水系统组成 变频恒压供水系统通常是由水源、离心泵(主泵+休眠泵)、压力传感器、PID调节器、变频器(主泵+休眠泵)、管网组成。工作流程是利用设置在管网上的压力传感器将管网系统内因用水量的变化引起的水压变化,及时将信号(4-20mA或0-10V)反馈PID调节器,PID调节器对比设定控制压力进行运算后给出相应的变频指令,改变水泵的运行或转速,使得管网的水压与控制压力一致。 2、变频恒压供水系统的参数选取 (1)、合理选取压力控制参数,实现系统低能耗恒压供水。这个目的的实现关键就在于压力控制参数的选取,通常管网压力控制点的选择有两个:一个就是管网最不利点压力恒压控制,另一个就是泵出口压力恒压控制。选择管网最不利点的最小水头为压力控制参数,形成闭环压力自控系统,使得水泵的转速与PID调节器设定压力相匹配,可以达到最大节能效果,而且实现了恒压供水的目的。 (2)、变频器在投入运行后的调试是保证系统达到最佳运行状态的必要手段。变频器根据负载的转动惯量的大小,在启动和停止电机时所需的时间不相同,设定时间过短会导致

变频器在风机上的应用

一、概述: 目前在我国各行各业的各类机械与电气设备中与风机配套的电机约占全国电机装机量的60%,耗用电能约占全国发电总量的三分之一。特别值得一提的是,大多数风机、水泵在使用过程中都存在大马拉小车的现象,加之因生产、工艺等方面的变化,需要经常调节气体和液体的流量、压力、温度等;目前,许多单位仍然采用落后的调节档风板或阀门开启度的方式来调节气体或液体的流量、压力、温度等。这实际上是通过人为增加阻力的方式,并以浪费电能和金钱为代价来满足工艺和工况对气体、液体流量调节的要求。这种落后的调节方式,不仅浪费了宝贵的能源,而且调节精度差,很难满足现代化工业生产及服务等方面的要求,负面效应十分严重。 变频调速器的出现为交流调速方式带来了一场革命。随着近十几年变频技术的不断完善、发展。变频调速性能日趋完美,已被广泛应用于不同领域的交流调速。为企业带来了可观的经济效益,推动了工业生产的自动化进程。 变频调速用于交流异步电机调速,其性能远远超过以往任何交、直流调速方式。而且结构简单,调速范围宽、调速精度高、安装调试使用方便、保护功能完善、运行稳定可靠、节能效果显著,已经成为交流电机调速的最新潮流。 二、变频节能原理: 1. 风机运行曲线 采用变频器对风机进行控制,属于减少空气动力的节电方法,它和一般常用的调节风门控制风量的方法比较,具有明显的节电效果。 由图可以说明其节电原理: 图中,曲线(1)为风机在恒定转速n1下的风压一风量(H―Q)特性,曲线(2)为管网风阻特性(风门全开)。曲线(4)为变频运行特性(风门全开) 假设风机工作在A点效率最高,此时风压为H2,风量为Q1,轴功率N1与Q1、H2的乘积成正比,在图中可用面积AH2OQ1表示。如果生产工艺要求,风量需要从Q1减至Q2,这时用调节风门的方法相当于增加管网阻力,使管网阻力特性变到曲线(3),系统由原来的工况点A变到新的工况点B运行。从图中看出,风压反而增加,轴功率与面积BH1OQ2成正比。显然,轴功率下降不大。如果采用变频器调速控制方式,风机转速由n1降到n2,根据风机参数的比例定律,画出在转速n2风量(Q―H)特性,如曲线(4)所示。可见在满足同样风量Q2的情况下,风压H3大幅度降低,功率N3随着显著减少,用面积CH3OQ2表示。节省的功率△N=(H1-H3)×Q2,用面积BH1H3C表示。显然,节能的经济效果是十分明显的。 2.风机在不同频率下的节能率

变频器在数控机床上的应用

数控机床变频改造解决方案 一数控机床说明 数控机床的主运动是主轴通过卡盘或顶尖带动工件的旋转运动,是电动机带动齿轮箱来传动和调速的。在机械加工过程中,需要经常对主轴的旋转有不同的运行速度要求,操作人员通过手柄组合的多个位置来控制离合器的分与合,得到齿轮的多种组合,从而得到多档的转速,操作不方便,维修量也比较大,实践证明,调速用的电磁离合器损坏率较高。原有机床的主轴传动的这一特点已经不能适应经济的快速发展对数控机床的需求,目前,数控机床配套使用变频器对主轴进行调速控制越来越普遍和实用。 二系统简介 整个电气系统由数控机床CNC、迈凯诺变频器、时间继电器、制动组件等组成。接线图如下图所示: (1)交流电源通过断路器连接至主电路的电源端子(R、S、T)。变频器输出端子(U、V、W)按正确相序连接主轴电动机。当运行命令和电动机的旋转方向不一致时,可在U、V、W三相中任意更改两相接线,或将控制电路端子FWD/REV调换一下。 (2)频率给定命令由CNC以0-10V(或-10V~10V)的形式给定,从变频器的AI1和GND 接入。电机的转向和运行控制由变频器数字输入端口(DI)的状态决定。 (3)当数字端子D1与端子COM接通时,端子D1上为高电平,电机正转;当数字端子D2与端子COM接通时,端子D2上为高电平,电机反转;当数字端子D1和端子D2均不与端子COM接通时,端子D1和端子D2上均为低电平,电机停止。端子D1与端子COM之间的接通或断开、端子D2与端子COM接通之间的接通或断开,由两对继电器触点控制,这两个继电器可由数控系统所发出的主轴正转和主轴反转指令控制。同时,变频器的两路数字输出端口分别设置为:TIA和TIC(功能设置为:运行输出);T2A和T2C(功能设置为:故障输出)。

【建筑工程管理】系列工程型变频器的应用实例介绍

Elite系列工程型变频器的应用实例介绍 前言 Elite系列变频器是施耐德电气最新推出的高性能工程型变频器产品,主要应用于要求精确控制力矩和速度的高级别应用场合。例如: ·要求精确运动控制和停止/悬停能力的起重机、电梯、升降机。 ·精确控制非常关键的纸张加工机械和轧钢机。 ·以精确传输和产品定位为基本要求的物料输送/指示。 ·以及其他工程应用场合。 其主要特点有: 一种变频器适用于所有的应用场合 ·开环模式控制用于一般工业场合,如输送机、挤压机、搅拌机以及正排量泵等。 ·闭环矢量控制对提升或抓举应用进行精确控制,如起重机、电梯、卷扬机以及升降机等。控制灵活性 ·可通过显示组件或计算机/PLC进行设置和操作。 ·数量众多的可配置的控制输入和输出口: 7个数字输入口/2个模拟输入口/1个光纤输入口, 3个数字输出口/2个模拟输出口/1个光纤输出口。 ·串口通信- RS485/RS232标准: 支持的软件协议包括Modbus、DeviceNet、Interbus、Remote I/OTM等等。·PID过程控制器 ·在Windows下运行的Vy sta?软件可允许在特定场合对变频器进行自定义设置。 优异性能

·开环模式提供多种不等的电机速度,最小可低于1赫兹。 ·闭环矢量控制用于高性能要求的场合,即零速度下提供250%的力矩。 适用于苛刻的工业环境 ·IP54封装保证苛刻环境下的运行可靠性。 ·适应高达50℃的环境温度等级。 认证及核准 ·Ultradrive Elite 内置滤波器,完全符合EMC标准,即无需附加的滤波器。 ·符合主要的国际标准,包括BS EN61010-1、AS/NZS 2064-1、BS EN61800-3。 ·依照AS/ZNS(ISO)9001:1994质量管理标准设计制造。 VYSTA工程软件介绍 增强的性能 ·Vysta? for Windows软件可以针对特定应用对变频器的配置进行定制。 ·配置系统控制程序,如多速度、多加速度应用场合,起重机控制,多泵系统和卷扬机。·Elite Series交流电机变频器可以存储多个Vysta应用程序。这样,一台标准变频器可以变成一台起重机专用变频器,只需选择合适的程序即可。 ·Vysta软件支持包括:全面的程序帮助菜单,在线网络支持以及内部培训课程。 超乎寻常的灵活性 ·Vysta软件是一个基于Windows的编程平台,它对用户非常友好,且十分灵活,能够使用拖放技术简化配置。 ·独一无二的图形化用户界面(GUI),可以简化变频器编程。

高压变频器方案

一、概述 高压变频器调速系统是将变频调速技术应用于大功率高压电机调速的一种电力换流装置,是国家大型设备节能技术改造及建设推广项目,应用范围广泛,应用高压变频调速器能大幅度降低电机的电耗,其节能效果一般在30%以上,具有明显的节能与环保效益,对提高企业的能源利用率,延长设备的使用寿命,减少设备运行费用与设备维护费用,确保用户的用电质量与用电可靠性,能起到极大的促进作用。在社会积极倡导各行业节能、减排的今天,甲方同时也做出积极地响应。甲方对现场控制对象(高惯量风机)提出的高性能控制装置高压变频器无疑就是其中的一例。根据现场使用情况、工艺要求,利用选用优良的大功率、高电压变频控制装置,不但可以调节电机的转速、转矩充分发挥其电气机械特性,而且可以更大程度上为钢厂、社会节能同时能够获得的更大的经济效益。本系统方案就是给现场高惯量风机选择一款综合性能较好的高压变频器。 二、被控设备基本参数、工作环境、电网情况 1、风机: 型号:Y5-2*48N026.5F 流量:700000m3/h 转速:965r/min 转动惯量:23000kg/m3 2、驱动电机: 型号:YBPK710-6 额定功率:2240KW 额定电压:6KV 额定电流:261A 变频运行:电动机Y型接法效率:96.0% 功率因素:0.86 绝缘等级:F 3、设备现场环境情况: 温度:0-40℃湿度:≤95%,不凝露 4、10KV电网情况 额定电压:10KV 正常电压波动范围:+/-10% 额定频率:50HZ 频率变化范围:+/-10% 三、高压变频器控制方案及选择 交流变频调速技术是现代化电气传动的主要发展方向之一,它不仅调速性能优越,而且节能效果良好。实践证明,驱动风机、水泵的大、中型笼型感应电动机,采用交流变频调速技术,节能效果显著,控制水平也大为提高。目前,变频调速技术已广泛应用于低压(380V)电动机,但在中压(3000V以上)电动机上却一直没有得到广泛应用,造成这种情况的主要原因是目前在低压变频器中广泛应用的功率电子器件均为电压型器件,耐压值基本都在1200-1800V,研制高压变频器难度较大,为了攻克这一技术难题,国内外许多科研机构及大公司都倾注大量人力物力进行研究,工业发达国家高压变频器技术已趋于成熟,国外几家著名电器公司都有高压大容量变频器产品,典型的如美国A-B(罗克韦尔自动化公司所属品牌)、欧洲的西门子公司、ABB 公司等。这些公司产品的电压一般为3-10kv,容量从250-4000kw,所采用的控制方式、变流方式及其他方面的关键技术也有很大差别。 A-B 从1990 年研制成功并开始投入商业运行的变频器主要采CSI-PWM技术,即电流源逆变-脉宽调制型变频器,采用电流开关器件,无需升降压变压器即可以直接输出6KV 电压,分强制风冷和水冷型,功率从300 到18000 马力,至今已经应用于多个行业上千台应用记录。是最有影响力,最为广泛接受的中压变频技术。美国罗宾康公司采用大量低压电压型开关器件,配合特殊设计的多脉冲多次级抽头输出隔离整流变压器,同样能够实现输出端直接6 千伏输出,由于是大量低压元件串接,故被称之为多极化电压性解决方案。西门子公司和ABB 公司分别采用中压IGBT 和IGCT 器件,是典型的电压型变频器。器件耐压等级为4160/3300V,直接输出电压最高达3300V。所以国内也有将此种方案称为高中方案,对应的将6KV-6KV(如A-B 方案)称为高高方案。中压变频器的发展和广泛应用是最近十几年的事情,相比之下低压变频器的应用却已经有超过二十年的时间。在中压变频器大面积推广应用之前,也出现了另外一种方案。即采用升降压变压器的“高-低-高”式变频器,

高压变频器在水泥厂高温风机上的应用

高压变频器在河北中联水泥厂高温风机上的应用 -- 杨国强 一、概述 目前,水泥行业的竞争非常激烈,但关键还是制造成本的竞争,而电动机电耗占成本近30%,拖动风机用的高压电动机在电机中占有很大的比重。因此,做好电动机的降耗增效工作就显得极为重要。当前,很多水泥厂的风机“大马拉小车”现象严重,如果利用变频调速技术改变设备的运行速度,以调节风量的大小,可以既满足生产要求,又达到节约电能,同时减少因调节挡板而造成挡板和管道的磨损及经常停机检修所造成的经济损失。因此,在水泥厂风机采用变频调速技术,能节约大量能源,提高生产效率,为水泥厂带来较大的效益。根据具体情况,风机进行变频后,节电率在30-50%的范围内,通常一年半到两年便可收回投资。 应用案例:2010年,邢台中联水泥厂的高温风机上进行了变频改造,经过一年的数据搜集及对比分析,节能效果显著。下面对改造情况作一详细介绍。 二、原来液体电阻调节的具体工作方式 绕线式异步电动机的转子经集电环和电刷串接外加电阻后,可以改变电动机的转差率s,进而改变转速。通过改变其转子串接的外电阻可实现调速。转子串接的电阻值R越大,其机械特性也越软,即转矩很小的变化将引起转速较大的波动。此外,在负载小时(即转矩小时)其调速范围变窄。从高温风机长期的液体电阻调节工作过程中可以总结出液体电阻的优缺点: 优点:调速方法简单,初投资低,容易实施,可靠性高,功率因数高,不产生高次谐波,启动设备和调速设备合为一体。 缺点:①由于转差功率都是以发热的形式消耗在电阻上,然后通过冷却水冷却后白白浪费掉,再加上控制设备较多(循环泵和伺服电机等),控制回路消耗的功率较大,因此效率比较低。②由于控制设备的增多,相应的出现故障的概率也较高,考虑到渗漏以及蒸发等原因,需要定期加液之类的,设备维护量比较大。另外环境温度低于零度,需要考虑电解液等加热问题。③调速比低(与变频等相比),不大于50%,不适用于对调速范围要求较大的场合,如转速较低场合。④启动转矩比较小,特性较软。不适合对电动机机械特性要求高的场合。⑤只适用于绕线式异步电机调速,鼠笼式电机只能作软起。 结论:转子串电阻调速的方式,在串级调速和变频调速技术成熟之前是绕线电机的主要的调节手段,因此在一些比较早期的绕线电机的运行场合,应用还是比较多的,但液体电阻调速属于有转差损失的低效调速方式,与高效调速方式相比节能的空间相对较小,而且其技术进步的空间已经不大,并且只能用在绕线式电机上,因此很大的限制了它的应用。 三、高压变频调速系统简介 异步电动机的变频调速是通过改变定子供电频率f来改变同步转速而实现调速的,在调速中从高速到低速都可以保持较小的转差率,因而消耗转差功率小,效率高,是异步电动机

变频器 个典型应用领域

变频器32个典型应用领域 变频器应用的一些场合 1、空调负载类 写字楼、商场和一些超市、厂房都有中央空调,在夏季的用电高峰,空调的用电量很大。在炎热天气,北京、上海、深圳空调的用电量均占峰电40%以上。因而用变频装置,拖动空调系统的冷冻泵、冷水泵、风机是一项非常好的节电技术。目前,全国出现不少专做空调节电的公司,其中主要技 术是变频调速节电。 2、破碎机类负载 冶金矿山、建材应用不少破碎机、球磨机,该类负载采用变频后效果显著。 3、大型窑炉煅烧炉类负载 冶金、建材、烧碱等大型工业转窑(转炉)以前大部分采用直流、整流子电机、滑差电机、串级调速或中频机组调速。由于这些调速方式或有滑环或 效率低,近年来,不少单位采用变频控制,效果极好。 4、压缩机类负载 压缩机也属于应用广泛类负载。低压的压缩机在各工业部门都普遍应用,高压大容量压缩机在钢铁(如制氧机)、矿山、化肥、乙烯都有较多应用。 采用变频调速,均带来启动电流小、节电、优化设备使用寿命等优点。 5、轧机类负载 在冶金行业,过去大型轧机多用交-交变频器,近年来采用交-直-交变频器,轧机交流化已是一种趋势,尤其在轻负载轧机,如宁夏民族铝制品厂的多机架铝轧机组采用通用变频器,满足低频带载启动,机架间同步运行,恒张力控制,操作简单可靠。 6、卷扬机类负载 卷扬机类负载采用变频调速,稳定、可靠。铁厂的高炉卷扬设备是主要的炼铁原料输送设备。它要求启、制动平稳,加减速均匀,可靠性高。原多采用串级、直流或转子串电阻调速方式,效率低、可靠性差。用交流变频器替代上述调速方式,可以取得理想的效果。 7、转炉类负载

转炉类负载,用交流变频替代直流机组简单可靠,运行稳定。 8、辊道类负载 辊道类负载,多在钢铁冶金行业,采用交流电机变频控制,可提高设备可靠性和稳定性。 9、泵类负载 泵类负载,量大面广,包括水泵、油泵、化工泵、泥浆泵、砂泵等,有低压中小容量泵,也有高压大容量泵。 许多自来水公司的水泵、化工和化肥行业的化工泵、往复泵、有色金属等行业的泥浆泵等采用变频调速,均产生非常好的效果。 10、吊车、翻斗车类负载 吊车、翻斗车等负载转矩大且要求平稳,正反频繁且要求可靠。变频装置控制吊车、翻斗车可满足这些要求。 11、拉丝机类负载 生产钢丝的拉丝机,要求高速、连续化生产。钢丝强度为200Kg/mm2,调速系统要求精度高、稳定度高且要求同步。 12、运送车类负载 煤矿的原煤装运车或钢厂的钢水运送车等采用变频技术效果很好。起停快速,过载能力强,正反转灵活,达到煤面平整、重量正确(不多装或少装), 基本上不需要人工操作,提高了原煤生产效率,节约了电能。 13、电梯高架游览车类负载 由于电梯是载人工具,要求拖动系统高度可靠,又要频繁的加减速和正反转,电梯动态特性和可靠性的提高,边增加了电梯乘坐的安全感、舒适感和效率。过去电梯调速直流居多,近几年逐渐转为交流电机变频调速,无论日本还是德国。我国不少电梯厂都争先恐后的用变频调速来装备电梯。如上海三菱、广州日立、青岛富士、天津奥的斯等均采用交流变频调速。不少原来生产的电梯也进行了变频改造。 14、给料机类负载 冶金、电力、煤炭、化工等行业,给料机众多,无论圆盘给料机还是振动给料机,采用变频调速效果均非常显著。吉化公司染料厂硫酸生产线的圆盘给料机,原为滑差调速,低频转矩小,故障多,经常卡转。采用变频调速后,由于是异步机,可靠性高、节电,更重要的是和温度变送器闭环保证了输送物料的准确,不至于使氧化剂输送过量超温而造成事故,保证了生产的有序性。

变频器在工业生产中的应用.docx

变频器在工业生产中的应用 电动机是工业生产中最主要的动力提供装置,而这些动力是从消耗电能所产生的。在提倡建立节约型社会的今天,降耗节能成为生产生活中必不可少的一部分。这就要求我们使用最少的电能让电机提供最可靠的动力。在这其中,变频器扮演了相当重要的角色。本论文介绍变频器在工业生产中的具体应用。 变频器 变频器,它产生于上世纪60年代,伴随着大功率晶体管的问世和集成电路的迅速发展,使得变频器的性能有了很大的提高。因为变频器拥有能够实现异步电动机的恒转矩和恒功率的无级调速,其调速范围广、平滑性好、机械特性较硬,而且节能效果明显,有利于实现自动控制等这些优点使得变频器的应用也越来越广,基本上涵盖了所有领域。 变频器在生产中的应用 总体来说,变频器在工业生产中主要来对电动机进行调速。那么变频调速和传统的调速相比有哪些优点呢?主要有两点:一是便于实现自动控制。变频器是电力技术与电子技术的结合,也是强弱电的有机整体,在实现自动控制方面有着先天的优势;二是能够节能降耗。下面以恒压循环水系统为例进行分析说明。 变频器在自动控制系统中的应用 在循环水系统中,由于各个车间和部门用水时间和用水量的不同,使得系统内的水压会经常变化,这就要求,根据不同的用水量,使得整个

系统中的水压保持恒定不变。解决这个问题一般有以下几种做法。 第一,采用水阀限制水流量,从而达到限制水压的目的。此方法有几个缺点。首先,水阀的调节精确度不够,水压的波动范围较大;其次,不易实现自动控制,也不便于实时监测。 第二,修建水塔,利用液体压强定律来保持水压的恒定。相对于前一种方法,该法的压力较恒定,但仍不便于实现自动控制和实时监测,且占地面积较大,通用性差。 我们在循环水系统的管路中装上压力传感器做为反馈信号的采样,然后将采样得来的水压与给定的水压相比较,根据比较所得到的误差来调节变频器的频率,从而达到控制电机的转速,最终控制整个循环水系统的压力保持恒定。 从以上分析来看,利用变频器的闭环控制系统,由于变频器的响应特性好,所以使得控制更加方便,精确,通用性好,操作界面也更加友好。 变频器在节能降耗中的作用 关于变频器在节能降耗中的作用,一直存在着争论。我认为,不能一概而论,要视具体的情况而定。 对于纺织加工、轧钢等,负载基本恒定的场合,电机一般工作在额定功率,主要是利用了变频器在平滑加减速、高精度力矩控制、运行可靠性好等方面表现出来的优异性能。在这些场合中,非但不节能,且因为变频器本身造价成本高,其自身也有能耗,从而使得整个系统更加昂贵和耗能。 但是,在风机、水泵等应用场合,节能降耗特性就显得十分明显。在

时代变频器在机床(镗床)上的应用.

时代变频器在机床(镗床)上的应用 一般情况下机床的拖动系统是由齿轮箱来传动和调速的。它具有以下特点:1.恒功率性质由于齿轮箱变速时,转矩的变化与转速的变化成反比。若不计齿轮箱的损耗,则在全功率范围内,都具有恒功率的特点。2.低速时的过载能力强在低速段,拖动系统经齿轮降速后的额定转矩将远远高于负载的最大阻转矩,具有极强的过载能力。应用时代变频器实现调速系统的基本考虑:1、由于时代变频器调频范围很广,可在0—300Hz之间实现任意点的无级调速。 一般情况下机床的拖动系统是由齿轮箱来传动和调速的。它具有以下特点:1. 恒功率性质由于齿轮箱变速时,转矩的变化与转速的变化成反比。若不计齿轮箱的损耗,则在全功率范围内,都具有恒功率的特点。2.低速时的过载能力强在低速段,拖动系统经齿轮降速后的额定转矩将远远高于负载的最大阻转矩,具有极强的过载能力。 应用时代变频器实现调速系统的基本考虑: 1、由于时代变频器调频范围很广,可在0—300Hz之间实现任意点的无级调速。 2、使用变频调速,可满足镗床所要求的具有较硬的机械特性。 3、使用变频调速,可满足镗床所需要的低速时的强过载能力。 4、使用变频调速,省去齿轮变速箱等原有复杂的机械拖动,自动化程度高,操作简单,维修方便。 应用实例: 某机床厂主要生产各类机床,由于调速用的电磁离合器损坏率较高,了解到时代变频调速系统具有以上优点,故改用时代变频器实现变频调速。具体情况如下: 1.系统构成:(见图3) 2.原拖动系统概况 1)转速档次调速箱有8档转速:75、120、200、300、800、1200、 2000r/min。 2)电动机的主要额定参数 额定容量:3.7kw 额定转速:1440r/min 负载特性:恒功率 3)控制方式由手柄组合的8个位置来控制四个离合器的分与合,得到齿轮的8种组合,从而得到8档转速。 3.使用时代变频调速的方案 1)转速档次及控制方式可采用手柄结合变频器面板控制或电位器调节获得所需的理想转速。 2)时代变频器主要参数 调速范围:0——-300HZ 加减速时间:0.1——-1800S 过载能力:150% 4.结果在所有各档转速下,经反复试验,都完全符合设计要求,取得了令人满意的结果。现该产品已批量生产,投放市场。(图3)

高压变频器简介

高压变频器 基本信息 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。随着现代电力电子技术和微电子技术的迅猛发展,高压大功率变频调速装置不断地成熟起来,原来一直难于解决的高压问题,近年来通过器件串联或单元串联得到了很好的解决。其应用的领域和范围也越来越为广范,这使得高效、合理地利用能源(尤其是电能成为了可能。电机是国民经济中主要的耗电大户,高压大功率的更为突出,而这些设备大部分都有节能的潜力。大力发展高压大功率变频调速技术,,将是时代赋予我们的一项神圣使命,而这一使命也将具有深远的意义。 高压大功率变频调速装置被广泛地应用于石油化工、市政供水、冶金钢铁、电力能源等行业的各种风机、水泵、压缩机、轧钢机等。 分类与结构 高压变频器的种类繁多,其分类方法也多种多样。按着中间环节有无直流部分,可分为交交变频器和交直交变频器;按着直流部分的性质,可分为电流型和电压型变频器;按着有无中间低压回路,可分为高高变频器和高低高变频器;按着输出电平数,可分为两电平、三电平、五电平及多电平变频器;按着电压等级和用途,可分为通用变频器和高压变频器;按着嵌位方式,可分为二极管嵌位型和电容嵌位型变频器等等。 分类 低压型变频器 产品定义电压等级低于690V的可调输出频率交流电机驱动装置,就归类为低压变频器(如下图。目前,随着低压变频器技术的不断成熟,低压变频的应用场合决定了它不同的分类。单

从技术角度来看,低压变频器的控制方式也在一定程度上表明了它的技术流派。 正弦脉宽调制(SPWM其特点是控制电路结构简单、成本较低,机械特 性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到 广泛应用。 电压空间矢量(SVPWM它是以三相波形整体生成效果为前提,以逼近 电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多 边形逼近圆的方式进行控制的。 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、 Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再 通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、 It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流,然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。 直接转矩控制(DTC方式该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。

变频器在水泥厂的应用

精心整理 变频器在水泥厂的应用 回顾我国水泥工业的发展历史,逐渐从规模小、技术落后、资源浪费型工业向集团规模化、计算机集中控制、节能增效型现代化管理企业转变。伴随着这种转变,不论从宏观方面处于国家政策大力提倡推行的节能大趋势下出发,还是从企业本身的降低电耗成本增加产品竞争力的需求出发,节能已成为目前水泥工厂设计和建设中不可缺少的环节。在水泥生产过程中,电能消耗非常大,电费在水泥生产成本中占了很大的比例。在水泥厂的工艺设备配置中,生料制备和熟料烧成段风机功率约占设备总功率的40%左右。所以风机的电耗直接影响到水泥企业的生产成本。能否控制好风机的电耗,特别是大型风机的电耗,对降低水泥生产成本,提高企业的经济效益是至关 选择? ,压力H 下降到80 容积损耗、 差率达到改变电机转速的目的。由于绕线式电机转子线圈串入不同电阻后,对应的转差率不同。电阻越大,电机转速越低;电阻为零,电机达到全速,这就是液体电阻启动调速器的基本原理。由于液体电阻调速器在调节过程中要产生转差功率损耗、电阻通电所产生的热耗,所以液体调速器节能效果也不太理想。它的缺点主要是:调速范围小,最大为2:1;由于通过检测实际转速与设定值比较来升降极板,在实际运用中,调速精度低、速度响应慢、转速不稳定、易受温度影响;并且在调速过程中,电解液中流过转子电流会产生大量热量,需使用循环水进行冷却;采用绕线型电机,结构复杂,维护工作量大,需增加转子电缆接线。 而交流变频调速的特点是效率高,没有调速带来的附加转差损耗,调速的范围大、精度高、无级调速,并且实现电机软启动,延长电机使用寿命,减小启动电流对电网的冲击。使用结构简单、可靠耐用、维护方便的鼠笼式电动机,又能达到节电的显着效果,是风机节能的较理想的方法。 二、高压变频器的类别

变频器在工业生产中的应用(2020年)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 变频器在工业生产中的应用 (2020年) Safety management is an important part of production management. Safety and production are in the implementation process

变频器在工业生产中的应用(2020年) 电动机是工业生产中最主要的动力提供装置,而这些动力是从消耗电能所产生的。在提倡建立节约型社会的今天,降耗节能成为生产生活中必不可少的一部分。这就要求我们使用最少的电能让电机提供最可靠的动力。在这其中,变频器扮演了相当重要的角色。本论文介绍变频器在工业生产中的具体应用。 变频器 变频器,它产生于上世纪60年代,伴随着大功率晶体管的问世和集成电路的迅速发展,使得变频器的性能有了很大的提高。因为变频器拥有能够实现异步电动机的恒转矩和恒功率的无级调速,其调速范围广、平滑性好、机械特性较硬,而且节能效果明显,有利于实现自动控制等这些优点使得变频器的应用也越来越广,基本上涵盖了所有领域。 变频器在生产中的应用

总体来说,变频器在工业生产中主要来对电动机进行调速。那么变频调速和传统的调速相比有哪些优点呢?主要有两点:一是便于实现自动控制。变频器是电力技术与电子技术的结合,也是强弱电的有机整体,在实现自动控制方面有着先天的优势;二是能够节能降耗。下面以恒压循环水系统为例进行分析说明。 变频器在自动控制系统中的应用 在循环水系统中,由于各个车间和部门用水时间和用水量的不同,使得系统内的水压会经常变化,这就要求,根据不同的用水量,使得整个系统中的水压保持恒定不变。解决这个问题一般有以下几种做法。 第一,采用水阀限制水流量,从而达到限制水压的目的。此方法有几个缺点。首先,水阀的调节精确度不够,水压的波动范围较大;其次,不易实现自动控制,也不便于实时监测。 第二,修建水塔,利用液体压强定律来保持水压的恒定。相对于前一种方法,该法的压力较恒定,但仍不便于实现自动控制和实时监测,且占地面积较大,通用性差。

iNVOEE VC610系列变频器数控机床应用快速设定指南v1.04

iNVOEE VC610系列变频器数控机床应用 ——— 快速设定指南v1.04 基本接线图 系统安系统安装装完成完成后后,且用户参数已恢复出厂值且用户参数已恢复出厂值((新机不用执行此操作,[F07.05]=4可用于将所有用户参数恢复出厂值,),进行如下进行如下3个步骤即可保证系统正常运行个步骤即可保证系统正常运行:: 步骤1:设定电机特性参数:(对于对于没有铭牌的电机没有铭牌的电机没有铭牌的电机,,可用相应功率等级的可用相应功率等级的出厂出厂出厂默认值默认值) 按照电机铭牌参数准确输入F02组参数:电机额定频率[F02.01](通常情况下为50.00Hz )、电机额定电压[F02.02](通常情况下为380.0V )、电机额定电流[F02.03]、电机额定转速[F02.05](4极电机一般为1440RPM ,6极电机一般为960RPM )。 注意注意::请尽量按照实际的电机铭牌参数设定该组参数请尽量按照实际的电机铭牌参数设定该组参数,,准确的铭牌参数有利于控制特性的提升准确的铭牌参数有利于控制特性的提升,,错误 的参数会导致力矩丢失甚至无法正常运行的参数会导致力矩丢失甚至无法正常运行。。提高提高电机额定电流电机额定电流[F02.03]的设定并不能提高转矩输出输出。。电机空载电流[F02.04]不用手工设定不用手工设定,,变频器变频器会通过自学习自动设定会通过自学习自动设定会通过自学习自动设定。。 步骤2:电机参数自学习电机参数自学习:: 1) 设定[F02.06]=1,让变频器进入电机参数学习准备状态,此时面板显示“P.tESt ”; 2) 通过系统启动变频器(亦可通过修改[F01.00]=0,用面板启动,结束后将[F01.00]=1,重新设定为外部端子控制),变频器开始自动学习电机参数。如果电机参数学习成功,面板显示“SUCCE ”,[F02.06]会自动被改回0;若失败,[F02.06]会保持1,下次启动后会再次进入电机学习状态。 注意注意::通过参数自学习操通过参数自学习操作作,变频器可以自动测试并保存电机铭牌参数以外的电机内部参数变频器可以自动测试并保存电机铭牌参数以外的电机内部参数,,提高电 机输出转矩及运行特性机输出转矩及运行特性。。学习过程可以不拆卸主轴皮带习过程可以不拆卸主轴皮带,,但最好将机床档位打到最低档位但最好将机床档位打到最低档位((接近空载空载))或挂空挡或挂空挡,,以获得最佳学习效果以获得最佳学习效果。。更换电机后需要重新设定电机特性参数和做自学习更换电机后需要重新设定电机特性参数和做自学习。。 电机参数学习刚开始时主轴保持静止电机参数学习刚开始时主轴保持静止((大约6秒钟秒钟),),随后主轴随后主轴随后主轴会会自行自行加速加速加速运转运转运转,,学习完成后主轴会自行自行减速减速减速停止停止停止。。整个学习过程中整个学习过程中请不要操作机床请不要操作机床请不要操作机床,,以免造成意外伤害以免造成意外伤害。 。 步骤3:将主轴实际转速与系统给定转速进行校准将主轴实际转速与系统给定转速进行校准::(亦可按照经验值设定[F00.00]和[F01.18]) 首先在机床数控系统中,将主轴最高转速参数设定为设计值Nmax 。然后试运行系统,稳定后记录变频器输出频率Fo(Hz),及机床主轴对应实际转速Nz 。变频器输出频率Fo 可以在监视状态下(可用ESC 键切换到监视状态) F.oUt 对应实际转速Nz 可以在数控系统面板上观察到。最后按照下式进行设定: 最高频率[F00.00]= 上限频率[F01.18]=(Nmax×Fo)/Nz 注意注意::最高工作转速时不应最高工作转速时不应让电机超过额定转速让电机超过额定转速让电机超过额定转速,,以免造成电机损坏或意外伤害以免造成电机损坏或意外伤害, ,并确保系统可以长时间可靠工作时间可靠工作。。 根据需要调整加速时间[F01.11]和减速时间[F01.12]。制动电阻建议使用厂家标配制动电阻建议使用厂家标配:: 机型范围 4.0kW 及以下 5.5~9.0kW 11.0~22.0kW 电阻配置 50欧姆/600W 40欧姆/1000W 40欧姆/1500W 南京英沃变频技术有限公司 系统 系统启信号

变频器在纺织行业的应用案例

变频器在纺织行业的应用案例 1、交流变频调速的特点 1.1 减少功耗降低成本 纺织厂离不开空调设备。当空调电机使用变频调速器控制后,降低了功耗,大大节省了用电支出。据某公司提供的数据,全年12台空调机可节电24余万元,空调用电单耗平均下降了6、7个百分点。 1.2 简化了机构提高了性能 通过PLC可编程序控制器或工控机的控制,再经变频调速器实现多电机的同步协调运转。根据生产工艺曲线控制各机构的运动,进而简化了机构。比如粗纱机利用交流变频调速,去掉了锥轮变速机构,从而克服了锥轮变速皮带打滑变速不准的问题。 而对于细纱机来说,由于利用变频调速器去掉了成形机构中的成形凸轮,进而克服了由于成形凸轮所造成的桃底有停顿、桃顶有冲击的现象。使得细纱卷形状良好。以便于下一道工序的高速退绕。同时利用变频调速器控制主电机的变速来控制锭子的转数,使得细纱在大中小纱时转速在变化,以减少纱的断头率。 2、交流变频技术的应用 变频器控制的纺织机械所用的交流电机主要分为两类。一类就是常用的Y系列的交流异步电机。这种电机主要应用于调速精度要求不高、调速范围不大的纺机上。而另一类为交流变频调速专用异步电机。主要用于调速精度要求高、调速范围大的机器上。 下面介绍一下不同形式的变频器。 (1)用变频器开环控制异步电机调速称为V/F形式。这种方式电路简单、可靠。但调速范围在10:1范围以内,调速精度较低2% ~ 5%,并且低速性能不理想。因此多用于针织机或要求不高的纺织机械上。 (2)采用无速度传感器矢量控制变频器。其有优良的低速特性。电路结构简单,可靠性高。同时还具有较好的加减速特性、转矩特性以及电流限制特性等。调速精度可达0.1%。调速范围在20:1范围以内。较适合印染机械的调速等。 (3)采用带速度反馈的矢量变频控制异步电机,闭环变频调速,又称交流伺服电机。调速范围可达100:1。为了提高变频器开关频率,应用功率绝缘栅双极型晶体管(IGBT)取代一般的大功率管(GTR)。可实现高频响应、高精度、智能化。适用于调速要求较高且恒张力、恒线速的分条整经机、浆纱机、热定型机以及化纤长丝纺纱设备等。 在一些设备上,如巴马格高速的卷绕头以及DLENES高速的热辊等部件,将所需电气元件与变频器及控制面板与卷绕头机械部分合为一体,更是减少了体积,增强了可靠性。 3、变频调速器在纺织中的应用实例

高压变频器原理与应用

高压变频器原理及应用 1、引言电机是工业生产中主要的耗电设备,高压大功率电动机的应用更为突出,而这些设备大部分都存在很大的节能潜力。所以大力发展高压大功率变频调速技术具有时代的必要性和迫切性。 目前,随着现代电力电子技术和微电子技术的迅猛发展,高压大功率变频调速装置不断地成熟起来,原来一直难于解决的高压问题,近年来通过器件串联或单元串联得到了很好的解决。其应用领域和围也越来越为广,这为工矿企业高效、合理地利用能源(尤其是电能)提供了技术先决条件。 2、几种常用高压变频器的主电路分析 (1)单元串联多重化电压源型高压变频器。单元串联多重化电压源型高压变频器利用低压单相变频器串联,弥补功率器件IGBT的耐压能力的不足。所谓多重化,就是每相由几个低压功率单元串联组成,各功率单元由一个多绕组的移相隔离变压器供电,用高速微处理器实现控制和以光导纤维隔离驱动。但其存在以下缺点: a)使用的功率单元及功率器件数量太多,6kV系统要使用150只功率器件(90只二极管,60只IGBT),装置的体积太大,重量大,安装位置和基建投资成问题; b)所需高压电缆太多,系统的阻无形中增大,接线太多,故障点相应的增多; c)一个单元损坏时,单元可旁路,但此时输出电压不平衡中心点的电压是浮动的,造成电压、电流不平衡,从而谐波也相应的增大,勉强运行时终究会导致电动机的损坏; d)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出; e)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出; f)由于系统中存在着变压器,系统效率再提高不容易实现;移相变压器中,6kV三相6绕组×3(10kV时需12绕组×3)延边三角形接法,在三相电压不平衡(实际上三相电压是不可能绝对平衡的)时,产生的部环流,必将引起阻的增加和电流的损耗,也相应的就造成了变压器的铜损增大。此时,再加上变压器的铁芯的固有损耗,变压器的效率就会降低,也就影响了整个高压变频器的效率。这种情况在越低于额定负荷运行时,越是显著。10kV时,变压器有近400个接头、近百根电缆。在额定负荷时效率可达96%,但在轻负荷时,效率低于90%。 (2)中性点钳位三电平PWM变频器。该系列变频器采用传统的电压型变频器结构。中性点钳位三电平PWM变频器的逆变部分采用传统的三电平方式,所以输出波形中会不可避免地

相关文档
最新文档