甲醇制汽油

甲醇制汽油
甲醇制汽油

甲醇制汽油工业工艺

一、世界甲醇燃料发展情况

甲醇是一种重要的有机化工原料,它在化工、医药、轻工、纺织等行业具有广泛的用途。随着世界石油资源的日益匮乏和甲醇生产成本的降低,甲醇作为新的石化原料来源已经成为一种趋势,因此利用甲醇做燃料,甲醇汽油燃料,以及甲醇制汽油等想法引起世界的关注。越来越多的人开始对其进行研究和开发。

上世纪二十年代甲醇汽油开始用作车用燃料;在二次世界大战期间,甲醇汽油广泛应用于德国;上世纪七十年代受二次石油危机的影响,美国、日本、德国和瑞典等国先后投入人力、物力进行甲醇燃料及甲醇汽车配套技术的研究开发。

美国对甲醇燃料和甲醇汽车进行开发和应用,重点开发燃烧M85(含甲醇85%)、M100(含甲醇100%)专用甲醇燃料汽车。

日本汽车研究所也曾先后用大型公共汽车、载货车使用M85、M100燃料,进行道路试验,以检验发动机的耐久性、可靠性。1996年,日本本田技研工业株式会社,试用汽油、甲醇自由混合双燃料车,已完成确保与汽油大致相同耐久、可靠的灵活燃料车,得出的结论是,成本降低,有利于批量生产。

这些研究的成功表明,使用甲醇汽油用于汽车是完全可行的。据统计,目前,瑞典、新西兰已推广使用M15汽油,意大利计划用含甲醇80%的混合燃料代替汽油。而德国已大量推广使用甲醇汽油作为汽车的燃料。

二、甲醇制汽油的发展史

1.甲醇制汽油是基于世界甲醇燃料发展的基础上开始推出的一个新的燃料工

业工艺。

甲醇虽然能直接掺和到汽油中作甲醇—汽油混合燃料。但是把它转化成汽油要比掺和到汽油中使用更具吸引力。由于世界煤储藏量远比石油和天然气多得多,再加上世界上的石油越来越短缺。因此,从煤出发制合成气、甲醇,最后制汽油的研究在国外越来越多。试验规模也越来越大,其中尤以Mobil公司开发成功的ZSM—5型合成沸石自甲醇制汽油(MTG)的方法最引起世界注目。这种方法制得的汽油抗爆震性能好;不存在常用汽油中的硫、氯等组分;而烃类组成与常用汽油很相似。

.20世纪70年代初期发现独特的“形状选择”催化原理

.重大挑战——利用甲醇生产商品汽油

.70年代开展对各种工艺方案的研究

——在美国中试装置规模为4桶/日

——在德国中试装置规模为100桶/日

.1979年新西兰政府决定在新西兰新普利茅斯建设一套14500桶/日工业装置。·装置的所有权75%归新西兰政府.25%归埃克森美孚公司。

.装置于1985年投产并成功地运行了大约10年,后改为化学级甲醇生产装置。

2.从甲醇合成烃类的反应,正在受到人们的极大关注。如果将已经成熟的甲醇合成技术适当地组合,就可以实现合成汽油工业的综合工艺。

CH4+H2O—CO+H2(天然气的转化)

C + H2O—CO+H2(煤的气化)

CO+2H2—CH3OH (甲醇的合成)

nCH3OH—(CH2)n + nH2O (烃类的合成)

3.甲醇工业制各类烃的工艺概况

图1 甲醇原料化工工艺图

三、甲醇制汽油的工艺方法及原理

目前,世界上利用甲醇制汽油的工业方法主要有:

埃克森—美孚甲醇制汽油工艺(MTG)、费托合成工艺(FT)、托普索一体化汽油合成技术工艺(TIGAS)、一步法甲醇转化制汽油技术工艺。

其中尤以埃克森—美孚甲醇制汽油工艺(MTG)在工业生产中应用最为广泛。本节将重点介绍着这一工艺技术。

1.埃克森—美孚甲醇制汽油工艺(MTG工艺)

1.1工艺简述及特点

MTG工艺是指以甲醇作原料,在一定温度、压力和空速下,通过特定的催

化剂的脱水、低聚、异构等作用转化为C11以下的烃类油。

MTG工艺是由Mobil公司开发的甲醇于ZSM-5分子筛催化剂上转化成芳烃的基础上发展而来的。Mobil法甲醇制汽油技术首次发表于1976年,它首先以煤或天然气作原料生产合成气,再以合成气制甲醇,最后将粗甲醇转化为高辛烷值汽油。该工艺有固定床、流化床和多管式反应器法三种工艺。

从甲醇合成烃类的方法,一出现就为人们所注意。这是一个相当好的方法,在常压~3 MPa压力、350~400℃的条件下,甲醇的转化率达100%,且催化剂的活性还不易衰减。由这个方法制造的烃类,

其组分分布有如F特征:

(1) 基本上不生成碳数为11以上的烃类

Mobil方法中碳数不能得到11以上的烃类,是采用ZSM—5沸石分子筛的特点。如果将沸石进行改性,适当改变反应条件,生成物的组分分布就会发生变化。将这一反应的产物油作石化工业裂解的原料时,可提高制乙烯和丙烯的收率。

(2) 对原料的纯度要求不高

无需将粗甲醇中其它含氧化合物除去就可以用作MTG工艺的原料。

(3) 副产物价值高

该工艺产生的少量副产物是液化石油气和高热值燃料气。

(4) 产物性能优良

产物油作为汽油使用时,性能是非常优良的。其生成物中,一部分为芳香族烃,其中大部分被甲基化。另一部分是脂肪族烃类,其中支链烃类占多数。在无四乙基铅的情况下,产物汽油的辛烷值为90~95。而在目前所用的FT合成

法[用铁系催化剂由(c O+H2)直接合成烃类的方法]所得到的烃类,主要是直链的烯烃和烷烃,且碳原子数分布范围较广,产物中有半数是蜡,裂解后主要是柴

油。

由此可见,Mobil法提供了从非石油资源变成高辛烷值汽油的新合成路线,它与FT合成工艺有异曲同工之妙。它主要得到的是汽油,产品的质量好,工艺简单,产品廉价。

1.2 MTG工艺反应原理

(1)甲醇转化的反应较复杂,首先甲醇脱氢转化为低分子烯烃,再进一步与较大分子的烯烃反应生成烷烃、环烷烃和芳烃组分。用ZSM—5沸石把甲醇转化成汽油可以表示为:

H2O H2O 石蜡烃

CH3OH→CH3OCH3→C2-C5→芳烃

环烷烃

上述过程也可用如下反应表示:

nCH3OH→(-CH2-)n十nH2O

该反应是放热反应,甲醇可以完全转化。汽油是沸点在一定范同内的烃类混合物,将甲醇转化为烃类利水是强放热反应。

CH3OH→ 1/2CH3OCH3+ 1/2H20 + 18.08 kJ

l/2CH3OCH3→(CH2)烯+l/2H2O + l8.69 kJ

(2)起始的脱水反应很快地形成了甲醇、二甲醚和水的混合物,含氧物进一步脱水得到C2-C5轻质烯烃,当甲醇脱水反应已完成后,进一步反应则是C2-C5烯烃的缩合、环化,进一步生成分子量更高的、在汽油沸程内的烃类及C。以上的芳香烃、链烷烃等,最终形成C2-C11的烃类混合物。

反应速率的控制步骤是含氧物转化为烯烃,它是一种自催化反应,如果没有烯烃,反应速率就缓慢,若增加烯烃浓度,反应就加快,因此采用轻烃再循环的办法,对提高反应速率有利。

总之,甲醇转换为汽油的关键是采用具有特定结构的合成沸石催化剂(晶体硅铝酸盐分子筛)。催化剂内有合适尺寸的通道,仅允许汽油馏程的烃分子进入其中,并限制烃类产物的分子为C10或C11。更长的烃分子不能穿过通道,而且在进一步的反应中被打断。这一特点保证了甲醇转化汽油工艺的高选择性。(3)MTG方法的理论收率

MTG方法的理论收率的定义是:甲醇中的CH2全部转入到汽油中。这个数值是0.4375,即每吨甲醇最多能够得到437.5kg的烃类。也就是说,2.2857 t甲醇最多能转化为l t汽油。这还是仅仅指原料

而已,不包括其它。

1.3MTG工艺方法及流程

(1)固定床法工艺流程

原料甲醇经预热器、蒸发器及过热器后,进入脱水反应器,在Cu/Al203,催

化剂上甲醇脱水生成二甲醚。从脱水反应器出来的未反应的甲醇、二甲醚、水与来自汽油分离塔的压缩循环气混合后,进

入转化反应器,通过ZSM—5催化剂转化为烃。出转化反应器的气体,一部分预热原料甲醇,一部分与循环气换热,然后去汽油分离塔,分离出液态烃、气态烃和水。循环气与出脱水反应器的气体之比是9,控制温度可以增加汽油的收率。

当反应产物中测定出未反应的甲醇时,表明催化剂已经结碳,活性达不到要求。这时,反应器内的催化剂需要再生,采取的办法是用空气与氮的混合气燃烧除去催化剂表面的焦炭。工业化的流程中并联设置4台转化反应器,3台运转,l台再生催化剂。

操作条件和产品收率列于表l。生成物中C l和C2极少,同时副产少量的C3和C4,80%左右是C5。从烃类产物中可以得到85%的汽油,其辛烃值(研究法)高达93。其它是液化石油气和少量的燃料气。

固定床法的优点是转化率比较高。

其工艺流程图3:

图3 MTG固定床法工艺流程

表1 MTG法固定床、流化床的工艺条件和产品收率

(2)流化床法工艺流程

西德的URBK(联合褐煤)公司、伍德公司、和美国Mobil公司,在原Mobil法固定床反应工艺的基础上,开发流化床的工艺。使用的也是Mobil的ZSM—5催化剂。

该技术也获得了西德政府的资助。1980年至1981年做冷模试验,1982年在Wesseli的UK公司的联合石油化工厂建成20t/d的中试示范厂。

其工艺流程图4:

图4 MTG流化床法工艺流程图

主要装置有流化床反应器、再生塔和外冷却器。流化床反应器包括一个浓相段,其下部为稀相提升管。原料甲醇和水按一定比例配料并进行汽化,过热到177℃后进入流化床反应器。流化床反应器顶部出米的反应产物经除去夹带的催化剂后进行冷却,分离为水、稳定的汽油和轻组分。流化床中的反应是急剧的放热反应,采用外部冷却器移走热量。为了控制催化剂表面积炭,将一部分催化剂循环至再生塔。l983年,该联合公司又改造了反应器,把原先在外部冷却催化剂的方法改为在反应器内部加一个冷却器。

流化床工艺操作条和产品收率列于表1。MTG流化床法每生产l kg汽油约需2.5kg甲醇。MTG流化床法工艺具有下述特点:

(1)汽油收率比固定床法略高:

(2)操作中易于移去反应热,可将反应热用来生产高压蒸汽:

(3)循环量比固定床大大降低。

中试装置流化床的尺寸为F600 X 20000。甲醇经加热汽化后由反应器底部进入,每小时加料700~950 kg,反应器中压力为0.27~0.35 MPa,反应温度为400~415℃,原料甲醇含水量可达到20%。每吨甲醇(纯)可以生产438 kg碳氢化合物,其中燃料气组分为5.6%,LPG为6.4%,汽油为88%。汽油中烷烃占56%、烯烃7%、芳烃33%、石脑油4%、辛烷值为96.8(RON)。

由于不断加入新鲜催化剂,使反应器内的催化剂性能保持基本稳定,从而带来了生产操作和产品质量的稳定,这是非常有利的。

(3)多管式反应器法(Lurqi—Mobil)

a. 工艺介绍

Mobil工艺是在一个反应器内将甲醇部分转化为二甲基醚,在另一个反应器中再将甲醇和二甲基醚转化为烃类。而Lurqi—Mobil法则直接用一个多管式反应器将甲醇转换为烃类,也可以称为一步法。

b. 工艺流程

原料甲醇和循环气与反应器出来的气体进行热交换,将温度调整到所需要的反应温度。气体与甲醇的混合物从上部进入多管式反应器,通过管内装填的催化剂催化转化为烃。反应热由多管式反应器壳程循环的熔融盐带入蒸汽发生器中产生高压蒸汽。从多管式反应器出来的生成物通过热交换器冷却至常温。液态烃与水和循环气分离后,循环气由压缩机循环回转化工序。用氮和空气的

混合气燃烧除去催化

剂表面积炭使之再生。从分离器出来的烃进入稳定塔,在塔上部将C4以下烃和惰性组分分离,塔底产物为C4以上烃。将塔上部产物送入甲醇合成装置作为工艺气或燃烧气使用,或在C3-C4回收塔作为C3-C4烃回收使用。

其工艺流程图5:

图5 Lurqi—Mobil多管式反应器的工艺流程图

生成汽油的成分为(wt%):烷烃和环烷烃57.7、烯烃l0.4、芳烃31.9、杜

烯5.0、研究法辛烷值93.0;消耗量为甲醇(100%)1.0t、电l1k w h、冷却水16 m3 、锅炉用水750 kg;可生产汽油357 kg、丙烷l6 kg、丁烷55 kg、燃料气(19780 kJ/kg,

低热值)45 kg、蒸汽(10.130 MPa饱和)824 kg。

详细情况见表2:

c.产品特性(未掺C4的汽油)

该研究装置生产的未掺C4的汽油,其组成和特性见表3和表4。

1.4MTG工艺催化剂

MTG法取得成功的关键在于ZSM-5催化剂开发利用。这种择型合成沸石具有两种相互交叉的孔道,椭圆形十圆环直孔道和圆形正弦状弯曲孔道。这些孔道的孔经大约6A,其大小恰巧足以生产在汽油沸程内的烃类。

(1)选择性好

由于ZSM一5合成沸石具有特定结构和孔道尺寸,所以它能使汽油沸点范围内的烃分子通过,而临界尺寸大于均四甲基苯的分子很难通过。也就是说,反应产物是以十个碳原子终止的,几乎不生成C11以上的烃,因而该催化剂上甲醇

制汽油的选择性好。

(2)活性高

在甲醇制汽油的反应中,ZSM-5沸石与其它沸石相比不仅C—C键的形成能力强,而且活性下降也较慢。当加氢裂解时,H-ZSM-5沸石积炭量仅为丝光沸石的1/40~1/50,H-ZSM-5沸石是ZSM一5沸石的酸性形式,它是后者在80℃时用HCl交换Na+ 并在600℃干燥而得的。前者的组成为Na2O:AI2O3:SiO2=0.02:1.00:43.6,后者的组成为Na2O:AI2O3:SiO2=0.33:1.O0:26.3。

(3)芳构化能力强

用Y型分子筛不能生产芳烃,用丝光沸石时,在300℃时也只能生成少量芳构化产物,但H-ZSM-5沸石在300℃时已发生明显的芳构化。在380℃芳构化程度已很高。

(4)多功能

ZSM-5分子筛除了具有缩合、芳构化的功能外。还在其它许多工艺过程中使用,如石油馏分脱蜡;从乙烯和苯制取乙苯;甲苯歧化为苯和二甲苯。

2.费托合成工艺(FT工艺)

费托合成(Fischer-Tropsch synthesis)是煤间接液化技术之一,它以合成气(CO和H2)为原料在催化剂(主要是铁系)和适当反应条件下合成以石蜡烃为主的液体燃料的工艺过程。1923年由就职于 Kaiser Wilhelm 研究院的德国化学家 Franz Fischer 和Hans Tropsch开发,第二次世界大战期间投入大规模生产。其反应过程可以用下式表示:

nCO+2nH2─→[-CH2-]n+nH2O ΔH=-158KJ/mol

F-T合成的主要化学反应:

F-T合成的主反应:

生成烷烃:nCO+(2n+1)H2 = CnH2n+2+nH2O

生成烯烃:nCO+(2n)H2 = CnH2n+nH2O

另外还有一些副反应,如:

生成甲烷:CO+3H2 = CH4+H2O

生成甲醇:CO+2H2 = CH3OH

生成乙醇:2CO+4H2 = C2H5OH+ H2O

积炭反应:2CO = C+CO2

除了以上6个反应以外,还有生成更高碳数的醇以及醛、酮、酸、酯等含氧化合物的副反应,还有水煤气变换反应 H2O+CO → H2+CO2等。

FT合成总的工艺流程主要包括煤气化、气体净化、变换和重整、合成和产品精制改质等部分。合成气中的氢气与一氧化碳的摩尔比要求在2~2.5。反应器采用固定床或流化床两种形式。如以生产柴油为主,宜采用固定床反应器;如以生产汽油为主,则用流化床反应器较好。此外,近年来正在开发的浆态反应器,则适宜于直接利用德士古煤气化炉或鲁奇熔渣气化炉生产的氢气与一氧化碳之摩尔比为0.58~0.7的合成气。铁系化合物是费托合成催化剂较好的活性组分。传统费托合成法是以钴为催化剂,现在工业上多采用氮化熔铁催化剂作为FT合成催化剂。

3.托普索一体化汽油合成技术工艺(TIGAS)

3.1工艺简介

托普索一体化汽油合成技术(TIGAS)早在80年代初期就已经被开发。与“美

孚”开发的传统甲醇制汽油工艺不同。TIGAS在新西兰的Motunui被验证可以延伸至上游实现一步法.直接在单条回路中将合成气转化为汽油,不需要对甲醇冷凝和后续再沸。

美孚的甲醇制汽油:

合成气→甲醇→二甲醚→汽油

托普索的TIGAS:

合成气→甲醇/二甲醚→汽油

3.2工艺流程

TIGAS工艺主要包含两步:联合甲醇/二甲醚合成。以及汽油合成。甲醇/二甲醚和汽油合成发生在单条回路,其中有两个循环点:一条在上游甲醇/二甲醚合成(以达到合成气的高转化率),另一条在甲醇/二甲醚和汽油合成之间(以控制放热)。对于H2/CO比例在1.0(或更少)的煤基合成气,内部CO2脱除系统也包含在其中。

其工艺流程如图6:

图6 TIGAS工艺流程图(包含内部C02脱除装置)

3.3反应原理

引入蒸汽的目的是控制H2/CO比例。因为水煤气变换反应也在甲醇/二甲醚合成反应器内发生,反应如下:

CO+H20→C02+H2

合成甲醇/二甲醚的理想转化率在H2/CO比例等于1.0时实现。除了促进热力学反应外,反应速度快,甚至甲醇/二甲醚反应器在中等压力和低循环比(小于1)时也可实现。

以下整体反应在TIGAS工艺中发生:

3C0+3H2→2(-CH2-)+H20+C02

在第一步转化中,合成气基于特殊的Cu催化剂转化为甲醇/二甲醚。

在汽油反应器中.二甲醚基于一种沸石催化剂转化为汽油和水。分离产品,同时甲醇/二--甲醚反应中生成的CO2从循环(和新鲜气)被脱除。

4.一步法甲醇转化制汽油技术工艺

2006年,中科院山西煤化所开发一步法MTG技术,已在其能源化工中试基地完成中试。目前,正在建立万吨级的示范厂装置。

一步法技术省略了甲醇转化制二甲醚的步骤,甲醇在ZSM-5分子筛催化剂的作用下一步转化为汽油和少量LPG产品,其显著优点是:工艺流程短,汽油选择性高,催化剂稳定性和单程寿命等指标均较好。

各指标如表5:

表5 国内一步法中试MTG结果

四、结论与展望

FT合成技术与甲醇制汽油技术(MTG)的比较

(1)与其他甲醇下游技术相比,甲醇转化制汽油技术相对简单,在反应器技术、油品后处理技术及油品品质等方面都有一定优势。特别是甲醇转化生产

的汽油经简单加工可以直接使用,也可以作为优质汽油组分进行高清洁汽油(国III标准)的调和。此外,MTG的技术还可以实现对石油路线汽油生产原料的置换,达到优化油化工资源配置的目的。

其合成汽油燃料的生产线路均以下图为主线:

(2)近年来,原油与天然气价格持续走高,在我国煤炭作为能源化工替代原料被推向前台。煤化工技术中甲醇合成是最为成熟的技术之一,由此导致了大量的甲醇项目出现。统计表明,2006年,我国甲醇生产能力将达到l1000 kt/a,产量己达到7620 kt。今后5年,每年新装置投入生产的能力超过5000kt。不久我国甲醇装置的能力将大大超过市场需求,迫切需要大规模转化甲醇的下游技术。

(3)甲醇制汽油工艺的沉浮,是与市场上原油价格有关的。今天,原油价格正疯狂地奔向$100/桶时,要求找到替代石油的能源和开辟化学工业原料来源新途径的呼声越来越高,再度关注MTG工艺是必然的事。MTG的复苏,充分揭示了这种可能性。国内一些甲醇企业,也许正在密切地相望。

(4) MTG 工艺在中国能否立足,取决于煤制甲醇是否过剩。一旦煤甲醇过

甲醇用于代替汽油

甲醇俗称“木醇”或“木精”,用甲醇代替石油燃料在国外已经应用多年,甲醇汽车控制系统技术都已经很成熟,近年来由于石油资源紧张,汽车能源多元化趋向加剧,甲醇汽车又提到议事日程。 目前世界上已有70多个国家,不同程度应用甲醇汽车,有的已达到较大规模的推广,甲醇汽车的地位日益提升。 甲醇的资源丰富,可以再生,属于生物质的能源。合成甲醇可以固体(如煤、焦炭)液体(如原油、重油、轻油)木材干馏或气体(如天然气及其他可燃性气体提取。 在汽车上使用甲醇,可以提高燃料的辛烷值,增加氧含量,使汽车缸内燃烧更完全,可以降低尾气的害物的排放。 甲醇汽车的燃料应用方式:一、甲醇掺烧是指把甲醇添加在汽油里,用甲醇燃料助溶剂复配的M系列混合燃料。其中:M15(在汽油里添加15%甲醇)清洁甲醇汽油为车用燃料,分别应用于各种汽油发动机,可以在不改变现行发动机结构的条件下,替代成品汽油使用,并可与成品油混用。甲醇混合燃料的热效率、动力性、启动性、经济性良好,具有降低排放、节省石油、安全方便等特点。世界各国根据不同国情,研发了M3、M5、M15、M20、M50、M85、M100等不同掺和比的甲醇汽油。目前,商用甲醇主要为M85(85%甲醇+15%汽油)和M100,M100性能优于M85,具有更大的环境优越性。目前,掺烧占甲醇汽车占主要地位。二、纯烧,即单烧甲醇,可用M100%表示,目前应用已经非常成熟,三、变性燃料甲醇,指甲醇脱水后,再添加变性剂而生成的甲醇,四、灵活燃料,指燃料既可用汽油,又可以使用甲醇或甲醇与汽油比例混合的燃料,还可以用甲醇制氢气,汽油、甲、乙醇、天然气、氢气等燃料随时自由切换,这就是多燃料发动机控制技术。 当前,甲醇汽车固然存在一定的技术问题,例如甲醇的通电腐蚀、溶胀,等技术问题,通过国人的不断努力和国家政策上支持和扶植,应用前景是非常好的。

m15甲醇汽油配方,m15甲醇汽油技术指标,m15甲醇汽油标准

M15甲醇汽油配方 甲醇掺入量一般为5%~20%。以掺入15%者为最多,称M15甲醇汽油。抗爆性能好,研究法辛烷值(RON)随甲醇掺入量的增加而增高,马达法辛烷值(MON)则不受影响。燃烧排出物的毒性比普通含铅汽油小,排气中一氧化碳含量也较少。燃烧清洁性能良好。但对汽油发动机的腐蚀性和对橡胶材料的溶胀率都较大,且易于分层。低温运转性能和冷起动性能较差,动力性能也不及纯汽油。可用作车用汽油代用品。许多国家作了大量使用试验,有的也在使用。但因较贵,以及上述诸缺点,尚未使用。 甲醇汽油是由10%-25%的甲醇与其他化工原料、添加剂合成的新型车用燃料,不含任何汽油,但可达到90#-97#国标汽油的性能和指标。此配方的车用甲醇汽油在国内独特、环保、成本低,节省资源节省外汇造福人类,市场竞争力强,具有极好的发展前景。 天德牌m15甲醇汽油具体配制及使用方法: 可在国标汽油中加甲醇 :将"天德"牌汽油助溶剂按重量比或体积比2%加入98%的甲醇内,成为甲醇变性,变性后的甲醇可以按20%—60%的比例加入90#或93#的汽油内,混合搅拌,成为透明、无杂质的甲醇汽油。先做小样实验,作出的小样实验要清澈透明,不分层。 将15%的变性甲醇兑入85%的90#或93#汽油中,搅拌均后为M15[93#]甲醇汽油 M15甲醇汽油技术 表1 M15车用甲醇汽油技术要求 项 目 质 量 指 标 试 验 方 法 90号 93号 97号 甲醇含量a (体积分数) (12~15)% 附录A 、附录B 抗爆性 辛烷值(RON) ≥ 90 93 97 GB/T 5487 抗爆指数(RON+MON )/2 ≥ 85 88 报告 GB/T 503、GB/T 5487 铅含量b (g/L ) ≤ 0.005 GB/T 8020 馏程 10%蒸发温度,℃ ≤ 70 GB/T 6536 50%蒸发温度,℃ ≤ 12 90%蒸发温度,℃ ≤ 19 终镏点,℃ ≤ 20 残留量,%(v/v ) ≤ 2 饱和蒸汽 压c (kPa ) 11月1日至4月30日 ≤ 88 GB/T 8017、SH/T 0794 5月1日至10月31日 ≤ 72 实际胶质(mg/100mL ) ≤ 5 GB/T 8019 诱导期(min ) ≥ 480 GB/T 8018 硫含量d (质量分数),% ≤ 0.015 GB/T 380、GB/T 11140、SH/T 0253、SH/T 0689

甲醇制汽油

甲醇制汽油 1976年Mobil公司开发成功的ZSM—5型合成沸石自甲醇制汽油(MTG)的方法。费托合成工艺(FT)、托普索一体化汽油合成技术工艺(TIGAS)、一步法甲醇转化制汽油技术工艺。 MTG工艺是指以甲醇作原料,在一定温度、压力和空速下,通过特定的催化剂的脱水、低聚、异构等作用转化为C11以下的烃类油。以煤或天然气作原料生产合成气,再以合成气制甲醇,最后将粗甲醇转化为高辛烷值汽油。该工艺有固定床、流化床和多管式反应器法三种工艺。 在1MPa——MPa,350℃——400℃条件下,甲醇的转化率为100%,且催化剂活性不易衰减。此方法产生的烯烃特点: 基本不产生碳素高于11的烃类,对原料的纯度要求不高,副产物价值高,产物性能优良。 (1)固定床法-工艺流程 原料甲醇经预热器、蒸发器及过热器后,进入脱水反应器,在Cu/Al203,催化剂上甲醇脱水生成二甲醚。从脱水反应器出来的未反应的甲醇、二甲醚、水与来自汽油分离塔的压缩循环气混合后,进入转化反应器,通过ZSM—5催化剂转化为烃。出转化反应器的气体,一部分预热原料甲醇,一部分与循环气换热,然后去汽油分离塔,分离出液态烃、气态烃和水。循环气与出脱水反应器的气体之比是9,控制温度可以增加汽油的收率。当反应产物中测定出未反应的甲醇时,表明催化剂已经结碳,活性达不到要求。这时,反应器内的催化剂需要再生,采取的办法是用空气与氮的混合气燃烧除去催化剂表面的焦炭。工业化的流程中并联设置4台转化反应器,3台运转,l台再生催化剂。 (2)流化床法-工艺流程 主要装置有流化床反应器、再生塔和外冷却器。流化床反应器包括一个浓相段,其下部为稀相提升管。原料甲醇和水按一定比例配料并进行汽化,过热到177℃后进入流化床反应器。流化床反应器顶部出来的反应产物经除去夹带的催化剂后进行冷却,分离为水、稳定的汽油和烃组分。流化床中的反应是急剧的放热反应,采用外部冷却器移走热量。为了控制催化剂表面积炭,将一部分催化剂循环至再生塔。l983年,该联合公司又改造了反应器,把原先在外部冷却催化剂的方法改为在反应器内部加一个冷却器。1千克汽油需要2.5千克甲醇。 特点:(1)汽油收率比固定床法略高; (2)操作中易于移去反应热,可将反应热用来生产高压蒸汽; (3)循环量比固定床大大降低。 (3)多管式反应器法(Lurqi—Mobil) Mobil工艺是在一个反应器内将甲醇部分转化为二甲基醚,在另一个反应器中再将甲醇和二甲基醚转化为烃类。而Lurqi—Mobil法则直接用一个多管式反应器将甲醇转换为烃类,也可以称为一步法。

甲醇制烯烃及制汽油工艺概述_郝占全

甲醇制烯烃及制汽油工艺概述 郝占全 (晋城无烟煤矿业集团有限责任公司天溪煤制油分公司,山西晋城048000) 摘要:本文主要介绍了甲醇制烯烃的工艺及晋城无烟煤矿业集团有限责任公司天溪煤制油分公司甲醇制汽油(MTG)装置的运行情况。 关键词:甲醇制烯烃甲醇制汽油 甲醇制乙烯、丙烯的MTO工艺和甲醇制丙烯的MTP工艺是目前重要的化工技术。该技术以煤或天然气合成的甲醇为原料,生产低碳烯烃,是发展非石油资源生产乙烯、丙烯等产品的核心技术。由于我国是一个富煤缺气的国家,采用天然气制烯烃势必会受到资源上的限制。因此,以煤为原料,走煤-甲醇-烯烃-聚烯烃工艺路线符合国家能源政策需要,是非油基烯烃的主流路线。 1甲醇制烯烃(MTO) 1.1工艺路线的开发过程 甲醇制烯烃工艺是煤基烯烃产业链中的关键步骤,其工艺流程主要是:在合适的操作条件下,以甲醇为原料,选取适宜的催化剂(ZSM-5沸石催化剂、SA-PO-34分子筛等),在固定床或流化床反应器中通过甲醇脱水制取低碳烯烃。根据目的产品的不同,甲醇制烯烃工艺分为甲醇制乙烯、丙烯(MTO),甲醇制丙烯(MTP)。MTO工艺的代表技术有环球石油公司(UOP )和海德鲁公司共同开发的UOP/Hydro MTO技术,中国科学院大连化学物理研究所自主创新研发的DMTO 技术;MTP工艺的代表技术有鲁奇公司开发的Lurgi MTP技术和我国清华大学自主研发的FMTP技术。 自1976年美国UOP公司科研小组首次发现甲醇在ZSM-5催化剂和一定的反应温度下,可以转化得到包括烯烃、烷烃和芳香烃在内的烃类以来,至今甲醇制烯烃工艺技术在各国工业研究和设计部门的努力研究下已经取得了长足的进展。尤其是其关键技术催化剂的选择和反应器的开发均已比较成熟。目前,UOP/ Hydro MTO技术、DMTO技术、Lurgi MTP均已建有示范装置,FMTP技术也在安徽淮化集团建成了实验装置。 1.2甲醇制烯烃的基本原理 在一定条件下,甲醇蒸汽先脱水生成二甲醚,然后二甲醚与原料甲醇的平衡混合物气体脱水继续转化为以乙烯、丙烯为主的低碳烯烃;少量C+2 C+5的低碳烯烃由于环化、脱氢、氢转移、缩合、烷基化等反应进一步生成分子量不同的饱和烃、芳烃、C+6烯烃及焦炭。整个反应过程可分为两个阶段:脱水阶段、裂解反应阶段,反应方程式如下所示: 脱水阶段:2CH3OH→CH3OCH3+H2O+Q 裂解反应阶段:该反应过程主要是脱水反应产物二甲醚和少量未转化的原料甲醇进行的催化裂解反应,包括主反应(生成烯烃)和副反应(生成烷烃、芳烃、碳氧化物并结焦)。 主反应的方程式如下所示: nCH 3 OH→C n H 2n +nH 2 O+Q nCH 3 OCH 3 →2C n H2n+nH2O+Q n=2和3(主要),4、5和6(次要),以上各种烯烃产物均为气态。 副反应(生成烷烃、芳烃、碳氧化物并结焦)方程式如下所示: (n+1)CH 3 OH→C n H 2n+2 +C+(n+1)H 2 O+Q (2n+1)CH 3 OH→2C n H 2n+2 +CO+2nH 2 O+Q (3n+1)CH 3 OH→3C n H 2n+2 +CO 2 + (3n-1)H 2 O+Q n=1、2、3、4、5……… n CH 3 OCH 3 →C n H2n-6+3H2+n H2O+Q n=6、7、8……… 以上产物有气态和固态之分。 1.3甲醇制烯烃催化剂 甲醇转化制烯烃所用的催化剂以分子筛为主要活性组分,以氧化铝、氧化硅、硅藻土、高岭土等为载体,在黏结剂等加工助剂的协同作用下,经加工成型、烘干、焙烧等工艺制成分子筛催化剂,分子筛的性质、合成工艺、载体的性质、加工助剂的性质和配方、成型工艺等各素对分子筛催化剂的性能都会产生影响。 分子筛的研究主要集中在20世纪80年代和90年代。近年来,对于分子筛的合成和改性还在进行研究,但研究的力度明显降低,发表文章和申请专利的数量也显著下降。分子筛的粒径是合成分子筛催化剂的一个重要因素,一般小粒径的分子筛由于孔道短,内扩散的行程短,有利于提高分子筛催化剂的表观活性和乙 22江西化工2013年第4期

甲醇汽油最新相关政策

国内甲醇汽油相关的国家政策 由于国家产业政策的不明朗,产业立项政策和甲醇汽油的国家技术标准至今没有出台,各地根据自己的情况各自为政,目前国内生产的甲醇汽油有的以地方标准为准,有的只是以一个企业的标准为准。由于配比的混乱,造成各地甲醇汽油质量参差不齐。 近年来出台的相关政策一览: (1) 2004年5月国家法改委发布的《汽车产业发展政策》明确规定,国家支持研究开发醇燃料、混合燃料等新型车用燃料,鼓励汽车生产企业开发生产新型燃料汽车。 (2) 2004年7月《国务院关于投资体制改革的决定》明确规定企业不使用政府投资建设的项目一律不再实行审批,而实行备案制,为打破行业垄断提供了法律依据。 (3) 2004年8月国家法改委历时一年制定的《国家重大产业技术开发专项》发布并全面启动,将“具备以煤为原料建设大型甲醇、二甲醚的技术能力及开发燃料油、煤制醇醚燃料高效添加剂技术”列入其中。 (4) 2004年11月,国务院总理温家宝在一份“关于两大石油集团垄断控制油源导致民企无法生存”的报告上作了重要批示:抓紧时间进行石油体制改革。 (5) 2004年11月26日,国家发改委能源局局长徐锭明先生在“2004年中国能源投资论坛”上宣布“能源领域企业不戴国企帽子”。徐锭明介绍说,在我国的能

源规划中,已经把一些原来只打上国有企业“标签”的字眼去掉了。这意味着,只要有条件的企业都应许进入能源领域。 (6) 2004年12月11日起我国成品油零售市场已对外全面开放,同日全国工商联石油业商会(CCPI)在人民大会堂宣告成立。依据国家发改委的指示精神,CCPI正牵头起草一个关于现行石油产业政策以及地方政策中阻碍和限制民营油气企业生存、发展的若干问题的报告,以此来加快推动当前中国能源体制改革。 (7) 2004年12月16日,在国务院有关部委以及中国石油和化学工业协会、中国汽车工业协会、山西省政府的大力支持下,依托国家化工行业生产力促进中心,由十几家企、事业单位联合发起组建的“全国醇醚燃料及醇醚清洁汽车专业委员会”在北京宣告成立。 (8) 但从2004年12月11日起我国成品油零售市场已对外全面开放,国家法改委能源局局长徐锭明先生宣布“能源领域企业不戴国企帽子”,只要有条件的企业都允许进入能源领域。 (9) 2006年11月,原国务院副总理曾培炎主持工作会议时强调,加大对替代能源发展的支持力度,重点发展车用燃料和替代石油产品,搞好煤炭液化、煤制醇醚、烯烃和煤基多联产技术的试验示范和开发应用。 (10) 2007年6月,温家宝总理主持国务院常务会议叫停粮食制乙醇和煤制油项目之后,替代能源的重点已经转向煤炭深加工、可再生能源、煤制醇醚烯烃等。

甲醇制汽油文献综述

刘于英,原丰贞,赵霄鹏. 甲醇制汽油工艺概述[J].山西化工,2009,29(4):2-3 随着世界石油资源的日益匮乏和甲醇生产成本的降低,甲醇作为新的石化原料来源已经成为一种趋势,因此甲醇制汽油(MTG)项目备受关注。 与其他甲醇下游技术相比,甲醇制汽油技术相对简单,并在反应器技术、油品后处理技术及油品品质等方面都有一定优势。特别是甲醇转化生产的汽油经简单加工后既可以直接使用,也可以作为优质油组分进行高清洁汽油(国家Ⅲ类标准)的调和。甲醇制汽油(MTG)工艺是由Mobil公司开发的甲醇于ZSM 25 分子筛催化剂上转化成芳烃的基础上发展而来的。Mobil法甲醇制汽油技术首次发表于1976 年,它首先以煤或天然气作原料生产合成气,再以合成气制甲醇,最后将粗甲醇转化为高辛烷值汽油。 甲醇制汽油工艺在中国能否立足,取决于煤制甲醇是否过剩。一旦煤制甲醇过剩,MTG 就有可能成为甲醇的后继产业链。甲醇加入汽油不如甲醇制汽油,后者对环境、发动机都没有影响,因此此技术具有非常广阔的应用前景 埃克森美孚公司在1990年代所作的改进包括减少了投资和操作费用。采用MTG技术的第一套煤制汽油工艺设计和建设已在中国山西晋城无烟煤矿公司进行之中。该装置初期阶段设计能力为10万t/a,但预计该项目第二阶段将扩增至100万t/a。埃克森美孚公司于2008年12月也将采用MTG技术建设美国第一套MTG型CTL项目。DKRW先进燃料公司通过其旗下的Medicine Bow燃料和电力公司接受MTG技术转让,在怀俄明州Medicine Bow建设1.5万桶/d CTL装置。晋城无烟煤矿公司和DKRW先进燃料公司的装置都将比新西兰原有装置有很大改进,并积累了10a多来的操作经验。 从事气化技术的美国合成能源系统公司(SES)与埃克森美孚公司合作,加快推广通过甲醇途径的煤制汽油技术,截至2008年9月底,在全球推行其u·GAS煤炭气化装置,已转让甲醇制汽油(MTG)技术达15套。SES公司已计划利用MTG技术与美国西弗吉尼亚州、密西西比州和北达科塔州的合作伙伴在其煤气化项目中应用。如果这些项目建成,将可生产约1亿加仑/a汽油。将埃克森美孚公司的MTG技术与SES公司专有的U—GAS气化技术相结合,可利用低成本、丰富的煤炭,包括褐煤和废煤转化生产高价值的运输燃料。 据埃克森美孚公司计算,460万t煤炭进料可生产约140万t/a(约3.6万桶/d)汽油。产率和投资成本取决于煤质(灰分、湿度、硫含量和热值)。据UC Davis公司于2007年公布的加州低碳燃料标准所作技术分析,由MTG工艺生产的全部能源产品总的生命循环周期温室气体排放(无碳捕集和封存,CCS),最多可与平均的煤制油工艺的排放(48.7g/MJ炼制产品)相当。然而,每MJ汽油的排放较高(64.69 g/MJ汽油)。相对比较,从常规石油生产的汽油总的排放为25.7g/MJ,从焦油砂或超重质石油生产的燃料为29.4~35.9g/MJ。油砂燃料为33~70g/MJ。以Pittsburgh和Houston为基地从事合成能源系统开发、美国最的沥青煤生产商Consol能源公司与合成能源系统公司(SES)于2008年9月组建合资企业,推动通过甲醇使煤制汽油技术,合资企业在美国西弗吉尼亚州Benwood附近Marshall郡工业园区建设煤制汽油工厂,该工厂邻近Consol能源公司Shoemaker煤炭生产联合企业。计划于201 1年投产,这将是美国采用SES公司U—Gas气化技术的第一套装置。该公司从美国气体技术研究院取得该技术转让。Shoemaker煤炭生产联合企业将为转化生产合成气供应3 000 t/a煤炭。合成气将用于生产约72万t/a甲醇,甲醇再转化成l亿加仑/a辛烷值为87的汽油。该合资企业与埃克森美孚研究与工程公司签约以取得甲醇制汽油技术。在U—Gas气化过程中,粒状煤炭在单段、流化床气化器中于约1。8500F和200磅/平方英寸下被气化。U—Gas技术也包括以下过程,将使来自煤炭的二氧化碳副产品封存地下,以有助于减小对影响的影响。SES公司在中国的第一套商业化煤制甲醇装置于2008年1月投产,在中国的第二套煤制甲醇装置将于2010年投运。煤炭制取甲醇,由甲醇再制汽油(MTG)路线正在我国山西省跃跃欲试。山西晋城无烟煤矿公司与德国伍德公司于2006年12月签署了

化工文献综述

北京化工大学北方学院NORTH COLLEGE OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY 毕业设计开题报告 学院:化工与材料工程学院 专业:化学工程与工艺 班级: 1203 学号: 120110093 姓名:邵静 指导教师:蔡靖

文献综述 前言 本人毕业设计的论题为《年产25万吨甲醇的合成工艺设计》。随着经济全球化进程的发展, 甲醇是一种有着广泛用途的重要的有机化工原料,甲醇工业生产对其他相关工业和国民经济的发展都有着重要意义。随着经济全球化进程的发展,21世纪的化学工业,其产业结构正在不断调整,日益突出了精细化工的主 体地位。近几十年来,特别是我国甲醇工业的发展,生产规模逐渐扩大,下游产品种类不断增加,社会需求越来越大,能源消费也不断增加,为了解决我国石油供应过分依赖进口的能源安全问题,解决机动车辆排放出的一氧化碳、碳氢、氮氧化物等严重污染,本文综述了国内外甲醇的研究现状,煤制甲醇催化剂的选择,甲醇的意义等。

甲醇在生活中越来越受到重视。甲醇是 C1 化学的基础物质和重要的有机化工原料,也是一种洁净高效的车用料和大功率燃料电池的原料,主要应用于精细化工、塑料等领域,可用来制造甲醛、醋酸、合成橡胶、甲胺、对苯二甲酸二甲酯[1]、甲基苯烯酸甲酯、氯甲烷、醋酸、甲基叔丁基醚、氯甲烷、甲氨、硫酸二甲酯等多种有机产品,也可用于有机合成、农药、医药、涂料、染料和国防工业等领域。随着社会经济的快速增长,能源、环境问题日益突出,甲醇作为燃料应用的比例越来越大。近20年来,甲醇生产发展很快,技术不断提高,生产规模逐年扩大,生产工艺逐步成熟,各项技术指标不断完善,特别是近年来甲醇汽、柴油的开发和应用,使其作为代用燃料,从技术性、经济性上具有了很强的竞争力。甲醇在国民经济中占有十分重要的地位。近年来,随着甲醇下属产品的开发,特别是甲醇燃料的推广应用,甲醇的需求大幅度上升。 一、国内研究综述 1、甲醇的生产现状 世界各国的甲醇生产主要以天然气为原料。2006年世界甲醇总产能为4695万吨/年。2007~2010年全球甲醇产能年增长率为4.5%~5.0%,到2010年产能将达到5800万~6000万吨/年。 进入本世纪以来,新建装置集中在中东、拉美和东亚等地天然气资源丰富的地区,谋求以成本优势占领市场。装置规模也呈现出大型化(5000~12000吨/天)的趋势。世界甲醇生产格局的变化导致消费格局发生重大变化。美国、欧洲、日本等发达国家和地区甲醇消费已由自给逐步转变为依靠进口。中国也成为世界甲醇生产商的目标市场。 我国甲醇工业的发展情况我国甲醇工业始于20世纪50年代,主要是由原苏联援建的以煤为原料采用高压法锌铬催化剂合成甲醇技术。1957年第一套锌铬催化剂高压法甲醇合成装置在吉林化学工业公司投产,设计能力为100t/d,然后在兰州、太原、西安等地陆续建厂投产。60年代上海吴泾化工厂先后自建了以焦炭和石脑油为原料的甲醇装置;同时南京化学工业公司研究院研制了联醇用中压铜基催化剂,推动了具有我国特色的合成氨联产甲醇工业的发展。自2002年年初以来,我国甲醇市场受下游需求强力拉动,以及生产成本的提高,甲醇价格一直呈现一种稳步上扬走势。甲醇市场价格最高涨幅超过100%,甲醇生产的利润相当丰厚,效益好的厂家每吨纯利超过了1000元,因而甲醇生产厂家纷纷扩产和新建,使得我国甲醇的产能急剧增加。随着甲醇生产技术的发展,我国甲醇生产技术越

M85甲醇汽油

有关建设甲醇汽油项目的相关调研与开发建议 甲醇是:无色、无味、易流动,易挥发的可燃性液体, 甲醇汽油是:(国标汽油+甲醇+甲醇汽油添加剂)按一定量的比例勾兑后的混合物产物。甲醇掺入量一般为5%~20%。以掺入15%者为最多,称M15 甲醇汽油。 如:M85甲醇汽油 = 15%汽油 + 85%甲醇油(甲醇+0.5%添加剂)甲醇汽油优点是: 特点(一):通用性好 1、高清洁甲醇汽油方便普及与推广使用,无须改动加油站的机器设备,更无须改动车辆发动机即可直接添加交叉使用。在以汽油为燃料的汽车上使用,可直接替代国标93#、97#、98#汽油使用;可以按任意比例与国标90”、93、”98”车用汽油互溶,且不影响汽车发动机正常工作。使用甲醇汽油无论是电喷式和化油器式的任何一款汽油发动机,无须作任何改造即可正常使用。 特点(二):无腐蚀性 高清洁甲醇汽油经过单车行使20万公里,经上海内燃机研究所等权威检测证明,其腐蚀性与普通汽油类同,未发现对汽车发动机有腐蚀现象。 特点(三):互溶性优 高清洁甲醇汽油专利配方中的添加剂,变性剂可以使甲醇和汽油的互溶性增强,可与普通汽油任意混合或交叉使用。

特点(四):动力性强 高清洁甲醇汽油能有效地预防和消除汽车部件的积炭形成,有利疏通油路,延长车辆发动机寿命,抗爆性好,降低油耗噪音,具有高效动力节省燃油,可提高发动机的效率,增强动力。 特点(五):替代性好 高清洁甲醇汽油将工业原料一甲醇,经高科技改性后,大比例加入汽油中,替代车用能源,可节约替代大量石油资源,符合国家政策导向,有助于缓解因石油资源枯竭造成的紧张局面。 特点(六):环保性好 高清洁甲醇汽油由于含氧量高,燃烧充分,能有效地减少50%以上的有害气体排放,其中CO 、HC 和NOx排放降低90%以上,经国家权威机构的多项检测,各项指标均已达到欧IV标准,减少排放,满足环保需求,大大改善生态环境。 特点(七):便捷推广 高清洁甲醇汽油常温下存放,品质有效期可达到2年之久,有效的解决了贮存、运输和销售各环节所需的时间。 特点(八):品质稳定 高清洁甲醇汽油在35℃高温气候条件下使用,汽车油路不会发生气阻现象,同时在气候零下35℃的低温条件下,不分层,不乳化,发动机可正常起动,特别适应高寒地区规模化生产和使用,低温易启动、高温无气阻。

甲醇制汽油技术进展及相关问题探讨

CH3OH→Zeo-OHCH3OH2O-Zeo+-[:CH2+H3O]-O- -Zeo + a→CH2=CH2 c[CH3++H2O]-O--Zeo b (7)甲醇制汽油技术进展及相关问题探讨 王银斌臧甲忠于海斌 (中海油天津化工研究设计院,天津300131) 收稿日期:2011-03-30 作者简介:王银斌(1985—),男,2007年本科毕业于中国石油大学(华东)应用化学专业,助理工程师,现从事煤化工相关科研工作。 摘 要 综述了甲醇制汽油(MTG)的反应机理及固定床、流化床、列管式反应器等工艺流程;介绍了MTG工 艺的工业化应用情况;分析了MTG工艺的优点、经济性及制约因素。指出发展MTG可以优化我国的能源配置,降低对石油进口的依存度,还可以为国内甲醇提供一条切实可行的出路。 关键词 甲醇制汽油 反应机理 工艺技术 经济性 风险 文章编号:1005-9598(2011)-03-0016-04中图分类号:TQ223.12+1 文献标识码:A 引言 近年来,在石油价格高位运行背景下,煤制油 (CTL)研究不断升温,而甲醇制汽油(MTG)作为CTL后半段的核心技术之一,也再次受到青睐。MTG工艺是在Mobil公司开发的甲醇在ZSM-5分子筛上转化为芳烃的基础上发展而来的———以煤或天然气作原料生产合成气,再以合成气制甲醇,最后将粗甲醇转化为高辛烷值汽油。Mobil法MTG技术首次公开于1976年,历经30多年的改进和创新后,该工艺技术有了很大的进步[1],与石油炼制生产汽油路线的竞争力也越来越强,这对我国来说尤为重要。 1 MTG 工艺技术 1.1 反应机理 在甲醇制汽油反应过程中,首先甲醇通过分子间 脱水生成二甲醚和水,然后二甲醚在催化剂的作用下转化成轻烯烃(C2~C4),最后轻烯烃通过聚合、烷基化、异构化、氢转移等多步反应生成高级烯烃、正/异构石蜡烃、芳烃和环烷烃的混合物[2]。反应式如下: 2CH3OH→CH3OCH3+H2O (1)CH3OH或CH3OCH3→轻烯烃+H2O (2) 轻烯烃→高级烯烃+石蜡烃+环烷烃+芳烃(3) 这其中,速控步是二甲醚转化生成轻烯烃,即C-C键的形成过程,具体的反应机理至今没有形成统一的说法,根据生成的中间产物的不同,主要分为碳烯机理、甲基碳离子机理、链反应机理、氧正离子机理和自由基机理等[2-4],现以碳烯机理和甲基碳正离子机理为例进行说明。1.1.1 碳烯机理 Swabb等[5]认为,在沸石晶格的碱中心和酸中心的作用下,首先甲醇发生α-消去反应,生成中间产物碳烯[:CH2],它可以直接生成低碳烯烃,也可以和甲醇或二甲醚通过sp3轨道的C-H键插入生成乙烯,反应式如下,其中R为H原子或甲基: → [Zeo-O H-CH2-O H H-O-Zeo]→(4) 2[:CH2]→C2H4 (5)[:CH2]+CH3OR→CH3CH2OR→C2H4+HOR (6) C.D.Chang等[5]提出C-C键的生成与碳烯和正碳离子两种中间体有关。首先甲醇或二甲醚通过α-消去反应生成亚甲基,接着生成表面键合的碳烯,进一步通过沸石为媒介,[:CH2]与[CH3+]相互作用生成乙烯,反应模式如下: 第3期(总第154期) 2011年6月 煤化工 Coal Chemical Industry No.3(Total No.154) Jun.2011 CH3OH Zeo-O- (碱中心 )Zeo-OH(酸中心) } [:CH2]+H2O Zeo-O - Zeo-OH }

工业催化文献综述(精)

工业催化文献综述 固体酸催化剂的发展及应用 班级: 学生学号: 学生姓名: 完成时间: 1 一、引言 催化剂(catalyst :是一种能够改变化学反应速度,而它本身又不参与最终产物的物质。 :随着环境意识的加强以及环境保护要求的日益严格, ,液体催化剂已完全满足不了化工产品的发展要求,然而新型固体酸催化剂却弥补了当前的一些不足,固体酸催化剂已成为催化化学的一个研究热点。与液体酸催化剂相比,固体酸催化反应具有明显的优势,固体酸催化在工艺上容易实现连续生产,不存在产物与催化剂的分离及对设备的腐蚀等问题。并且固体酸催化剂的活性高,可在高温下反应,能大大提高生产效率。还可扩大酸催化剂的应用领域,易于与其他单元过程耦合形成集成过程,节约能源和资源。关键词:固体酸催化剂 摘要:通过固体孙催化剂在有机合成反应中的应用,说明固体酸催化剂的优越性,介绍了固体酸催化剂技术应用的进展,指出了固体酸催化剂应用存在的主要问题 1固体酸催化剂的定义及分类 1.1定义

一般而言,固体酸可理解为凡能碱性指示剂改变颜色的固体,或是凡能化学吸附碱性物质的固体。按照布朗斯泰德和路易斯的定义,则固体酸是具有给出质子或接受电子对能力的固体。 固体酸是催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 1.2固体酸的分类 (1固载化液体酸 HF/Al2O3,BF3/AI2O3,H3PO4/硅藻土 (2氧化物简单 Al2O3,SiO2,B2O3,Nb2O5 复合 Al2O3-SiO2,Al2O3/B2O3 (3硫化物 CdS ZnS 2 (4金属磷酸盐 AlPO4,BPO 硫酸盐 Fe2(SO43,Al2(SO43,CuSO4 (5 沸石分子筛 ZSM-5沸石 ,X 沸石 ,Y 沸石 ,B 沸石丝光沸石 , 非沸石分子 筛 :AlPOSAPO系列 (6杂多酸 H3PW12O40,H4SiW12O40,H3PMo12O40 (7阳离子交换树脂苯乙烯 -二乙烯基苯共聚物 Nafion-H (8天然粘土矿高岭土 , 膨润土 , 蒙脱土 (9固体超强酸 SO42-/ZrO2,WO3/ZrO2,MoO3/ZrO2,B2O3

MTG(甲醇制汽油)工艺过程

甲醇制汽油工艺过程 固定床绝热反应器一步法甲醇转化制汽油技术及JX6021催化剂 固定床绝热反应器一步法甲醇转化制汽油主要应用于煤化工领 域和石油化工领域。属于以煤炭为原料生产清洁汽油的煤炭转化技术。 要实现甲醇转化制汽油过程,需要解决两个方面的问题。一方面需要解决催化剂问题,通过对催化剂表面酸性、孔道结构等的调整,使生成的烃集中在C5~C10范围内;另一方面,需要采取适当的工艺 措施,将反应释放的大量热量移出反应器,使反应器温度得以控制。 一步法甲醇转化制汽油过程的化学原理 该反应的主要原理是,甲醇在酸性催化剂作用下脱水,生成完全不含氧元素的烃类物质:

在适当的催化剂和适当的工艺条件下,由于分子筛催化剂的孔道制约和择型作用,上述反应生成的烃类物质的碳原子数主要集中在C5~C10之间,符合汽油馏分的基本要求,可以直接作为产品汽油使用,也可以作为石油路线炼制汽油的优良组分油使用,以提高石油路线汽油的品质。上述反应同时生成部分C3~C4烃,经分离后,这部分产物可以作为液化石油气(LPG)使用;同时生成少量甲烷、乙烷,可以作为生产过程的燃料使用。上述反应是一个放热过程,每转化1kg 甲醇,放出热量为1.74MJ。 甲醇转化制汽油的ZSM-5分子筛催化剂由山西煤化所独立开发,工艺过程由山西煤化所和化学工业第二设计院合作开发。技术的主要特色是甲醇在分子筛催化剂的作用下,一步转化为以汽油为主的烃类产物。固定床绝热反应器一步法甲醇转化制汽油技术与国外MTG技术的区别是,一步法技术省略了甲醇转化制二甲醚的步骤,甲醇在ZSM-5分子筛催化剂的作用下一步转化为汽油和少量LPG产品,其显著优点是工艺流程短,汽油选择性高,催化剂稳定性和单程寿命等指标均优于已有技术。 甲醇转化部分的工艺流程示意图见图1。

甲醇汽油

第一部分:使用常识 一、什么是车用甲醇汽柴油? 答:车用甲醇汽柴油是指在汽油或柴油组分油中按体积混合比加入5%~55%的变性燃料甲醇后作为汽柴油车燃料用的油品。 二、什么是燃料甲醇? 答:燃料甲醇是未加变性剂,可作为炉灶用燃料。 三、为什么要在汽柴油中加入甲醇? 答:甲醇的辛烷值高,加入后可提高汽油辛烷值。同时作为含氧化合物加入汽油后可改善燃烧性能,减少一氧化碳和碳氧化合物的排放。甲醇的十六烷值很低,在其它增标剂降压剂的帮助下提高甲醇柴油十六烷值。改善柴油机的工况。 四、山西推广甲醇汽柴油的原因和条件是什么? 答:原因有三。一是缓解石油资源紧张状况;二是消化产能充裕的煤基甲醇;三是甲醇汽柴油的应用有利于改善环境。条件:利用山西煤、焦资源优势及化肥,煤层气联产甲醇其价格和汽柴油相比较低。山西推广纯甲醇及M15汽油已有三年的大规模试验经验,同时制订了M15甲醇汽油的山西省地方标准。甲醇柴油及M30、M55甲醇汽油和柴油的企业标准正在制订中。

五、燃料甲醇(工业甲醇)为什么变性后才能加入汽柴油使用? 答:因为甲醇和汽柴油不互溶,尤其在低温潮湿环境中发生分层(相分离)现象而造成发动机不能正常工作,因此调配中心将甲醇和各种变性剂混合后的变性醇同汽柴油按一定的体积比混合并经检验合格后方可投入市场。 六、什么是变性剂,其作用如何? 答:变性剂大都是高碳醇、醚、酮、酯类含氧化合物和纳米材料添加剂,除了抗相分离作用外,还有改善油品综合品质的作用,但不得添加对环境有害的禁用物质。 七、什么是变性醇(既改性甲醇)? 答:变性醇是指在工业甲醇中添加变性剂后用于市场汽柴油调配的原料。变性醇要适应使用地季节和地域气候变化条件。 八、使用车用汽柴油是否会损坏汽车油路系统的橡胶件? 答:经车用甲醇汽柴油对汽车原装橡胶部件溶胀试验证明,有些橡胶件耐醇性好,有些耐醇性差,随使用时间的延长产生溶胀,需要更换。但若使用了抗溶胀剂的油品会大大减少橡胶件的溶胀。

甲醇在汽油中的危害与作用

甲醇在汽油中的危害与作用 前言: 近年来,虽然甲醇行业产能过剩形势严峻,但国内甲醇装置投资热度依然不减。《中国甲醇行业市场调研与投资预测分析报告前瞻》数据显示,2010年行业新增产能640万吨,2011年新增产能814万吨,2012年我国将有550万吨以上的新建甲醇装置投产。前瞻产业研究院甲醇行业研究小组认为,要消化过剩产能,应加快拓展甲醇汽油、甲醇制烯烃等新兴领域。甲醇汽油是车用燃料替代,是新能源的重要组成部分。原油是全球最主要的一次能源,当前能源短缺的实质是原油短缺。车用燃料是原油最主要的应用领域,占全球原油总消耗量的70%以上。甲醇汽油是一种"以煤代油"路径,可以作为汽油的替代物从而实现对原油的部分替代。 关键词:甲醇汽油经济性环保腐蚀 正文: 一.甲醇在汽油中的主要功能 甲醇汽油是指国标汽油(93#、97#等)、甲醇、添加剂按一定的体积(质量)比经过严格的流程调配而成的一种新型环保燃料甲醇与汽油的混合物。也包括甲醇、乙醇、正丙醇、正丁醇和异丙醇的混合醇等与汽油的混合物。甲醇掺入量一般为5%~30%。以掺入15%者为最多,称M15甲醇汽油。抗爆性能好,研究法辛烷值(RON)随甲醇掺入量的增加而增高,马达法辛烷值(MON)则不受影响。燃烧排出物的毒性比普通含铅汽油小,排气中一氧化碳含量也较少。燃烧清洁性能良好。但一般的甲醇汽油对汽油发动机的腐蚀性和对橡胶材料的溶胀率都较大,且易于分层,低温运转性能和冷起动性能不及纯汽油,可用作车用汽油代用品。甲醇汽油添加剂是一种新型环保燃料助剂产品,是在甲醇(符合GB338-2004优等品甲醇指标)中加入一种复合添加剂后对甲醇进行变性处理,再按照规定比例和普通汽油混合后作为车用燃料,使其改性,使其燃烧速度、气化热值、互溶性、爆发力加速性能等方面接近传统汽油的甲醇燃料,低比例成品油无须对发动机和装置进行改造,可直接使用。 甲醇汽油的性能如下: 1、在动力性方面,通过改变发动机的供油系统,增加喷油量以弥补甲醇热值低的不足,再通过增加压缩比(甲醇辛烷值RON106~115,远高于汽油并且汽化潜热大)就可以在很大程度上增加发动机的功率和扭矩,动力性较之同排量的汽油机会有很大的提高。 2、在经济性方面,制造甲醇的成本一般相对燃油来讲很低,而利用高硫煤“多联供”生产甲醇,按甲醇与汽油..5∶1的替代比计算,使用甲醇燃料在经济性方面仍有非常大的优势。另外,因为采用了高压缩比发动机,油耗进一步降低,

甲醇发展文献综述

1.1 甲醇的基本性质 甲醇 又称木精、木醇、木酒精 纯甲醇为无色透明略带乙醇气味的易挥发液体 沸点65℃ 熔点-97.8℃ 闪点16℃ 折射率1.3278 和水相对密度0.7915(20/4℃) 甲醇能和水以任意比相溶 但不形成共沸物 能和多数常用的有机溶剂(乙醇、乙醚、丙酮、苯等)混溶 并形成恒沸点混合物。甲醇能和一些盐如CaCl2、MgCl2等形成结晶化合物 称为结晶醇如CaCl2·CH3OH、MgCl2·6CH3OH 和盐的结晶水合物类似 甲醇蒸气能和空气形成爆炸性混合物 爆炸极限 6.0 36.5 体积 。甲醇燃烧时无烟 火焰呈蓝色[7]。甲醇具有脂肪族伯醇的一般性质,连有羟基的碳原子上的三个氢原子均可被一一氧化,或脱氢生成甲醛,再氧化成甲酸,甲酸氧化的最终产物是二氧化碳和水。试剂甲醇常密封保存在棕色瓶中置于较冷处。 1.2 甲醇工业发展状况 1.2.1甲醇生产工艺的发展 1923年德国BASF公司首先用合成气在高压下实现了甲醇的工业化生产 直到1965年 这种高压法工艺是合成甲醇的唯一方法。1966年英国ICI公司开发了低压法工艺 接着又开发了中压法工艺。1971年德国的Lurgi公司相继开发了适用于天然气 渣油为原料的低压法工艺。由于低压法比高压法在能耗、装置建设和单系列反应器生产能力方面具有明显的优越性 所以从70年代中期起 国外新建装置大多采用低压法工艺。世界上典型的甲醇合成工艺主要有ICI工艺、Lurgi工艺和三菱瓦斯化学公司(MCC)工艺。目前 国外的液相甲醇合成新工艺具有投资省、热效率高、生产成本低的显著优点 尤其是LPMEOHTM工艺 采用浆态反应器 特别适用于用现代气流床煤气化炉生产的低H2 (CO CO2)比的原料气 在价格上能够与天然气原料竞争。我国的甲醇生产始于1957年 50年代在吉林、兰州和太原等地建成了以煤或焦炭为原料来生产甲醇的装置。60年代建成了一批中小型装置 并在合成氨工业的基础上开发了联产法生产甲醇的工艺。70年代四川维尼纶厂引进了一套以乙炔尾气为原料的95 kt/a低压法装置 采用英国ICI技术。1995年12月 由化工部第八设计院和上海化工设计院联合设计的200 kt/a甲醇生产装置在上海太平洋化工公司顺利投产 标志着我国甲醇生产技术向大型化和国产化迈出了新的一步。2000年 杭州林达公司开发了拥有完全自主知识产权的JW低压均温甲醇合成塔技术 打破长期来被ICI、Lurgi等国外少数公司所垄断拥的局面 并在2004年获得国家技术发明二等奖。2005年 该技术成功应用于国内首家焦炉气制甲醇装置上。 1.2.2 甲醇原料的发展 自1923年开始工业化生产以来 甲醇合成的原料路线经历了很大变化。20世纪50年代以前多以煤和焦碳为原料 50年代以后 以天然气为原料的甲醇生产流程被广泛应用 进入60 年代以来 以重油为原料的甲醇装置有所发展。对于我国 从资源背景看 煤炭储量远大于石油、天然气储量 随着石油资源紧缺、油价上涨 因此在大力发展煤炭洁净利用技术的背景下 在很长一段时间内煤是我国甲醇生产最重要的原料。 1.3 甲醇应用状况 近年来 我国甲醇需求增长平稳 一部分来自于传统应用领域 如甲醛生产等 而新应用领域如醋酸及MTBE等则支撑着甲醇需求的增长。广义地说 甲醇应用可分为两大应用领域 即MTBE和化工应用 MTBE曾经是甲醇需求快速增长的主要带动者 但现在也有逐年减弱的趋势。甲醇的主要应用领域是生产甲醛 甲醛可用来生产胶粘剂 主要用于木材加工业 其次是用作模塑料、涂料、纺织物及纸张等的处理剂 其中用作木材加工的胶粘剂约占其消费总量的80 。甲醛需求的增长速度和国民生产总值的增长速度密切相关。甲醛还用来生产缩醛树脂和特种化学品的1,4-丁二醇 其增长速度很快 但不会显著改变甲醛的总体需求状况。醋酸消费约占全球甲醇需求的7 可生产醋酸乙烯、醋酸纤维和醋酸酯等 其需求与涂料、粘合剂和纺织等方面的需求密切相关。甲基丙烯酸甲酯约占全球甲醇需求的

甲醇制汽油原理工艺介绍

序言MTG(甲醇制汽油)工艺是指以甲醇作原料,在一定温度、压力和空速下,通过特定的催化剂进行脱水、低聚、异构等步骤转化为C11以下烃类油的过程。这是甲醇制烃类工艺中的一种,是未来甲醇化工的主线之一。图1为甲醇化工示意图。 图1 甲醇化工图 1 历史起伏 人们虽然能将甲醇直接掺和到汽油中形成甲醇汽油,但是把甲醇转化成汽油要比掺和到汽油中使用更具吸引力。 由于世界煤储藏量远比石油和天然气多得多,因此从煤出发制合成气、甲醇,最后制汽油的研究在国外曾经受到重视。其中尤以Mobil公司开发成功的采用ZSM-5型合成沸石催化剂的方法最引人注目。这种方法制得的汽油抗爆震性能好,不像常用的汽油存在硫、氯等组分,而有用的组分与常用汽油很相似。 Mobil法甲醇制汽油技术于1976年问世,其总流程是首先以煤或天然气作原料生产合成气,再用合成气制甲醇,最后将粗甲醇转化为高辛烷值汽油。 甲醇合成烃类的方法,从一出现就为人们所注意。这是一个相当好的方法,在常压~3 MPa、350~400 ℃的条件下,甲醇的转化率达100%,且催化剂的活性不易衰减。由这个方法制造烃类,有如下特点。 (1)基本上不生成碳数为11以上的烃类 Mobil方法不会出现碳数11以上的烃类,这是采用ZSM-5沸石分子筛的缘故。如果将沸石进行改性,适当改变反应条件,生成物的分布就会发生变化。将这一反应的产物油用作石化工业裂解的原料时,乙烯和丙烯的收率可提高。 (2)对原料的纯度要求不高 无需将粗甲醇中其他含氧化合物除去就可以用作MTG工艺的原料。 (3)副产物价值高 该工艺产生的少量副产物是液化石油气和高热值燃料气。 (4)产物性能优良

甲醇制汽油工艺技术及特点简介

MTG工艺技术及特点简介 1、ZSM-5催化剂 对MTG工艺的研究,核心技术是催化剂的研制。ZSM-5催化剂是MTG法取得成功的关键。这种合成沸石具有两种相互交叉的孔道,椭圆形+元环直孔道和圆形正弦状弯曲孔道。孔道的孔经大小恰好保证生产在汽油沸程内的烃类。 ZSM-5合成沸石具有下述特点: 1)选择性好。由于ZSM-5合成沸石具有特定结构和孔道尺寸,所以它能使汽油沸点范围内的烃分子通过,而临界尺寸大于均四甲基苯的分子很难通过。也就是说,反应产物是以10或11个碳原子的烃类为高限,基本上不生成C11以上的烃,因而该催化剂的选择性好。 2)活性高。在甲醇制汽油的反应中,ZSM-5沸石与其他沸石相比不仅C—C键的形成能力强,而且活性下降也较慢。用Y型分子筛不能生产芳烃。用丝光沸石时,在300 ℃时也只能生成少量芳构化产物,但用ZSM-5沸石在300℃时已发生明显的芳构化,在380 ℃芳构化程度很高。ZSM-5分子筛除了具有缩合、芳构化的功能外,还有许多用途,如石油馏分脱蜡,由乙烯和苯制取乙苯,甲苯歧化为苯和二甲苯等工艺中均使用。因此,它是人们熟知的经典催化剂。 2、反应原理 甲醇转化的反应较复杂,首先甲醇脱氢转化为低分子烯烃,再进一步与较大分子的烯烃反应生成烷烃、环烷烃和芳烃。用ZSM-5沸石把甲醇转化成汽油的工艺过程可以表示为:nCH3OH → (—CH2—)n 反应是放热反应,甲醇可以完全转化。 起始的脱水反应很快地形成了甲醇、二甲醚和水的混合物,含氧物进一步脱水得到C2~C5轻质烯烃。当甲醇脱水反应完成后,进一步反应则是C2~C5烯烃的缩合、环化,生成分子量更高、在汽油沸程内的烃类,以及C6以上的芳香烃、链烷烃等,最终形成C2~C11的烃类混合物。 反应速率的控制步骤是含氧物转化为烯烃这一步。它是一种自催化反应,如果没有烯烃,反应速率就缓慢;若增加烯烃浓度,反应就加快,因此采用轻烃再循环的办法,对提高反

相关文档
最新文档