温湿度独立控制系统

温湿度独立控制系统
温湿度独立控制系统

班级:建环0801 学号:081304129 姓名:陶天吟

温湿度独立控制空调系统

摘要:本文在分析了目前热湿联合处理空调系统所面临的主要问题的基础上,提出了热湿独立控制空调策略:采用新风去除室内的余湿、承担室内空气质量的任务,采用高温冷源去除室内的余热。并提出了温湿度独立控制空调方式对室内末端装置、新风处理、制备高温冷源的要求与影响,介绍了温湿度独立控制系统的应用实践工程。

关键字:温湿度独立控制新风高温冷源

1 引言

从热舒适与健康出发,要求对室内温湿度进行全面控制。夏季人体舒适区为25oC,相对湿度60%,此时露点温度为16.6oC。空调排热排湿的任务可以看成是从25oC 环境中向外界抽取热量,在16.6oC的露点温度的环境下向外界抽取水分。目前空调方式的排热排湿都是通过空气冷却器对空气进行冷却和冷凝除湿,再将冷却干燥的空气送入室内,实现排热排湿的目的。现有的热湿联合处理的空调方式存在如下问题。

(1)热湿联合处理的能源浪费。由于采用冷凝除湿方法排除室内余湿,冷源的温度需要低于室内空气的露点温度,考虑传热温差与介质输送温差,实现16.6oC的露点温度需要约7oC的冷源温度,这是现有空调系统采用5~7oC的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5oC的原因。在空调系统中,占总负荷一半以上的显热负荷部分,本可以采用高温冷源排走的热量却与除湿一起共用5~7oC的低温冷源进行处理,造成能量利用品位上的浪费。而且,经过冷凝除湿后的空气虽然湿度(含湿量)满足要求,但温度过低,有时还需要再热,造成了能源的进一步浪费与损失。

(2)难以适应热湿比的变化。通过冷凝方式对空气进行冷却和除湿,其吸收的显热与潜热比只能在一定的范围内变化,而建筑物实际需要的热湿比却在较大的范围内变化。一般是牺牲对湿度的控制,通过仅满足室内温度的要求来妥协,造成室内相对湿度过高或过低的现象。过高的结果是不舒适,进而降低室温设定值,通过降低室温来改善热舒适,造成能耗不必要的增加;相对湿度过低也将导致由于与室外的焓差增加使处理室外新风的能耗增加。

(3)室内空气品质问题。大多数空调依靠空气通过冷表面对空气进行降温除湿,这就导致冷表面成为潮湿表面甚至产生积水,空调停机后这样的潮湿表面就成为霉菌繁殖的最好场所。空调系统繁殖和传播霉菌成为空调可能引起健康问题的主要原因。另外,目前我国大多数城市的主要污染物仍是可吸入颗粒物,因此有效过滤空调系统引入的室外空气是维持室内健康环境的重要问题。然而过滤器内必然是粉尘聚集处,如果再漂溅过一些冷凝水,则也成为各种微生物繁殖的最好场所。频繁清洗过滤器既不现实,也不是根本的解决方案。

(4)室内末端装置的问题。为排除足够的余热余湿同时又不使送风温度过低,就要求有较大的循环通风量。例如每平方米建筑面积如果有80 W/m2显热需要排除,房间设定温度为25oC,当送风温度为15oC时,所要求循环风量为24 m3/hr/m2,这就往往造成室内很大的空气流动,使居住者产生不适的吹风感。为减少这种吹风感,就要通过改进送风口的位置和形式来改善室内气流组织。这往往要在室内布置风道,从而降低室内净高或加大楼层间距。很大的通风量还极容易引起空气噪声,并且很难有效消除。在冬季,为了避免吹风感,即使安装了空调系统,也往往不使用热风,而通过另外的暖气系统通过采暖散热器供热。这样就导致室内重复安装两套环境控制系统,分别供冬夏使用。

(5)输配能耗的问题。为了完成室内环境控制的任务就需要有输配系统,

、气味等。在中央空调系统中,风机、水泵消耗了40~70%带走余热、余湿、CO

2

的整个空调系统的电耗。在常规中央空调系统中,多采用全空气系统的形式。所有的冷量全部用空气来传送,导致输配效率很低。

此外,随着能源问题的日益严重,以低品位热能作为夏季空调动力成为迫切需要。目前北方地区大量的热电联产集中供热系统在夏季由于无热负荷而无法运行,使得电力负荷出现高峰的夏季热电联产发电设施反而停机,或者按纯发电模式低效运行。如果可以利用这部分热量驱动空调,既省下空调电耗,又可使热电联产电厂正常运行,增加发电能力。这样即可减缓夏季供电压力,又提高能源利用率,是热电联产系统继续发展的关键。由于空调负荷在一天内变化显著,与热电联产电厂提供热能并不是很好匹配,如何实现有效的蓄能,以协调二者的矛盾也是热能使用当中存在的问题。

综上所述,空调的广泛需求、人居环境健康的需要和能源系统平衡的要求,对目前空调方式提出了挑战。新的空调应该具备的特点为:

加大室外新风量,能够通过有效的热回收方式,有效的降低由于新风量增加带来的能耗增大问题;

减少室内送风量,部分采用与采暖系统公用的末端方式;

取消潮湿表面,采用新的除湿途径;

不用空气过滤式过滤器,采用新的空气净化方式;

少用电能,以低品位热能为动力;

能够实现高体积利用率的高效蓄能;

从如上要求出发,目前普遍认为温湿度独立控制系统可能是一个有效的解决途径。

2 温湿度独立控制空调系统

与异味的任务。研究表明:排除空调系统承担着排除室内余热、余湿、CO

2

、异味所需要的新风量与变化趋势一致,即可以通过新风同室内余热与排除CO

2

时满足排余湿、CO

与异味的要求,而排除室内余热的任务则通过其他的系统(独

2

立的温度控制方式)实现。由于无需承担除湿的任务,因而可用较高温度的冷源即可实现排除余热的控制任务。对照前言中现有空调系统存在的问题,温湿度独立控制空调系统可能是一个有效的解决途径。温湿度独立控制空调系统中,采用温度与湿度两套独立的空调控制系统,分别控制、调节室内的温度与湿度,从而避免了常规空调系统中热湿联合处理所带来的损失。由于温度、湿度采用独立的控制系统,可以满足不同房间热湿比不断变化的要求,克服了常规空调系统中难以同时满足温、湿度参数的要求,避免了室内湿度过高(或过低)的现象。

温湿度独立控制空调系统的基本组成为:处理显热的系统与处理潜热的系统,两个系统独立调节分别控制室内的温度与湿度,参见图1。处理显热的系统包括:高温冷源、余热消除末端装置,采用水作为输送媒介。由于除湿的任务由处理潜热的系统承担,因而显热系统的冷水供水温度不再是常规冷凝除湿空调系统中的7oC,而是提高到18oC左右,从而为天然冷源的使用提供了条件,即使采用机械制冷方式,制冷机的性能系数也有大幅度的提高。余热消除末端装置可以采用辐射板、干式风机盘管等多种形式,由于供水的温度高于室内空气的露点

温度,因而不存在结露的危险。处理潜热的系统,同时承担去除室内CO 2、异味,

以保证室内空气质量的任务。此系统由新风处理机组、送风末端装置组成,采用新风作为能量输送的媒介。在处理潜热的系统中,由于不需要处理温度,因而湿度的处理可能有新的节能高效方法。

在温湿度独立控制空调系统中,采用新风承担排除室内余湿、CO 2、室内异

味,保证室内空气质量的任务。一般来说,这些排湿,排有害气体的负荷仅随室内人员数量而变化,因此可采用变风量方式,根据室内空气的湿度或CO 2浓度调节风量。由于仅是为了满足新风和湿度的要求,如果人均风量40

m 3/hr ,每人5平方米面积,则换气次数只在2~3次/hr ,远小于变风量系统的风量。这部分空气可通过置换送风的方式从下侧或地面送出,也可采用个性化送风方式直接将新风送入人体活动区,参见图2。

而室内的显热则通过另外的系统来排除(或补充)。由于这时只需要排除显热,就可以用较高温度的冷源通过辐射、对流等多种方式实现。当室内设定温度为25℃时,采用屋顶或垂直表面辐射方式,即使平均冷水温度为20℃,每平米辐射表面仍可排除显热40 W/m 2,已基本可满足多数类型建筑排除围护结构和室内设备发热量的要求。由于水温一直高于室内露点温度,因此不存在结露的危险和排凝水的要求。此外,还可以采用干式风机盘管通入高温冷水排除显热。由于不存在凝水问题,干式风机盘管可采用完全不同的结构和安装方式,参见图3。这可使风机盘管成本和安装费大幅度降低,并且不再占用吊顶空间。这种末端方式在冬季可完全不改变新风送风参数,仍由其承担室内湿度和CO 2的控制。辐射

板或干式风机盘管则通入热水,变供冷为供热,继续维持室温。与变风量系统相比,这种系统实现了室内温度和湿度的分别控制。尤其实现了新风量随人员数量同步增减。从而避免了变风量系统冬季人员增加,热负荷降低,新风量也随之降低的问题。与目前的风机盘管加新风方式比较,免去了凝水盘和凝水排除系统。彻底消除了实际工程中经常出现问题的这一隐患。同时由于不再存在潮湿表面,根除了滋生霉菌的温床,可有效改善室内空气品质。由于室内相对湿度可一直维持在60%以下,较高的室温(26℃)就可以达到热舒适要求。这就避免了由于相对湿度太高,只得把室温降低(甚至到20℃),以维持舒适要求的问题。既降低了运行能耗,还减少了由于室内外温差过大造成的热冲击对健康的危害。

温湿度独立控制空调技术简介

温湿度独立控制空调技术简介 2013/4/16 8:14:02 来源:广州恒星发布者:广州恒星 一、常规空调技术存在的问题 从人体的热舒适度与健康出发,要求对室内温度、湿度进行全面控制,夏季人体舒适区为25℃,相对湿度60%,此时露点温度为16.6℃.空调排热排湿的任务可以看成是从25℃的环境中向外排热,在16.6℃的露点温度的环境下向外排湿。目前空调方式的排热排湿都通过空气冷却器对空气进行冷却和冷凝除湿,实现排热排湿的目的。常规温湿度混合处理的空调方式存在如下问题: 1、能源浪费。使用一套系统同时制冷和除湿,为了满足冷凝方法排除室内余湿,冷源的温度需要低于室内的露点温度,考虑传热温差与介质输送温差,实现16.6℃的露点温度需要约7℃的冷源温度,这是现有空调系统采用5~7℃的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5℃的原因。在空调系统中,占总负荷一半以上的显热负荷部分,本可以采用高温冷源排走的热量却与除湿一起共用5~7℃的低温冷源进行,造成能量利用品位上的浪费。而且经过冷凝除湿后的空气虽然湿度(含湿量)满足要求,但温度过低,有时还需要再热,造成能源的进一步浪费与损失。 2、难以适应热湿比的变化。通过冷凝方式对空气进行冷却和除湿,其吸收的显热与潜热比只能在一定的范围内变化,而建筑物实际需要的热湿比却在较大的范围内变化。一般是牺牲对湿度的控制,通过仅满足室内温度的要求来妥协,造成室内相对湿度过高或过低的现象。相对湿度过高的结果是不舒适,进而降低室温设定值,通过降低室温来改善热舒适,造成能耗不必要的增加。相对湿度过低也将导致由于与室外的焓差增加使处理新风的能耗增加。 3、造成室内空气品质下降。大多数空调依靠空气通过表冷器对空气进行降温除湿,这就导致表冷器表面成为潮湿表面甚至产生积水,空调停机后这样的潮湿表面就成为霉菌繁殖的理想场所。空调系统繁殖和传播霉菌成为可能引起健康问题的主要因素。另外,目前我国大多数城市的主要污染物仍是可吸入颗粒物,因此有效过滤空调系统引人的室外空气是维持健康环境的重要问题。然而过滤器内必然是粉尘聚集处,如果再漂溅过一些冷凝水,则也成为各种微生物繁殖的理想场所。频繁清洗过滤器既不现实,也不是根本的解决方案。 4、传统的室内末端装置有局限性。为排除足够的余热余湿同时又不使送风温度过低,就要求有较大的循环通风量。例如每平方米建筑面积如果有80W/M2显热需要排除,房间设定温度为25℃时,当送风温度为15℃时,所要求循环风量为24M3/HR/M2,这就往往造成室内很大的空气流动,使居住者产生不适的出风感。为减少这种出风感,就要通过改变送风口的位置和形式来改变室内气流组织,这往往要在室内布置风管,从而降低室内净高度或者加大楼层间距。很大的通风量还极容易引起空调噪声,并且很难有效消除,在冬季,为了避免出风感,即使安装了空调系统,也往往不使用热风,而是通过另一套的暖气系统(如采暖散热器)供热。这样就导致室内重复安装两套环境控制系统,分别供冬夏使用。 5、输配能耗的问题。为了完成室内环境控制的任务就需要有输配系统,带走余热、余湿、CO2、气味等。在中央空调系统中,风机、水泵消耗了40%~70%的整个空调系统的电耗。在常规中央空调系统中,多采用全空气系统的形式,所有的冷量全部用空气来传递,导致输配系统效率很低。相对而言,1M3水所输送的热量和3840M3空气输送的热量是相对的。 此外,随着能源问题的日益严重,以低品位热能作为夏季空调动力成为迫切需要,目前北方地区大量的热电联产集中供热系统在夏季由于无热负荷而无法运行,使得电力负荷出现高峰的夏季热电联产发电设施反而停机,或者按纯发电模式低效运行。如果可以利用这部分热量驱动空调,既省下空调能耗,又可使热电联产正常运行,增加发电能力。这样即可减缓夏季

温湿度独立控制空调系统

温湿度独立控制空调系统 清华大学建筑学院江亿 摘要:本文在分析了目前热湿联合处理空调系统所面临的主要问题的基础上,提出了热湿独立控制空调策略:采用新风去除室内的余湿、承担室内空气质量的任务,采用高温冷源去除室内的余热。并提出了温湿度独立控制空调方式对室内末端装置、新风处理、制备高温冷源的要求与影响,介绍了温湿度独立控制系统的应用实践工程。 关键词:温湿度独立控制,新风,高温冷源 1引言 从热舒适与健康出发,要求对室内温湿度进行全面控制。夏季人体舒适区为25oC,相对湿度60%,此时露点温度为16.6oC。空调排热排湿的任务可以看成是从25oC环境中向外界抽取热量,在16.6oC 的露点温度的环境下向外界抽取水分。目前空调方式的排热排湿都是通过空气冷却器对空气进行冷却和冷凝除湿,再将冷却干燥的空气送入室内,实现排热排湿的目的。现有的热湿联合处理的空调方式存在如下问题。 (1)热湿联合处理的能源浪费。由于采用冷凝除湿方法排除室内余湿,冷源的温度需要低于室内空气的露点温度,考虑传热温差与介质输送温差,实现16.6oC的露点温度需要约7oC的冷源温度,这是现有空调系统采用5~7oC的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5oC的原因。在空调系统中,占总负荷一半以上的显热负荷部分,本可以采用高温冷源排走的热量却与除湿一起共用5~7oC的低温冷源进行处理,造成能量利用品位上的浪费。而且,经过冷凝除湿后的空气虽然湿度(含湿量)满足要求,但温度过低,有时还需要再热,造成了能源的进一步浪费与损失。 (2)难以适应热湿比的变化。通过冷凝方式对空气进行冷却和除湿,其吸收的显热与潜热比只能在一定的范围内变化,而建筑物实际需要的热湿比却在较大的范围内变化。一般是牺牲对湿度的控制,通过仅满足室内温度的要求来妥协,造成室内相对湿度过高或过低的现象。过高的结果是不舒适,进而降低室温设定值,通过降低室温来改善热舒适,造成能耗不必要的增加;相对湿度过低也将导致由于与室外的焓差增加使处理室外新风的能耗增加。 (3)室内空气品质问题。大多数空调依靠空气通过冷表面对空气进行降温除湿,这就导致冷表面成为潮湿表面甚至产生积水,空调停机后这样的潮湿表面就成为霉菌繁殖的最好场所。空调系统繁殖和传播霉菌成为空调可能引起健康问题的主要原因。另外,目前我国大多数城市的主要污染物仍是可吸入颗粒物,因此有效过滤空调系统引入的室外空气是维持室内健康环境的重要问题。然而过滤器内必然是粉尘聚集处,如果再漂溅过一些冷凝水,则也成为各种微生物繁殖的最好场所。频繁清洗过滤器既不现实,也不是根本的解决方案。 (4)室内末端装置的问题。为排除足够的余热余湿同时又不使送风温度过低,就要求有较大的循环通风量。例如每平方米建筑面积如果有80W/m2显热需要排除,房间设定温度为25oC,当送风温度为15oC时,所要求循环风量为24m3/hr/m2,这就往往造成室内很大的空气流动,使居住者产生不适的吹风感。为减少这种吹风感,就要通过改进送风口的位置和形式来改善室内气流组织。这往往要在室内布置风道,从而降低室内净高或加大楼层间距。很大的通风量还极容易引起空气噪声,并且很难有效消除。在冬季,为了避免吹风感,即使安装了空调系统,也往往不使用热风,而通过另外的暖气系统通过采暖散热器供热。这样就导致室内重复安装两套环境控制系统,分别供冬夏使

模具温度控制方法

模具温度控制方法 模具温度对胶件的成型质量、成型效率有着较大的影响。在温度较高的模具里,熔融胶料的流动性较好,有利于胶料充填型腔,获取高质量的胶件外观表面,但会使胶料固化时间变长,顶出时易变形,对结晶性胶料而言,更有利于结晶过程进行,避免存放及使用中胶件尺寸发生变化;在温度较低的模具里,熔融胶料难于充满型腔,导致内应力增加,表面无光泽,产生银纹、熔接痕等缺陷。 不同的胶料具有不同的加工工艺性,并且各种胶件的表面要求和结构不同,为了在最有效的时间内生产出符合质量要求的胶件,这就要求模具保持一定的温度,模温越稳定,生产出的胶件在尺寸形状、胶件外观质量等方面的要求就越一致。因此,除了模具制造方面的因素外,模温是控制胶件质量高低的重要因素,模具设计时应充分考虑模具温度的控制方法。 1 模具温度控制的原则和方式 1.1 模具温度控制的原则 为了保证在最有效的时间内生产出高外观质量要求、尺寸稳定、变形小的胶件,设计时应清楚了解模具温度控制的基本原则。 (1)不同胶料要求不同的模具温度。参见10.1.3节 (2)不同表面质量、不同结构的模具要求不同的模具温度,这就要求在设计温控系统时具有针对性。 (3)前模的温度高于后模的温度,一般情况下温度差为20~30o左右。 (4)有火花纹要求的前模温度比一般光面要求的前模温度高。当前模须通热水或热油时,一般温度差为40o左右。 (5)当实际的模具温度不能达到要求模温时,应对模具进行升温。因此模具设计时,应充分考虑胶料带入模具的热量能否满足模温要求。 (6)由胶料带入模具的热量除通过热辐射、热传导的方式消耗外,绝大部分的热量需由循环的传热介质带出模外。铍铜等易传热件中的热量也不例外。 (7)模温应均衡,不能有局部过热、过冷。 1.2 模具温度的控制方式 模具温度一般通过调节传热介质的温度,增设隔热板、加热棒的方法来控制。传热介质一般采用水、油等,它的通道常被称作冷却水道。 降低模温,一般采用前模通“机水”(20oC左右)、后模通“冻水”(4oC左右)来实现。当传热介质的通道即冷却水道无法通过某些部位时,应采用传热效率较高的材料(如铍铜等,模具材料的传热系数详见《塑料模具技术手册》第219页),将热量传递到传热介质中去,如图10.1.1,或者采用“热管”进行局部冷却。 升高模温,一般采用在冷却水道中通入热水、热油(热水机加热)来实现。当模温要求较高时,为防止热传导对热量的损失,模具面板上应增加隔热板。 热流道模具中,流道板温度要求较高,须由加热棒加热,为避免流道板的热量传至前模,导致前模冷却困难,设计时应尽量减少其与前模的接触面。 1.3 常用胶料的注射温度与模具温度 下表为胶件表面质量无特殊要求(即一般光面)时常用的胶料注射温度、模具温度,模具温

BWY(WTYK)-802、803温度控制器说明书中文

感谢您使用本厂产品 使用前请认真阅读产品使用说明书 目录 一、概况 (1) 二、工作原理 (5) 三、主要技术指标 (5) 四、安装及使用 (5) 五、注意事项 (10) 六、附录Pt100工业铂电阻分度值表 (11)

一、概况 1、温度控制器根据沈阳变压器研究所制订的JB/T6302《变压器用压力式温度计》标准的命名 如下: 2 2、温度控制器根据JB/T9236《工业自动化仪表产品型号编制原则》的要求产品命名如下: 2

BWY(WTYK)系列温度控制器的成套性和适用性

图一 系列温度控制器外形及安装尺寸B W Y (W T Y K )

二、工作原理 变压器温度控制器(以下简称温控器),主要由弹性元件、毛细管、温包和微动开关组成。当温包受热时,温包内感温介质受热膨胀所产生的体积增量,通过毛细管传递到弹性元件上,使弹性元件产生一个位移,这个位移经机构放大后指示出被测温度并带动微动开关工作,从而控制冷却系统的投入或退出。 BWY(WTYK)-802A、803A温控器采用复合传感器技术,即仪表温包推动弹性元件的同时,能同步输出Pt100热电阻信号,此信号可远传到数百米以外的控制室,通过XMT数显温控仪同步显示并控制变压器油温。也可通过数显仪表,将Pt100铂电阻信号转换成与计算机联网的直流标准信号(0~5)V、(1~5)V或(4~20)mA输出。 三、主要技术指标 (一)BWY(WTYK)-802、803型 1、正常工作条件:(-40~+55)℃ 2、测量范围:(-20~+80)℃ (0~+100)℃ (0~+120)℃ (0~+150)℃ 3、指示精确度: 1.5级 4、控制性能:①设定范围:全量程可调 ②设定精确度:±3℃ ③开关差: 6±2℃ ④额定功率: AC 250V/3A ⑤标准设定值:802:K1=55℃; K2=80℃ 803:K1=55℃; K2=65℃ K3=80℃ 5、仪表安装尺寸:详见外形及安装尺寸图 (二)BWY(WTYK)-802A、803A型 1~5条同上。 6、输出Pt100铂电阻信号(附分度值) (三)XMT-288F数显温控仪,另附说明书。 (四)XMT-288FC数显温控仪,另附说明书。 四、安装及使用 (一)BWY(WTYK)-802、803型温控器

仓库温湿度控制管理规定

仓库温湿度控制管理规定 一、目的 本制度关于仓库的温湿度作了规定,以确保入库以后的材料,成品不变质。保证仓库具有良好的仓储条件,达到仓库质量治理体系要求。 二、范围 适用于仓库的温湿度治理。 三、治理责任 四、职责 1.仓管员应确保良好的仓储条件,达到仓库质量保证体系要求 2.仓管员(仓库盘点负责人)应定期检查仓库质量治理体系执行情形。 五、治理要点 温湿度治理概述 要做好仓库温湿度治理工作,第一要学习和把握空气温湿度的差不多概念以及有关的差不多知识。 (1)空气温度 空气温度是指空气的冷热程度。 一样而言,距地面越近气温越高,距地面越远气温越低。 在仓库日常温度治理中,多用摄氏表示,凡0度以下度数,在度数前加一个“-”,即表示零下多少摄氏度。 (2)空气湿度 空气湿度,是指空气中水汽含量的多少或空气干湿的程度。 表示空气湿度,要紧有以下几种方法: ①绝对湿度

绝对湿度,是指单位容积的空气里实际所含的水汽量,一样以克为单位。 温度对绝对湿度有着直截了当阻碍。一样情形下,温度越高,水汽蒸发得越多,绝对湿度就越大;相反,绝对湿度就小。 ②饱和湿度 饱和湿度,是表示在一定温度下,单位容积空气中所能容纳的水汽量的最大限度。如果超过那个限度,余外的水蒸气就会凝聚,变成水滴。些时的空气湿度便称为饱和湿度。 空气的饱湿度不是固定不变的,它随着温度的变化而变化。温度越高,单位容积空气中能容纳的水蒸气就越多,饱和湿度也就越大。 ③相对湿度 相对温度是指空气中实际含有的水蒸气量(绝对湿度)距离饱和状态(饱和湿度)程度的百分比。即,在一定温度下,绝对湿度占饱和湿度的百分比数。相对湿度用百分率来表示。公工为: 相对温度=绝对湿度/饱和湿度×100% 绝对温度=饱和温度×相对温度 相对湿度越大,表示空气越潮湿;相对湿度越小,表示空气越干燥。 空气的绝对湿度、饱和温度、相对湿度与温度之间有着相应的关系。温度如发生了变化,则各种湿度也随之发生变化。 ④露点 露点,是指含有一定量水蒸气(绝对湿度)的空气,当温度下降到一定程度时所含的水蒸气就会达到饱和状态(饱和湿度)并开始液化成水,这种现象叫做结露。水蒸气开始液化成水时的温度叫做“露点温度”,简称“露点”。如果温度连续下降到露点以下,空气中超饱和的水蒸气,就会在商品或其他物料的表面上凝聚成水滴,此现象称为“水池”,俗称商品“出汗”。此外,风与空气中的温湿度有紧密关系,也是阻碍空气温湿度变化的重要因素之一。 2.库内外温湿度的变化

仓库温湿度管理办法

1.0目的: 1.1仓库温湿度管理控制的目的就是要在工厂运行的全过程中,每天定期进行二次温 湿度测量,并记录在《温湿度测量记录表》中。采取各种形式的技术措施、组织措施、消除温度升得过高的现象,减少事故发生,确保员工安全健康。 2.0范围 2.1本规范适用于深圳市乐福衡器有限公司包材仓、成品仓、电子仓的温湿度管理。 3.0职责 3.1仓库 3.1.1仓管每天对包材仓,成品仓,电子仓的温湿度进行点检。 3.2品质 3.2.1品质部负责对仓库的点检工作进行稽核确认,发现异常必须在第一时间通知点检人。 4.0内容 4.1.1仓库温湿度的测定,通常使用室内温湿度计测定空气温湿度。 4.1.2仓库每日必须定时对库内的温湿度进行观测、记录,一般在上午8~10时,下 午2~4 各观测一次。记录资料要妥善保存,定期分析,摸出规律,以便掌握物品保管的主动权。 4.2仓库温湿度的调节 4.2.1为了保护仓库原材料的质量,创造适宜于原材料储存的环境,当库内温湿度适宜物品储存时,就要设法防止库外气候对库内产生的不利影响;当库内温湿度不适宜原材料储存时,就要及时采取有效措施调节库内的温湿度。实践证明,采用密封、通风与吸潮相结合的办法,是控制和调节库内温湿度行之有效的办法。 4.2.3密封。就是把物品尽可能严密地封闭起来,减少外界不良气候条件的影响,以达到安全保管的目的。 4.3密封保管应注意以下几点事项。 4.3.1密封前要检查物品质量、温度和含水量是否正常,如发现发霉、生虫、发热、水淞等现象就不能进行密封.发现物品含水量超过安全范围或包装材料过潮,也不宜密封。 4.3.2密封的时间要根据物品的性能和气候情况来决定。怕潮、怕溶化、怕霉的物品,应

温湿度独立控制空调系统作业

温湿度独立控制空调系统特点分析 1.温湿度独立控制空调系统原理及相关设备组成 1.1温湿度独立控制空调系统的原理 温湿度独立控制空调系统是指在一个空调系统中,采用两种不同蒸发温度的冷源,用高温冷冻水取代传统空调系统中大部分由低温冷冻水承担的热湿负荷,这样可以提高综合制冷效率,进而达到节省能耗的目的。在温湿度独立控制空调中,高温冷源作为主冷源,它承担室内全部的显热负荷和部分的新风负荷,占空调系统总负荷的50%以上;低温冷源作为辅助冷源,它承担室内全部的湿负荷和部分的新风负荷,占空调系统总负荷的50%以下。 1.2相关设备组成 温湿度独立控制系统由4个核心组成部件组成,分别为高温冷水机组、新风处理机组、去除显热的室内末端装置、去除潜热的室内送风末端装置。

除湿系统主要由再生器、储液罐、新风机、输配系统和管路组成。除湿系统中,主要采用分散除湿和集中再生的方式,再生浓缩后的浓溶液被输送到新风机中。储液罐具有存储溶液的作用和蓄存高能力的能量,可以缓解再生器对持续热源的需求,可以降低整个除湿系统的容量。 2. 温湿度独立控制空调系统与传统空调系统(热湿耦合)的比较分析 2.1可以避免过多的能源消耗 从处理空气的过程我们可以知道,为了满足送风温差,一次回风系统需对空气进行再热,然后送入室内。这样的话,这部分加热的量需要用冷量来补偿。而温湿度独立控制空调系统就避免了送风再热,就节省了能耗。传统的空调系统中,显热负荷约占总负荷的比例为50%~70%,潜热负荷约占总负荷的3比例为0%~50%。原本可以采用高温冷源来承担,却与除湿共用7℃冷冻水,造成了利用能源品位上的浪

费,这种现象在湿热的地区表现的尤为突出;经过处理的空气,湿度可以满足要求,但会引起温度过低的情况发生,需要对空气再热处理,进而造成了能耗的进一步增加。 2.2温湿度参数很容易实现 传统的空调系统不能对相对湿度进行有效的控制。夏季,传统的空调系统用同一设备对空气热湿处理,当室内热、湿负荷变化时,通常情况下,我们只能根据需要,调整设备的能力来维持室内温度不变,这时,室内的相对湿度是变化的,因此,湿度得不到有效的控制,这种

仓库温湿度管理规定

仓库温湿度控制管理 文件编号:SW-WIWH-002 1.目的: 确保原料、半成品、成品在贮存过程中具有卫生的、良好的环境,以防止损坏或变质。 2.使用范围 原材料库、半成品库、成品库、包装物料库 3.责任 责任仓库负责人及相关人员 4.内容 4.1仓库温湿度的测定,通常使用干湿球温度表测定空气温湿度。 4.2在库外设置干湿表,企业每日必须定时对库内,外的温湿度进行观测、记录,一般在上午8~10时,下午2~4时各观测一次。记录资料要妥善保存,定期分析,摸出规律,以便掌握物品保管的主动权。 4.3仓库温湿度要求 (1)仓库温度应尽量保持在25±3度左右。 (2)当仓库温度高过允许的上限(38度)或者等于/低于允许的下限(0度),仓管员应在一个小时内通知仓库主管,要求条取措施,调整仓库温度。 (3)当仓库湿度过允许的上限(85%),仓管员应在一个小时内通知仓库主管,要求知取适当的措施,保持仓库正常湿度。 4.4仓库温湿度的控制和调节 为了保护仓储物品的质量,创造适宜于物品储存的环境,当库内温湿度适宜物品储存时,就要设法防止库外气候对库内产生的不利影响;当库内温湿度不适宜物品储存时,就要及时采取有效措施调节库内的温湿度。实践证明,采用密封、通风与吸潮相结合的办法,是控制和调节库内温湿度行之有效的办法。 (1)密封。就是把物品尽可能严密地封闭起来,减少外界不良气候条件的影响,以达到安全保管的目的。 密封保管应注意以下几点事项。 ①密封前要检查物品质量、温度和含水量是否正常,如发现发霉、生虫、发热、水淞等现象就不能进行密封.发现物品含水量超过安全范围或包装材料过潮,也不宜密封。

车间温湿度控制制度

车间温湿度控制制度 公司厂房使用的是中央空调,根据实际情况,为规范车间温湿度控制,满足产品生产、物料存储和人员办公等要求,控制在需求范围之内: 一、温湿度要求: 1、一般环境(指由中央空调控制的生产车间、库房、办公室)的温度要求: A,夏季温度控制在22℃——26℃,库房由于设备和人员少,可-2℃; B,冬季温度控制在18℃——24℃,库房由于设备和人员少,可-2℃; C,过渡季节温度在22℃+/-4℃; D,湿度:车间全年控制在30%-----80%RH; E,控制的过程中以满足要求为主,节约能源为辅的原则 2、湿度敏感区域的要求:温度10℃——30℃,湿度40%-----70%RH, 3、机房、实验室等有独立空调的地方本着够用节约的原则自行设定要求 二、监控与记录 1、一般环境和湿敏区域以干湿球温度计记录值为准。

2、监测环境温湿度的干湿球温度计的计量和维护由设备管理部暖通组负责,计量周期是 3个月,参考标准以外部计量合格的电子温湿度计为准。 3、暖通组控制的范围:A、B栋办公室,生产线、材料库、成品库、湿敏区。 4、暖通组监控点数量:B栋车间生产线6个,材料库10个,成品库4个,湿度敏感区1个,A、B栋办公室各1个,共计23个 5、暖通组记录点数量:A、B栋办公室各1个,生产线4个,成品库1个、材料库2个、湿敏区1个,共计10个。 6、库房人员对库房(含湿敏区)的所有环境温湿度计(15个)也作记录,湿敏区湿度偏低时库房人员自行采取人工加湿的办法以便满足要求,湿度偏高时暖通人员启动除湿机除湿。 7、暖通组监控频次:每两小时一次。 8、机房、试验室环境由IT&SAP、实验室各自监控,设备出现问题由使用部门报修。

温湿度独立控制空调系统作业

温湿度独立控制空调系 统作业 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

温湿度独立控制空调系统特点分析 1.温湿度独立控制空调系统原理及相关设备组成 温湿度独立控制空调系统的原理 温湿度独立控制空调系统是指在一个空调系统中,采用两种不同蒸发温度的冷源,用高温冷冻水取代传统空调系统中大部分由低温冷冻水承担的热湿负荷,这样可以提高综合制冷效率,进而达到节省能耗的目的。在温湿度独立控制空调中,高温冷源作为主冷源,它承担室内全部的显热负荷和部分的新风负荷,占空调系统总负荷的50%以上;低温冷源作为辅助冷源,它承担室内全部的湿负荷和部分的新风负荷,占空调系统总负荷的50%以下。 相关设备组成 温湿度独立控制系统由4个核心组成部件组成,分别为高温冷水机组、新风处理机组、去除显热的室内末端装置、去除潜热的室内送风末端装置。

除湿系统主要由再生器、储液罐、新风机、输配系统和管路组成。除湿系统中,主要采用分散除湿和集中再生的方式,再生浓缩后的浓溶液被输送到新风机中。储液罐具有存储溶液的作用和蓄存高能力的能量,可以缓解再生器对持续热源的需求,可以降低整个除湿系统的容量。 2. 温湿度独立控制空调系统与传统空调系统(热湿耦合)的比较分析 可以避免过多的能源消耗 从处理空气的过程我们可以知道,为了满足送风温差,一次回风系统需对空气进行再热,然后送入室内。这样的话,这部分加热的量需要用冷量来补偿。而温湿度独立控制空调系统就避免了送风再热,就节省了能耗。传统的空调系统中,显热负荷约占总负荷的比例为50%~70%,潜热负荷约占总负荷的3比例为0%~50%。原本可以采用高温冷源来承担,却与除湿共用7℃冷冻水,造成了利用能源

实验室温湿度控制

实验室温湿度控制很重要 在实验室的监控项目中,不同实验室对温湿度都有要求,大部分实验都是在明确的温湿度环境中展开。在医药、生化、仪器校准、农业、建筑与电器等领域中,实验室环境条件直接影响着各种实验或检测的结果,每项实验的进行都需要精确可靠的监测仪器来提供准确的环境参数数据。 精品文档,你值得期待 实验室要求适宜的温度和湿度。室内的小气候,包括气温、湿度和气流速度等,对在实验室工作的人员和仪器设备有影响。夏季的适宜温度应是18-28℃,冬季为16-20℃,湿度最好在30%(冬季)-70%(夏季)之间。除了特殊实验室外,温湿度对大多数理化实验影响不大,但是天平室和精密仪器室应根据需要对温湿度进行控制。 环境条件温湿度的控制方面考虑的要素就是保证实验操作的环境温湿度是能够满足实验程序各个过程的需要。我们主要从以下几个方面来制定实验室环境温湿度控制范围。 首先,识别各项工作对环境温湿度的要求。 主要识别仪器的需要、试剂的需要、实验程序的需要,以及实验室员工的人性化考虑(人体在温度18-25℃ 相对湿度在35-80%范围内总体感觉舒适,并且从医学角度来看环境干燥和喉咙的炎症存在一定的因果关系)四个方面要素综合考虑,列出对温湿度控制范围要求的清单。 第二,选择并制定有效的环境温湿度控制范围。从以上各要素所有要求清单中摘取最窄范围作为该实验室环境控制的允许范围,制定环境条件控制方面的管理程序,并依据该科室实际情况制定合理有效的SOP。 第三,保持和监控。通过各项措施保证环境的温湿度在控制的范围内,并对环境温湿度进行监控和做好监控的记录,超过允许范围及时采取措施,开空调调节温度,开除湿机控制湿度。 试剂室温度10-30℃,湿度35-80% 样品存放室温度10-30℃,湿度35-80% 天平室温度10-30℃,湿度35-80% 水分室温度10-30℃,湿度35-65% 红外室温度10-30℃,湿度35-60% 中心实验室温度10-30℃,湿度35-80% 留样室温度10-25℃,湿度35-70% 各个领域实验室的温湿度最佳范围 1

仓库温湿度控制管理办法

仓库温湿度控制管理办法 一、目的 本制度对于仓库的温湿度作了规定,以确保入库以后的材料,成品不变质。保证仓库具有良好的仓储条件,达到仓库质量管理体系要求。 二、范围 适用于仓库的温湿度管理。 三、职责 1.仓管员应确保良好的仓储条件,达到仓库质量保证体系要求 2.仓管员(仓库盘点负责人)应定期检查仓库质量管理体系执行情况。 四、管理要点 温湿度管理概述 1、要做好仓库温湿度管理工作,首先要学习和掌握空气温湿度的基本概念以及有关的基本知识。 (1)空气温度 空气温度是指空气的冷热程度。 一般而言,距地面越近气温越高,距地面越远气温越低。 在仓库日常温度管理中,多用摄氏表示,凡0度以下度数,在度数前加一个“-”,即表示零下多少摄氏度。 (2)空气湿度 空气湿度,是指空气中水汽含量的多少或空气干湿的程度。 表示空气湿度,主要有以下几种方法: ①绝对湿度

绝对湿度,是指单位容积的空气里实际所含的水汽量,一般以克为单位。 温度对绝对湿度有着直接影响。一般情况下,温度越高,水汽蒸发得越多,绝对湿度就越大;相反,绝对湿度就小。 ②饱和湿度 饱和湿度,是表示在一定温度下,单位容积空气中所能容纳的水汽量的最大限度。如果超过这个限度,多余的水蒸气就会凝结,变成水滴。些时的空气湿度便称为饱和湿度。 空气的饱湿度不是固定不变的,它随着温度的变化而变化。温度越高,单位容积空气中能容纳的水蒸气就越多,饱和湿度也就越大。 ③相对湿度 相对温度是指空气中实际含有的水蒸气量(绝对湿度)距离饱和状态(饱和湿度)程度的百分比。即,在一定温度下,绝对湿度占饱和湿度的百分比数。相对湿度用百分率来表示。公工为: 相对湿度=绝对湿度/饱和湿度×100% 绝对温度=饱和温度×相对温度 相对湿度越大,表示空气越潮湿;相对湿度越小,表示空气越干燥。 空气的绝对湿度、饱和温度、相对湿度与温度之间有着相应的关系。温度如发生了变化,则各种湿度也随之发生变化。 ④露点 露点,是指含有一定量水蒸气(绝对湿度)的空气,当温度下降到一定程度时所含的水蒸气就会达到饱和状态(饱和湿度)并开始液化成水,这种现象叫做结露。水蒸气开始液化成水时的温度叫做“露点温度”,简称“露点”。如果温

TNFB-1温湿度控制器使用说明 (PDF)

TNFB-1智能安全工具柜温湿度控制器使用说明 本控制器采用最新微电脑芯片,经公司科研人员精心开发研制而成,所有数据采集及功能输出均由内部程序自动完成,因此最大程度简化了外围电路,增加了整个系统的稳定性。显示部分采用大屏幕蓝色背光液晶屏,内容显示醒目整体配合更显高档美观。 功能说明: 本温湿度控制器主要用于电力系统的安全工具柜、高压配电柜、其主要功能是可根据用户对环境温湿度的不同要求,对本温湿度控制器进行预先设置后,控制器根据所设定的数据与实际环境数据相比较,通过外部的加温、降温、加湿、除湿设备对所处环境进行控制,以达到所需的环境温湿度要求,具体功能描述如下: 温度下限:当环境温度低于下限值时,控制器加温输出启动,控制加温设备进行加温,环境温度高于温度下限值1℃时,控制器加温输出停止加温工作结束。 温度上限:当环境温度高于上限值时,控制器降温输出启动,控制降温设备进行降温,环境温度低于温度上限值1℃时,控制器降温输出停止降温工作结束。 湿度下限:当环境湿度低于下限值时,控制器加湿输出启动,控制加湿设备进行加湿,环境湿度高于湿度下限值4个湿度数值时,控制器加湿输出停止加湿工作结束。 湿度上限:当环境湿度高于上限值时,控制器除湿输出启动,控制除湿设备进行除湿,环境湿度低于湿度上限值4个湿度数值时,控制器除湿输出停止除湿工作结束。 按键使用说明: “P”键为调整选择键,在正常显示状态下点按“P”键,此时液晶屏温度设置上限字符开始闪动,此时配合面板上的+键或-键,即可对该项数值进行修改。此项修改完成后再次点按“P”键,依次对温度下限、湿度上限、湿度下限进行设定完毕后,点按“P”键退出设置状态,设置完成后所设数据自动存储,控制器会根据所设定数据工作,并且不受中间关机或断电影响。 “+”键,在设置状态时,每点按一下调整数据会递增1,当长按时几秒钟后所设数据会以1为单位连续递增。 “-”键,在设置状态时,每点按一下调整数据会递减1,当长按时几秒钟后所设数据会以1为单位连续递减。 “M”键为强制加温除湿键,在正常工作中当按动此键后,控制器将启动强制加温除湿功能,加温烘干及除湿机机连续工作运转,直至环境温度达到40℃,或连续强制烘干工作3小时后此次强制烘干除湿工作结束,控制器工作状态自动转为正常除湿状态。如果在强制烘干除湿状态工作时,想退出此状态只需再点按一次“M”键即可。 日期时间调整: 当需要调整日期和时间时,按住“P”键不放几秒钟后蜂鸣器一声鸣叫,日期年的

仓库温湿度管理规定

智皇仓库温湿度控制管理 1.目的: 确保原料、半成品、成品在贮存过程中具有干净的、良好的环境,以防止损坏或变质。 2.使用范围 原材料库、半成品库、成品库、包装物料库 3.责任 责任仓库负责人及相关人员 4.内容 4.1仓库温湿度的测定,通常使用温湿度计量器测定空气温湿度。 4.2在库外设置干湿表,企业每日必须定时对库内,外的温湿度进行观测、记录,一般在上午8~10时,下午2~4时各观测一次。记录资料要妥善保存,定期分析,摸出规律,以便掌握物品保管的主动权。 4.3仓库温湿度要求 (1)仓库温度应尽量保持在25±3度左右。 (2)当仓库温度高过允许的上限(38度)或者等于/低于允许的下限(0度),仓管员应在一个小时内通知仓库主管,要求条取措施,调整仓库温度。 (3)当仓库湿度过允许的上限(85%),仓管员应在一个小时内通知仓库主管,要求采取适当的措施,保持仓库正常湿度。 4.4仓库温湿度的控制和调节 为了保护仓储物品的质量,创造适宜于物品储存的环境,当库内温湿度适宜物品储存时,就要设法防止库外气候对库内产生的不利影响;当库内温湿度不适宜物品储存时,就要及时采取有效措施调节库内的温湿度。实践证明,采用密封、通风与吸潮相结合的办法,是控制和调节库内温湿度行之有效的办法。 (1)密封。就是把物品尽可能严密地封闭起来,减少外界不良气候条件的影响,以达到安全保管的目的。 密封保管应注意以下几点事项。 ①密封前要检查物品质量、温度和含水量是否正常,如发现发霉、生虫、发热、氧化等现象就不能进行密封.发现物品含水量超过安全范围或包装材料过潮,也不宜密封。

②密封的时间要根据物品的性能和气候情况来决定。怕潮、怕溶化、怕霉的物品,应选择在相对湿度较低的时节进行密封。 ③密封材料,常用的有塑料薄膜、防潮纸、油毡纸等。密封材料必须干燥清洁,无异味。 ④密封常用的方法有整库密封,小室密封、按垛密封以及按货架、搐件密封等。 (2) 通风。空气是从压力大的地方向压力小的地方流动。气压差越大,空气流动速度就越快。 通风就是利用库内外空气温度不同而形成的气压差,使库内外空气形成对流,来达到调节库内温湿度的目的。当库内外温度差距越大时,空气流动就越快;若库外有风,借风的压力更能加速库内外空气的对流。但风力不能过大(风力超过5级则灰尘较多)。正确通风,不仅可以调节与改善库内的温湿度,还能及时地散发物品及包装物的多余水分,按通风门的的不同,可分为利用通风降温(或增沮)和利用通风散潮两种。 (3) 吸潮。在梅雨季节或阴雨天,当库内湿度过高,不适宜物品保管,而库外湿度过大,也不宜进行通风散潮时,可以在密封库内用吸潮的办法降低库内湿度。 仓库中通常使用的吸潮剂有氯化钙、硅胶等。仓库普遍使用机械吸潮的方法。吸湿机是把库内的湿空气通过抽风机,吸入吸湿机冷却器内,使它凝结为水而排出。 编制:审核:批准:

温湿度独立控制空调系统

摘要:本文在分析了目前热湿联合处理空调系统所面临的主要问题的基础上,提出了热湿独立控制空调策略:采用新风去除室内的余湿、承担室内空气质量的任务,采用高温冷源去除室内的余热。并提出了温湿度独立控制空调方式对室内末端装置、新风处理、制备高温冷源的要求与影响,介绍了温湿度独立控制系统的应用实践工程。 关键词:温湿度独立控制新风高温冷源 1 引言 从热舒适与健康出发,要求对室内温湿度进行全面控制。夏季人体舒适区为25ºc,相对湿度60%,此时露点温度为16.6ºc。空调排热排湿的任务可以看成是从25ºc 环境中向外界抽取热量,在16.6ºc的露点温度的环境下向外界抽取水分。目前空调方式的排热排湿都是通过空气冷却器对空气进行冷却和冷凝除湿,再将冷却干燥的空气送入室内,实现排热排湿的目的。现有的热湿联合处理的空调方式存在如下问题。 (1)热湿联合处理的能源浪费。由于采用冷凝除湿方法排除室内余湿,冷源的温度需要低于室内空气的露点温度,考虑传热温差与介质输送温差,实现16.6ºc的露点温度需要约7ºc的冷源温度,这是现有空调系统采用5~7ºc的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5ºc的原因。在空调系统中,占总负荷一半以上的显热负荷部分,本可以采用高温冷源排走的热量却与除湿一起共用5~7ºc的低温冷源进行处理,造成能量利用品位上的浪费。而且,经过冷凝除湿后的空气虽然湿度(含湿量)满足要求,但温度过低,有时还需要再热,造成了能源的进一步浪费与损失。 (2)难以适应热湿比的变化。通过冷凝方式对空气进行冷却和除湿,其吸收的显热与潜热比只能在一定的范围内变化,而建筑物实际需要的热湿比却在较大的范围内变化。一般是牺牲对湿度的控制,通过仅满足室内温度的要求来妥协,造成室内相对湿度过高或过低的现象。过高的结果是不舒适,进而降低室温设定值,通过降低室温来改善热舒适,造成能耗不必要的增加;相对湿度过低也将导致由于与室外的焓差增加使处理室外新风的能耗增加。 (3)室内空气品质问题。大多数空调依靠空气通过冷表面对空气进行降温除湿,这就导致冷表面成为潮湿表面甚至产生积水,空调停机后这样的潮湿表面就成为霉菌繁殖的最好场所。空调系统繁殖和传播霉菌成为空调可能引起健康问题的主要原因。另外,目前我国大多数城市的主要污染物仍是可吸入颗粒物,因此有效过滤空调系统引入的室外空气是维持室内健康环境的重要问题。然而过滤器内必然是粉尘聚集处,如果再漂溅过一些冷凝水,则也成为各种微生物繁殖的最好场所。频繁清洗过滤器既不现实,也不是根本的解决方案。 (5)输配能耗的问题。为了完成室内环境控制的任务就需要有输配系统,带走余热、余湿、co2、气味等。在中央空调系统中,风机、水泵消耗了40~70%的整个空调系统的电耗。在常规中央空调系统中,多采用全空气系统的形式。所有的冷量全部用空气来传送,导致输配效率很低。 此外,随着能源问题的日益严重,以低品位热能作为夏季空调动力成为迫切需要。目前北方地区大量的热电联产集中供热系统在夏季由于无热负荷而无法运行,使得电力负荷出现高峰的夏季热电联产发电设施反而停机,或者按纯发电模式低效运行。如果可以利用这部分热量驱动空调,既省下空调电耗,又可使热电联产电厂正常运行,增加发电能力。这样即可减缓夏季供电压力,又提高能源利用率,是热电联产系统继续发展的关键。由于空调负荷在一天内变化显著,与热电联产电厂提供热能并不是很好匹配,如何实现有效的蓄能,以协调二者的矛盾也是热能使用当中存在的问题。 综上所述,空调的广泛需求、人居环境健康的需要和能源系统平衡的要求,对目前空调方式提出了挑战。新的空调应该具备的特点为: 加大室外新风量,能够通过有效的热回收方式,有效的降低由于新风量增加带来的能耗增大

仓库温湿度控制管理规定

一、目的 本制度对于仓库的温湿度作了规定,以确保入库以后的材料,成品不变质。保证仓库具有良好的仓储条件,达到仓库质量管理体系要求。 二、范围 适用于仓库的温湿度管理。 三、管理责任 四、职责 1.仓管员应确保良好的仓储条件,达到仓库质量保证体系要求 2.仓管员(仓库盘点负责人)应定期检查仓库质量管理体系执行情况。 五、管理要点 温湿度管理概述 要做好仓库温湿度管理工作,首先要学习和掌握空气温湿度的基本概念以及有关的基本知识。(1)空气温度 空气温度是指空气的冷热程度。 一般而言,距地面越近气温越高,距地面越远气温越低。 在仓库日常温度管理中,多用摄氏表示,凡0度以下度数,在度数前加一个“-”,即表示零下多少摄氏度。 (2)空气湿度 空气湿度,是指空气中水汽含量的多少或空气干湿的程度。 表示空气湿度,主要有以下几种方法: ①绝对湿度 绝对湿度,是指单位容积的空气里实际所含的水汽量,一般以克为单位。 温度对绝对湿度有着直接影响。一般情况下,温度越高,水汽蒸发得越多,绝对湿度就越大;相反,绝对湿度就小。 ②饱和湿度 饱和湿度,是表示在一定温度下,单位容积空气中所能容纳的水汽量的最大限度。如果超过这个限度,多余的水蒸气就会凝结,变成水滴。些时的空气湿度便称为饱和湿度。 空气的饱湿度不是固定不变的,它随着温度的变化而变化。温度越高,单位容积空气中能容纳的水蒸气就越多,饱和湿度也就越大。 ③相对湿度 相对温度是指空气中实际含有的水蒸气量(绝对湿度)距离饱和状态(饱和湿度)程度的百分比。即,在一定温度下,绝对湿度占饱和湿度的百分比数。相对湿度用百分率来表示。公工为: 相对温度=绝对湿度/饱和湿度×100% 绝对温度=饱和温度×相对温度 相对湿度越大,表示空气越潮湿;相对湿度越小,表示空气越干燥。 空气的绝对湿度、饱和温度、相对湿度与温度之间有着相应的关系。温度如发生了变化,则各种湿度也随之发生变化。 ④露点 露点,是指含有一定量水蒸气(绝对湿度)的空气,当温度下降到一定程度时所含的水蒸气就会达到饱和状态(饱和湿度)并开始液化成水,这种现象叫做结露。水蒸气开始液化成水时的温度叫做“露点温度”,简称“露点”。如果温度继续下降到露点以下,空气中超饱和的

温湿度控制管理规定

目录 1、目的 (3) 适用范 围 (3) 职 责 (3)

术语解 释 (3) 温度计的型 号 (4) 温度计的安装条 件 (4) 温湿度异常对人的影 响 (4) 温湿度异常对产品的影 响 (4) 温湿度的规定范 围 (4) 防湿防温处理措 施 (5) 严重情况处理措 施 (5) 温湿度的检测时 间 (5) 检测步 骤 (6) 表格文 件 (6) 1、目的 为了确保掌握温度及湿度变化情况,建立因天气变化对员工的生产、生活健康有影响而采取相应的措施,同时也确保原料、半成品、成品在生产、贮存过程中有良好的环境,以防止损坏或变质。 2、适用范围 本规定适用于XXXXXXXXX限公司所有生产车间和老化房。 3、职责

3.1 测试员:负责车间的温度、湿度的检查登记及温湿度计的维护管理工作; 3.2 车间主管:监督登记工作及相关问题采取的相应处理措施是否妥当。 4、术语解释 4.1 空气温度:是指空气的冷热程度; 4.2 空气湿度:是指空气中水汽含量的多少或空气干湿的程度; 4.3 表示空气湿度,主要有以下几种: 4.21 绝对湿度:是指单位容积的空气里实际所含的水汽量; 4.22 饱和湿度:是表示在一定温度下,单位容积空气中所能容纳的水汽量的最大限度; 4.23 相对湿度:是指空气中实际含有的水蒸气量(绝对湿度)距离饱和状态(饱和湿 度)程度的百分比。 4.24 计算公式:相对温度=绝对湿度/饱和湿度×100% 绝对温度=饱和温度×相对温度 5、温湿度计的型号 本公司使用的是数字式温湿度计有(HTC-1、LT09013)两种 6、温湿度计的安装条件 6.1温湿度计应安装在离地 1.5~2 米处,且空气流通、不受阳光照射的地方; 7、温湿度异常对人的影响 7.1 温度过高:体温调节功能失调、血压下降、水盐代谢紊乱、心肌损伤、肾脏功能下降; 同时高温作业可引起中暑等; 7.2 温度过低:损伤皮肤,引发呼吸性疾病,使人感到干燥焦渴; 7.3 湿度过高:人会感到无精打采,还容易患风湿性、类风湿性关节炎等湿症; 7.4 湿度过低:会使呼吸道粘膜的水分大量散失,人会感到口干、舌燥,甚至咽喉肿痛、 声音嘶哑和鼻出血等,并易患感冒; 8、温湿度异常对产品的影响 8.1 温度过高:会导致电子元件的性能降低,使用寿命缩短,降低绝缘性能; 8.2 温度过低:会使导致电子元件的参数改变,直接影响设备的稳定工作; 8.3 湿度过高:会使金属材料氧化腐蚀,绝缘材料的绝缘强度减弱,缩短设备使用寿命;

智能型数字显示温度控制器使用说明书

XMT-3000 智能型数字显示温度控制器使用说明书 此产品使用前,请仔细阅读说明书,以便正确使用,并妥善保存,以便随时参考。 操作注意 为防止触电或仪表失效,所有接线工作完成后方能接通电源,严禁触及仪表内部和改动仪表。 断电后方可清洗仪表,清除显示器上污渍请用软布或棉纸。显示器易被划伤,禁止用硬物擦拭或触及。 禁止用螺丝刀或书写笔等硬物体操作面板按键,否则会损坏或划伤按键。 1.产品确认 本产品适用于注塑、挤出、吹瓶、食品、包装、印刷、恒温干澡、金属热处理等设备的温度控制。本产品的PID参数可以自动整定,是一种智能化的仪表,使用十分方便,是指针式电子调节器、模拟式数显温控仪的最佳更新换代产品。本产品符合Q/SQG01-1999智能型数字显示调节仪标准的要求。 请参照下列代码表确认送达产品是否和您选定的型号完全一致。 XMT□-□□□□□□□—□□ ①②③④⑤⑥⑦⑧⑨⑩ ①面板尺寸(mm)④报警输出1 ⑥输出类型⑧量程下限 D:96×96 0:无报警空:继电器(最大3A) ⑨量程上限 E:72×72 1:上限偏差报警 V:逻辑电平输出用于SSR ⑩附加控制 F:96×48(竖式) 2:下限偏差报警 I1:0~10mA连续电流空:无ON/OFF控制 F(H):48×96(横式) 3:上下限偏差报警(带保持) I2:4~20mA连续电流 ON/OFF:有ON/OFF控制G:48×48 4:上限绝对值报警⑦输入类型 ②显示方式 5:下限绝对值报警 K(0-700) J(0-550) 3:双排显示(经济型) ⑤报警输出2(48×48无) E(0-400) PT100(0-500) ③控制类型 0:无报警 PT100(0.0-99.9) 4:位式PID动作(加热) 1:上限偏差报警 CU50(0.0-99.9) 9:连续PID动作(加热) 2.安装 2.1 注意事项(5)推紧安装支架,使仪表与盘面结合牢固,收紧螺钉。(1)仪表安装于以下环境 (2)大气压力:86~106kPa。2.3 尺寸 环境温度:0~50℃。 相对湿度:45~85%RH。 (3)安装时应注意以下情况 H h 环境温度的急剧变化可能引起的结露。 腐蚀性、易燃气体。 直接震动或冲击主体结构。 B l 水、油、化学品、烟雾或蒸汽污染。 b b’ 过多的灰尘、盐份或金属粉末。 空调直吹。阳光的直射。 热辐射积聚之处。 h’ 2.2 安装过程(1)按照盘面开孔尺寸在盘面上打出用来安装单位:mm 仪表的矩形方孔。型号 H×B h×b×1 h’×b’ (2)多个仪表安装时,左右两孔间的距离应大 XMTD 96×96 92×92×70 (92+1)×(92+1) 于25mm;上下两孔间的距离应大于30mm。 XMTE 72×72 68×68×70 (68+1)×(68+1) (3)将仪表嵌入盘面开孔内。 XMTF 96×48 92×44×70 (92+1)×(44+1) (4)在仪表安装槽内插入安装支架 XMTF(H) 48×96 44×92×70 (44+1)×(92+1) XMTG 48×48 44×44×70 (44+1)×(44+1) 3.接线 3.1接线注意 (1)热电偶输入,应使用对应的补偿导线。 (2)热电阻输入,应使用3根低电阻且长度、规格一致的导线。 (3)输入信号线应远离仪表电源线,动力电源线和负荷线,以避免引入电磁干扰。 3.2接线端子 4.面板布置 ①测量值(PV)显示器(红) ?显示测量值。 ?根据仪表状态显示各类提示符。 ②给定值(SV)显示器(绿) ?显示给定值。 ?根据仪表状态显示各类参数。 ③指示灯 ?控制输出灯(OUT)(绿)工作输出时亮。 ?自整定指示灯(AT)(黄) 工作输出时闪烁。 ?报警输出灯1(ALM1)(红)工作输出时亮。 ?报警输出灯2(ALM2)(红)工作输出时亮。 ④SET功能键 ?参数的调出、参数的修改确认。 ⑤移位键 ?根据需要选择参数位,控制输出的ON/OFF。 ⑥▲、▼数字调整键 ?用于调整数字,启动/退出自整定。

相关文档
最新文档