高数二重积分习题解答

高数二重积分习题解答
高数二重积分习题解答

二重积分学习总结

高等数学论文 《二重积分学习总结》 姓名:徐琛豪 班级:安全工程02班 学号:1201050221 完成时间:2013年6月2日

二重积分 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 1 二重积分的概念与性质 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ??? 的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。

高等数学二重积分总结

第九章二重积分 【本章逻辑框架】 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 9.1 二重积分的概念与性质 【学习方法导引】 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。

在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ??? 的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。 (2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d D f x y σ??的值是负的,其绝对值为该曲顶柱体的体积 (3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d D f x y σ??表示在这些子区域上曲顶柱体体积的代数和 (即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积). 3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数 (,)f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小 值,再应用估值不等式得到取值范围。

高等数学习题详解-第8章二重积分

习题8-1 1. 设有一平面薄片,在xOy 平面上形成闭区域D ,它在点(x ,y )处的面密度为μ(x ,y ),且μ(x ,y )在D 连续,试用二重积分表示该薄片的质量. 解:(,)D m x y d μσ=??. 2. 试比较下列二重积分的大小: (1) 2()D x y d σ+??与3()D x y d σ+??,其中D 由x 轴、y 轴及直线x +y =1 围成; (2) ln()D x y d σ+??与2 ln()D x y d σ+??????,其中D 是以A (1,0),B (1,1), C (2,0)为顶点的三角形闭区域. 解:(1)在D 内,()()2301x y x y x y ≤+≤+≥+,故,23()()D D x y d x y d σσ+≥+????. (2) 在D 内,212ln()1,ln()ln ()x y x y x y x y ≤+≤≤+≤+≥+,故0从而, 2 ln()[ln()]D D x y d x y d σσ+≥+???? 习题8-2 1. 画出积分区域,并计算下列二重积分: (1) ()D x y d σ+??,其中D 为矩形闭区域:1,1x y ≤≤; (2) (32)D x y d σ+??,其中D 是由两坐标轴及直线x +y =2所围成的闭

区域; (3) 22()D x y x d σ+-??,其中D 是由直线y =2,y =x ,y =2x 所围成的闭区 域; (4) 2 D x y d σ??,其中D 是半圆形闭区域:x 2+y 2≤4,x ≥0; (5) ln D x y d σ??,其中D 为:0≤x ≤4,1≤y ≤e ; (6) 22D x d σy ??其中D 是由曲线11,,2 xy x y x ===所围成的闭区域. 解:(1) 111 111()()20.D x y d dx x y dy xdx σ---+=+==????? (2) 222 200 (32)(32)[3(2)(2)]x D x y d dx x y dy x x x dx σ-+=+=-+-????? 2232022 20[224]4.33 0x x dx x x x =-++=-++=? (3) 32 2 2 2 2 2 2 002193()()()248y y D y x y x d dy x y x dx y dy σ+-=+-=-????? 43219113 .9686 0y y -= (4) 因为被积函数是关于y 的奇函数,且D 关于x 轴对称, 所以20.D x yd σ=?? (5) 44 201041ln ln (ln ln )2(1)2110 e D e e e x yd dx x ydy x y y y dx x e σ-==-==-?????.

高数教案第十章重积分

高等数学教案

第十章重积分 §10-1 二重积分的概念与性质 一、二重积分的概念 (一)引例 1. 曲顶柱体的体积 设有一空间立体 ,它的底是xoy面上的有界区域D,它的侧面是以D的边界曲线为准

线,而母线平行于z轴的柱面,它的顶是曲面(.) z f x y =。 当(,) x y D ∈时,(,) f x y在D上连续且(,)0 f x y≥,以后称这种立体为曲顶柱体。 曲顶柱体的体积V可以这样来计算: (1) 用任意一组曲线网将区域D分成n个小区域1σ ?, 2 σ ?,, n σ ?,以这些小区域的边界曲线为准线,作母线平行于z轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n个小曲 顶柱体 1 ?Ω, 2 ?Ω,, n ?Ω。 (假设 i σ ?所对应的小曲顶柱体为 i ?Ω,这里 i σ ?既代表第i个小区域,又表示它的面积值, i ?Ω既代表第i个小曲顶柱体,又代表它的体积值。) 图10-1-1 从而 1 n i i V = =?Ω ∑ (将Ω化整为零) (2) 由于(,) f x y连续,对于同一个小区域来说,函数值的变化不大。因此,可以将小曲顶柱体近似地看作小平顶柱体,于是 ?Ω?? i i i i i i i f ≈?∈ ()() () ξησξησ (以不变之高代替变高, 求 i ?Ω的近似值) (3) 整个曲顶柱体的体积近似值为 V f i i i i n ≈ = ∑() ξησ ? 1 (4) 为得到V的精确值,只需让这n个小区域越来越小,即让每个小区域向某点收缩。为此,我

们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者。 所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零。 设n个小区域直径中的最大者为λ, 则 V f n i i i i = →= ∑ lim() , λ ξησ 01 ? 2.平面薄片的质量 设有一平面薄片占有xoy面上的区域D, 它在() ,x y处的面密度为() ,x y ρ,这里(),0 x y ρ≥,而且(),x y ρ在D上连续,现计算该平面薄片的质量M。 图10-1-2 将D分成n个小区域1σ ?, 2 σ ?,, n σ ?,用 i λ记 i σ ?的直径, i σ ?既代表第i个小区域又代表它的面积。 当{} 1 max i i n λλ ≤≤ =很小时, 由于(),x y ρ连续, 每小片区域的质量可近似地看作是均匀的, 那么第i小块区域的近似质量可取为 ρξησξησ (,)(,) i i i i i i ?? ?∈ 于是∑ = ? ≈ n i i i i M 1 ) , (σ η ξ ρ M i i i i n = →= ∑ lim(,) λ ρξησ 01 ? 两种实际意义完全不同的问题, 最终都归结同一形式的极限问题。因此,有必要撇开这类极限问题的实际背景, 给出一个更广泛、更抽象的数学概念,即二重积分。 (二)二重积分的定义

高数二重积分习题解答

第9章 重积分及其应用 1.用二重积分表示下列立体的体积: (1) 上半球体:2222{(,,)|;0}x y z x y z R z ++≤≥; (2) 由抛物面222z x y =--,柱面x 2+y 2=1及xOy 平面所围成的空间立体 解答:(1) 222d ,{(,)|}D V x y D x y x y R ==+≤; (2) 2222(2)d d ,{(,)|1}D V x y x y D x y x y =--=+≤?? 所属章节:第九章第一节 难度:一级 2.根据二重积分的几何意义,确定下列积分的值: (1) D σ,其中D 为222x y a +≤; (2) (D b σ??,其中D 为222,0x y a b a +≤>> 解答:(1) 32 π3D a σ=; (2) 232 (ππ3D b a b a σ=-?? 所属章节:第九章第一节 难度:一级 3.一带电薄板位于xOy 平面上,占有闭区域D ,薄板上电荷分布的面密度为(,)x y μμ=,且 (,)x y μ在D 上连续,试用二重积分表示该板上的全部电荷Q . 解答:(,)d D Q x y μσ=?? 所属章节:第九章第一节 难度:一级 4.将一平面薄板铅直浸没于水中,取x 轴铅直向下,y 轴位于水平面上,并设薄板占有xOy

平面上的闭区域D ,试用二重积分表示薄板的一侧所受到的水压力 解答:d D p g x ρσ=?? 所属章节:第九章第一节 难度:一级 5.利用二重积分性质,比较下列各组二重积分的大小 (1) 21()d D I x y σ=+??与32()d D I x y σ=+??,其中D 是由x 轴,y 轴及直线x +y =1所围成的区域; (2) 1ln(1)d D I x y σ=++??与222ln(1)d D I x y σ=++??,其中D 是矩形区域:0≤x ≤1,0≤y ≤1; (3) 21sin ()d D I x y σ=+??与22()d D I x y σ=+??,其中D 是任一平面有界闭区域; (4) 1e d xy D I σ=??与22e d xy D I σ=??,其中D 是矩形区域:–1≤x ≤0,0≤y ≤1; 解答:(1) 在区域D 内部,1x y +<,所以I 1>I 2; (2) 在区域D 内部,22,x x y y <<,故22ln(1)ln(1)x y x y ++<++,所以 I 1>I 2;? (3) 由于22sin ()()x y x y +<+,所以I 1,所以I 1>I 2 所属章节:第九章第一节 难度:一级 6.利用二重积分性质,估计下列二重积分的值 (1) d ,{(,)|04,08}ln(4) D I D x y x y x y σ ==≤≤≤≤++?? ; (2) 2222π3πsin()d ,(,)44D I x y D x y x y σ? ?=+=≤+≤??????; (3) 22 1 d ,{(,)|||||1}100cos cos D I D x y x y x y σ==+≤++?? ; (4) 2 2 221e d ,(,)4x y D I D x y x y σ+? ?==+≤??? ???

高等数学(二重积分与微分练习)

一、 微分学计算题 1、设二元函数)ln(y x x z +=,则y x z ???2=_________. 2、函数y x z =在点(2, 1)处的全微分d z =____________________. 3、三元函数zx yz xy u ++=的全微分为 。 4、设),(t s f 可微,),(2322y x y x f u -=,求x u ??、y u ??。 5、设),(y x f z =由方程y z z x ln =所确定,求偏导数.,y z x z ???? 6、设)(22xy x y z ?+=,?为可微的函数,求证02322=+??-??y y z xy x z x 7、求函数x y x y x z 9332233-++-=的极值。 8、已知 2242(3),x y Z Z Z x y x y +??=+??设求 和 二、积分学计算题 1、交换二次积分??x x dy y x f dx 2),(10的顺序,??x x dy y x f dx 2 ),(10= 2、二次积分的顺序,??-=x dy y x f dx 1010),( 3、计算二重积分dxdy y x D ??22,其中D 是曲线x y =、1=xy 及2=x 围成。 4、计算2d d D xy x y ??,其中D 是由直线y =x , x =1及y =0围成的区域. 5、求由曲线轴轴和及 3,4,2y x x y x y ===围成的平面图形的面积. 6、求抛物线y x 22=与直线4-=y x 所围成的平面图形的面积。 7、已知生产某产品x 单位的边际收入为x x R 2100)(-='(元/单位),求生产40单位时的总收入及平均收入,并求再多生产10单位时所增加的总收入。 三、1、求方程2/5)1(12+=+-x x y dx dy 的通解及满足条件00==x y 的特解.

高等数学重积分总结

第九章 二重积分 【本章逻辑框架】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 9.1 二重积分的概念与性质 【学习方法导引】 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ???的分法要任意,二是在每个小区域i σ?上的点 (,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各 小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。

(1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以(,)f x y 为曲 顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ??表示平面区域D 的面积。 (2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分 (,)d D f x y σ??的值是负的,其绝对值为该曲顶柱体的体积 (3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d D f x y σ??表示在这些子区域上曲顶柱体体积的代数和(即在Oxy 平面之上 的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积). 3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数(,)f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小值,再应用估值不等式得到取值范围。 【主要概念梳理】 1.二重积分的定义 设二元函数f(x,y)在闭区域D 上有定义且有界. 分割 用任意两组曲线分割D 成n 个小区域12,,,n σσσ???,同时用i σ?表示它们的面积,1,2,,.i n =其中任意两小块i σ?和()j i j σ?≠除边界外无公共点。 i σ?既表示第i 小块,又表示第i 小块的面积. 近似、求和 对任意点(,)i i i ξησ∈? ,作和式1 (,).n i i i i f ξησ=?∑ 取极限 若i λ为i σ?的直径,记12max{,,,}n λλλλ=,若极限0 1 lim (,)n i i i i f λξησ→=?∑ 存在,且它不依赖于区域D 的分法,也不依赖于点(,)i i ξη的取法,称此极限为f (x,y )在D 上的二重积分. 记为

高等数学二重积分总结.讲解学习

高等数学二重积分总 结.

第九章二重积分 【本章逻辑框架】 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 9.1 二重积分的概念与性质 【学习方法导引】 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的

质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12, , , n σσσ??? 的分法要任意,二是在每个 小区域i σ?上的点(, i i i ξησ∈?的取法也要任意。有了这两个“任意”, 如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(, f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1 若在D 上(, f x y ≥0,则(, d D f x y σ??表示以区域D 为底,以 (, f x y 为曲顶的曲顶柱体的体积。特别地,当(, f x y =1时,(, d D f x y σ ??表示平面区域D 的面积。 (2 若在D 上(, f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(, d D f x y σ??的值是负的,其绝对值为该曲顶柱体的体积 (3若(, f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(, d D f x y σ??表示在这些子区域上曲顶柱体体积的代数和 (即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积.

相关文档
最新文档