四年级奥数教程及训练-05枚举法解题(3页)

四年级奥数教程及训练-05枚举法解题(3页)
四年级奥数教程及训练-05枚举法解题(3页)

【知识要点和基本方法】

一般地,根据问题要求,一一枚举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏的有限种情况,一一枚举各种情况,并加以解决,最终达到解决整个问题的目的,这种分析问题、解决问题的方法,称之为枚举法,我们也可以通俗地称枚举法为举例子。枚举法是一种常见的数学方法,当然枚举法也存在一些问题,那就是容易遗漏掉一些情况,所以应用枚举法的时候选择什么样的标准尤其重要。

【例题精选】

例1.用数字1,2,3可以组成多少个不同的数字?分别是哪几个数?

分析:根据百位上数字的不同,我们可以把它们分为三类:

第1类:百位上的数字为1,有123,132;

第2类:百位上的数字为2,有213,231;

第3类:百位上的数字为3,有312,321。

所以可以组成123,132,213,231,312,321,共6个三位数。

课堂练习题:

用0、6、7、8、9这五个数字组成各个数位上数字不相同的两位数共有多少个?

例2.小明有面值为5角、8角的邮票各两枚。他用这些邮票能付多少种不同的邮资(寄信时,所需邮票的钱数)分析:我们可根据小明寄信时所用邮票枚数的多少,把它们分成四类——一枚、二枚、三枚、四枚。

一枚:5角

二枚:10角,13角

三枚:18角,21角

四枚:26角

课堂练习题:

10元钱买6角邮票和8角邮票共14张,问两种邮票各多少张?

例3.用一台天平和重1克、3克、9克的砝码各一个(不再用其他物体当砝码),当砝码只能放在一个盘内时,可称出不同的重量有多少种?

分析:共有三个重量各不相同的砝码,可以取出其中的一个、两个或三个来称不同的重量,一一列举这三种情况。

1个:1克,3克,9克

2个:4克,10克,12克

3个:13克

同学们可以思考一下:如果砝码可以放天平的两边,又能称出多少不同的重量?

例4.课外小组组织30人做游戏,按1-30号排队报数。第一次报数后,单号全部站出来;以后每次余下的人中第一个人开始站出来,隔一人站出来一人。到第几次这些人全部站出来了?最后站出来的人应是第几号?

分析:根据题目的特点,先用排列法把题中的条件、问题排列出来,再用枚举法完成题目的要求。

例5.用长48厘米的铁丝围成各种长方形(长和宽都是整厘米数,且长和宽部不相等),围成的最大一个长方形面积是多少平方厘米?

分析:各种长方形的长和宽之和都是48÷2=24(厘米)。两数的和一定,当两数越接近,它们的乘积越大,当两数相等的时候,乘积最大。

小学四年级奥数-思维训练题-智力竞赛题-练习题-竞赛试卷-测试题

携带要求不开箱。营业员有多少种发货方法?

分析:买9千克饼干要求不开箱,从题目告诉的条件来看,并不难做到,但问题是求“有多少种发货方法?”这意味着要求无遗漏、无重复的把各种发货的可能性都考虑到,显然用枚举法是一种好方法。

用列表的形式,为了避免重复、遗漏,可先取5千克重的箱,再取2千克重的箱,最后取1千克重的箱。

例7将三个相同的小球放入A、B、C三个盒子中,一共有多少种方法?

分析:三个球相同,所以就考虑盒子,分别有下面这样的方法:0,0,3;0,1,2;0,2,1;0,3,0;3,0,0;1,2,0;1,1,1;2,1,0;2,0,1;1,0,2;一共有10种不同的方法。

【听课记录】

类别

基础题

较难题

难题

【课后练习题】

1.从甲地到乙地有2条路可走,由乙地到丙地有3条路可走,那么由甲地经乙地到丙地共有几条路可走?

2.有4个小足球队参加“希望杯”足球比赛,每两个队都必须比赛一场,共比赛多少场?如果进行淘汰赛,最后决出冠军共需多少场比赛?

3.甲、乙、丙、丁站成一排照相,但甲必须站在两头,共有多少种不同的排法?

4.从3、6、7、8四张数字卡片中,任取3张,排成三位数,能排成多少个不同的三位数?最大的三位数是多少?最小的三位数是多少?

5.从两张5元币、五张2元币、十张1元币中,拿出10元钱买钢笔,一共有多少种不同的拿法?

6.用1、0、3、5这四个数可以组成多少个四位数?

7.有7张卡片上写着数字2、3、4、5、6、7、8,从中抽出两张,组成的所有的两位数是奇数的个数是多少?

8.两人见面要握一次手,照这样规定,6人见面共握多少次手?

9.有红、黄、蓝色的小旗各1面,从中选出1面、2面或3面升上旗杆,作出各种不同的信号,一共可以作几种不同的信号?

10.已知三位数的各位数字之和等于8,那么这样的三位数共有多少个?

11.有四张8角邮票与三张1元邮票,用这些邮票中的一张或若干张能得出多少种不同的邮资?

12.已知三个自然数的积等于12,这三个自然数分别是多少?

13.现有1克、2克、3克重的天平砝码,要用10个砝码称出重20克的物体。

(1)在取出的砝码中,1克重的有3个,那么3克重的砝码应有多少个?

(2)如果任一种砝码至少取一个,那么除情况(1)外,取出的砝码还有哪几种情况?

14.某食堂的菜单如下:

汤类:A.鸡蛋汤;B.三鲜汤。菜类:C.炒肉丝;D.红烧猪肉;E.炒青菜。饮料类:(1)高橙;(2)健力宝;(3)葡萄酒。

每顿饭若只能各类选一种,试问:

(1)可以有多少种不同的选购方法?(2)请写出这些选购菜单。

15.5个茶杯的价钱分别是8角、6角、5角、4角和3角,3个茶盘的价格分别是9角、7角和2角,如果一个茶杯配一个茶盘,一共可以配成多少种不同价格的茶具?例题编号自我评价

小学四年级奥数-思维训练题-智力竞赛题-练习题-竞赛试卷-测试题

小学四年级奥数-思维训练题-智力竞赛题-练习题-竞赛试卷-测试题

四年级奥数巧数长方形的个数

第4讲巧数长(正)方形的个数 数图形时要有次序、有条理,才能不遗漏、不重复,一般步骤应是:仔细观察,发现规律,应用规律。 长方形是用“点”或者“线”来数的,而正方形是用“块”来数的。 数长方形的公式:长边上的线段和×宽边上的线段和 数正方形的公式:1、一个被划分成m×n的小正方形的长方形中共可以数出的正方形的个数是: m×n+(m-1)×(n-1)+(m-2)×(n-2)+…………………………+1×【n-(m-1)】(其中m

分析与解答: 我们先来数一数:只含一个正方形的有9个(即3×3=9);含有4个正方形的有4个(即2×2=4);含有9个正方形的有1个。 通过刚才的数,我们发现图中正方形的个数为1×1+2×2+3×3=1+4+9=14个,以后我们碰到类似的题目可以用这种方法数出正方形的个数。 4、下图中共有多少个正方形 分析与解答: 这道题显然与上题不一样,虽然都是由基本小正方形组成,但长和宽里的个数不一样,即小正方形拼接成了一个长方形,那么方法也要有所改变。先看长边上小正方形的个数,有5个,再看宽边上小正方形的个数,有3个,我们还用数的方法试试,只含有一个小正方形的有3×5=15个,含4个小正方形的有(3-1)×(5-1)=8个,含9个小正方形的有(3-2)×(5-2)=3个,通过刚才的数,我们发现图中正方形的个数为: 3×5+(3-1)×(5-1)+(3-2)×(5-2)=26个 答:图中共有26个正方形。 5 分析与解答: 这道题和前4个题不同,不是横竖规范的分割,这道题意在提醒同学遇到问题不能思维定式,不能按上面所讲的规律求解,我们可以用枚举法找出个数,灵活解决问题,先给图中每个基本图形编上序号。 (1)、6个基本图形中有4个长方形:①、③、④、⑥ (2)、由两个基本图形组成的长方形有3个:②+④、③+⑤、③+④ (3)、由3个基本图形组成的长方形有2个:①+③+⑤、②+④+⑥ (4)、由6个基本图形组成的长方形有1个:①+②+③+④+⑤+⑥ 所以上图中共有长方形:4+3+2+1=10个 答:上图中共有10个长方形。 基础练习:

最全小学数学奥数学习方法假设法解题方法

假设法 当应用题用一般方法很难解答时,可假设题中的情节发生了变化,假设题中两个或几个数量相等,假设题中某个数量增加了或减少了,然后在假设的基础上推理,调整由于假设而引起变化的数量的大小,题中隐蔽的数量关系就可能变得明显,从而找到解题方法。这种解题方法就叫做假设法。 用假设法解应用题,要通过丰富的想象,假设出既合乎题意又新奇巧妙,既简单又便于计算的条件。 有些用一般方法能解答的应用题,用假设法解答可能更简捷。 (一)假设情节变化 解:假设篮球没有借出,足球借出一个,那么,可以把现有篮球的个数看作是3份数,把现有足球的个数看作2份数,两种球的总份数是: 3+2=5(份) 原来篮球的个数是: 原来足球的个数是: 21-12=9(个) 答略。 例2 甲乙两个煤场共存煤92吨,从甲场运出28吨后,乙场的存煤比甲场的4倍少6吨。两场原来各存煤多少吨?(适于六年级程度) 解:假设从甲场运出的不是28吨,而是比28吨少6吨的22吨,那么,乙场的存煤数就正好是甲场的4倍,甲场的存煤是1份数,乙场的存煤是4

甲场原来存煤: 92-50=42(吨) 答略。 (二)假设两个(或几个)数量相等 例1有两块地,平均亩产粮食185千克。其中第一块地5亩,平均亩产粮食203千克。如果第二块地平均亩产粮食170千克,第二块地有多少亩?(适于五年级程度) 解:假设两块地平均亩产粮食都是170千克,则第一块地的平均亩产量比两块地的平均亩产多: 203-170=33(千克) 5亩地要多产: 33×5=165(千克) 两块地实际的平均亩产量比假设的平均亩产量多: 185-170=15(千克) 因为165千克中含有多少个15千克,两块地就一共有多少亩,所以两块地的亩数一共是: 165÷15=11(亩) 第二块地的亩数是: 11-5=6(亩) 答略。

六年级下册数学讲义-培优专题讲练:第4讲:枚举法(教师版)

第四讲枚举法 1.计数问题分为两个大类,一类是“计次序”的问题,一类是“不计次序”的问题。 2.枚举需要按照一定的顺序和一定的规律来进行分类,这样可以做到不重复和不遗漏。 3.枚举法的根本思想在于分类,通过分类可以将原本复杂的问题拆分成若干个比较简单的问题,然后再逐一进行分析。分类的思想可以化繁为简,化复杂为简单。 4.可以利用“树形图”来方便的记录枚举的过程,有几类问题就分出几个分枝,逐层按照顺序不断分叉再一一筛选,留下符合条件的,去掉不符合条件的。注意在枚举“不计次序”的问题时,只需考虑从小到大(或从大到小)排列的分枝,而不用理会其他情况。 5.计次序:不但要挑选出来,而且还需要排列顺序,不同的排列顺序认为是不同的情况或方法。这类问题通常是“排列”的题目。 6.不计次序:只要挑选出来即可,不需要排列顺序,不同的排列顺序认为是相同的情况或方法。这类问题通常是“选取”的题目。 1.理解“枚举法”的含义。 2.能在题目中熟练运用枚举法解题。

例1:小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。试判断他们两人谁获胜的可能性大。 分析与解:将两枚骰子的点数和分别为7与8的各种情况都列举出来,就可得到问题的结论。用a+b表示第一枚骰子的点数为a,第二枚骰子的点数是b的情况。 出现7的情况共有6种,它们是: 1+6,2+5,3+4,4+3,5+2,6+1。 出现8的情况共有5种,它们是: 2+6,3+5,4+4,5+3,6+2。 所以,小明获胜的可能性大。 注意,本题中若认为出现7的情况有1+6,2+5,3+4三种,出现8的情况有2+6,3+5,4+4也是三种,从而得“两人获胜的可能性一样大”,那就错了。 例2:数一数,右图中有多少个三角形。 分析与解:图中的三角形形状、大小都不相同,位置也很凌乱,不好数清楚。为了避免数数过程中的遗漏或重复,我们将图形的各部分编上号(见右图),然后按照图形的组成规律,把三角形分成单个的、由两部分组成的、由3部分组成的……再一类一类地列举出来。

四年级奥数第一讲 数的整除问题

第一讲数的整除问题 一、基本概念和知识: 1、整除: 定义:一般地,如果a,b,c为整数,且a÷b=c,我们就说,a能被b整除(或者说b 能整除a)。用符号“b| a”表示。 2、因数和倍数: 如果a能被b整除,即a÷b=c 由a÷b=c得:a=b×c,我们就说b(c)是a的因数(或约数),a是b(c)的倍数.提醒:一个数的因数个数是有限的,最小因数是1,最大因数是它本身。 练习: 写出下面每个数的所有的因数: 1的因数:__________________; 7的因数:__________________; 2的因数:__________________; 8的因数:__________________; 3的因数:__________________; 9的因数:__________________; 4的因数:__________________; 10的因数:__________________; 5的因数:__________________; 11的因数:__________________; 6的因数:__________________; 12的因数:__________________; 公因数(公约数):几个自然数公有的因数,叫做这几个自然数的公因数(公约数)。如:3和4的公因数是:___________,6和8的公因数是:___________, 3、质数与合数: 在上面的题目中,我们发现,1只有1个因数,有些数只有2个因数,还有些数有很多因数。根据因数的多少,我们可以把大于1的自然数分为两类:质数与合数。 (1)质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(素数)。(2)合数:一个数,除了1和它本身还有别的因数,这样的数叫做合数。 (3)0和1既不是质数,也不是合数。、 请写出20以内的所有质数:_____________________________________________________ 注意:最小的质数是____,质数里面除了______是偶数外,其它都是______数。 4、互质数:公因数只有1的两个自然数,叫做互质数。 这里所说的“两个数”是指除0外的所有自然数。“公因数只有1”,不能误说成“没有公因数。” 例如,2与7、13与19、3与10、5与 26等等

最新五年级奥数假设法解题教案

学员姓名:滕雯年级:五年级下第 12 课时学校:新世界教育辅导科目:奥数教师:刘鹏飞 课题假设法解题 授课时间:6月1日上午10:00—12:00备课时间:5月30日 教学目标1、初步学会运用“假设”的策略分析数量关系,并能根据问题的特点确定合理的解题步骤。 2、在解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。 3、养成独立思考、主动与他人合作交流、自觉检验等习惯,积累解决问题的经验,增强解决问题的策略意识,获取解决问题的成功体验,提高学好数学的信心 重点、难点理解并运用假设的策略解决问题,了解当假设与实际结果发生矛盾时该如何进行调整。 考点及考试要求以应用题形式出现,难度较大。 教学内容 假设法是一种思考问题的方法,也是解答应用题的好方法。有些应用题看似无法解答,但如果采用假设的方法,可以比较轻松地得到正确答案。用假设法解答应用题,有一定的解答步骤: (1)先假设某一个条件成立,根据题中告诉的条件,经过推理计算,可能出现与题中已知条件相矛盾的结果。(2)找出错误产生的原因,想办法消除错误,得到应用题的解。 难题点拨一:有5元和10元的人民币共14张,共100元。问5元币和10元币各多少张? 点拨:假设这14张全是5元的,则总钱数只有5×14=70元,比实际少了100-70=30元。为什么会少了30元呢?因为这14张人币民币中有的是10元的。拿一张5元的换一张10元的,就会多出5元,30元里包含有6个5元,所以,要换6次,即有6张是10元的,有14-6=8张是5元的。 练习一 1、笼中共有鸡、兔100只,鸡和兔的脚共248只。求笼中鸡、兔各有多少只? 2、一堆2分和5分的硬币共39枚,共值1.5元。问2分和5分的各有多少枚? 3、营业员把一张5元人币和一张5角的人民币换成了28张票面为一元和一角的人民币,求换来这两种人民

四年级奥数教程及训练-05枚举法解题(3页)

【知识要点和基本方法】 大凡地,根据问题要求,一一枚举问题的解答,或者为了解决问题的便当,把问题分为不重复、不遗漏的无限种情况,一一枚举各种情况,并加以解决,最终达到解决整个问题的目的,这种分析问题、解决问题的方法,称之为枚举法,我们也可以通俗地称枚举法为举例子。枚举法是一种多见的数学方法,当然枚举法也存在一些问题,那就是简易遗漏掉一些情况,所以应用枚举法的时候选择什么样的标准尤其严重。 【例题精选】 例1.用数字1,2,3可以组成多少个例外的数字?分别是哪几个数? 分析:根据百位上数字的例外,我们可以把它们分为三类: 第1类:百位上的数字为1,有123,132; 第2类:百位上的数字为2,有213,231; 第3类:百位上的数字为3,有312,321。 所以可以组成123,132,213,231,312,321,共6个三位数。 课堂练习题: 用0、6、7、8、9这五个数字组成各个数位上数字不相同的两位数共有多少个? 例2.小明有面值为5角、8角的邮票各两枚。他用这些邮票能付多少种例外的邮资(寄信时,所需邮票的钱数)分析:我们可根据小明寄信时所用邮票枚数的多少,把它们分成四类——一枚、二枚、三枚、四枚。 一枚:5角 二枚:10角,13角 三枚:18角,21角

四枚:26角 课堂练习题: 10元钱买6角邮票和8角邮票共14张,问两种邮票各多少张? 例3.用一台天平和重1克、3克、9克的砝码各一个(不再用其他物体当砝码),当砝码只能放在一个盘内时,可称出例外的重量有多少种? 分析:共有三个重量各不相同的砝码,可以取出其中的一个、两个或三个来称例外的重量,一一列举这三种情况。 1个:1克,3克,9克 2个:4克,10克,12克 3个:13克 同学们可以思考一下:如果砝码可以放天平的两边,又能称出多少例外的重量? 例4.课外小组组织30人做游戏,按1-30号排队报数。第一次报数后,单号全部站出来;以后每次余下的人中第一个人开始站出来,隔一人站出来一人。到第几次这些人全部站出来了?最后站出来的人应是第几号? 分析:根据题目的特点,先用排列法把题中的条件、问题排列出来,再用枚举法完成题目的要求。 例5.用长48厘米的铁丝围成各种长方形(长和宽都是整厘米数,且长和宽部不相等),围成的最大一个长方形面积是多少平方厘米? 分析:各种长方形的长和宽之和都是48÷2=24(厘米)。两数的和一定,当两数越接近,它们的乘积越大,当两数相等的时候,乘积最大。 小学四年级奥数-思维训练题-智力竞赛题-练习题-竞赛试卷-测试题 携带要求不开箱。营业员有多少种发货方法?

五年级奥数举一反三第21讲 假设法解题含答案

第21讲假设法解题 一、专题简析 假设法是解应用题时常用的一种思维方法。在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。 二、精讲精练 例1:有5元和10元的人民币共14张,共100元。问5元币和10元币各多少张? 练习一 1、笼中共有鸡、兔100只,鸡和兔的脚共248只。求笼中鸡、兔各有多少只? 2、一堆2分和5分的硬币共39枚,共值1.5元。问2分和5分的各有多少枚?例2:有一元、二元、五元的人民币50张,总面值116元。已知一元的比二元的多2张,问三种面值的人民币各有几张? 练习二 1、有3元、5元和7元的电影票400张,一共价值1920元。其中7元的和5元的张数相等,三种价格的电影票各有多少张? 2、有一元、五元和十元的人民币共14张,总计66元,其中一元的比十元的多2张。问三种人民币各有多少张? 例3:五(1)班有51个同学,他们要搬51张课桌椅。规定男生每人搬2张,女生两人搬1张。这个班有男、女生各多少人?练习三 1、甲、乙二人共存550元钱,当甲取出自己存款的一半,乙取出自己存款中的70元时,两人余下的钱正好相等。求甲、乙原来各存多少元钱。 2、学校春游共用了10辆客车,已知大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共多坐520人。大、小客车各几辆?

例4:用大、小两种汽车运货。每辆大汽车装18箱,每辆小汽车装12箱。现有18车货,价值3024元。若每箱便宜2元,则这批货价值2520元。大、小汽车各有多少辆? 练习四 1、一辆卡车运矿石,晴天每天运20次,雨天每天可运12次,它一共运了112次,平均每天运14次。这几天中有几天是雨天? 2、有鸡蛋18筐,每只大箩容180个,每只小箩容120个,这批蛋共值302.4元。若将每个鸡蛋便宜2 分出售,这些蛋可卖252元。问:大箩、小箩各有几个? 例5:甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。 两人各投10次,共得152分。其中甲比乙多得16分,两人各中多少次?练习五 1、甲组工人生产一种零件,每天生产250个。按规定每个合格记4分,生产一只不合格要倒扣15分。该组工人4天共得了2746分,问:生产合格的零件共多少只? 2、某班42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵。已知男生共比女生多种56棵,求男、女生各多少人。三、课后作业 1、营业员把一张5元人币和一张5角的人民币换成了28张票面为一元和一角的人民币,求换来这两种人民币各多少张? 2、有1角、2角、4角、5角的邮票共26张,总计6.9元。其中1角和2角的张数相等,4角的和5角的张数相等。求这四种邮票各有多少张? 3.班级买来50张杂技票,其中一部分是1元5角一张的,另一部分是2元一张的,总共的票价是88元。两种票各买了多少张? 4、王师傅有2元、5元、10元的人民币共118张,共计500元。其中5元与10元的张数相等,求三种人民币各多少张。第21讲假设法解题 专题简析

初中数学竞赛:用枚举法解题

初中数学竞赛:用枚举法解题 【知识精读】 有一类问题的解答,可依题意一一列举,并从中找出规律。列举解答要注意: ① 按一定的顺序,有系统地进行; ② 分类列举时,要做到既不重复又不违漏; ③ 遇到较大数字或抽象的字母,可从较小数字入手,由列举中找到规律。 【分类解析】 例1 如图由西向东走, 从A 处到B 处有几 种走法? 解:我们在交叉路上有顺序地标上不同走法的数目,例如 从A 到C 有三种走法,在C 处标上3, 从A 到M (N )有3+1=4种, 从A 到P 有3+4+4=11种,这样逐步累计到B ,可得1+1+11=13(种走法) 例2 写出由字母X ,Y ,Z 中的一个或几个组成的非同类项(系数为1)的所有四次单项 式。 解法一:按X 4,X 3,X 2,X ,以及不含X 的项的顺序列出(如左) 解法二:按X →Y →Z →X 的顺序轮换写出(如右) X 4 , X 4 , Y 4 , Z 4 X 3Y , X 3Z , X 3Y , Y 3Z , Z 3X X 2Y 2, X 2Z 2, X 2YZ , X 3Z , Y 3X , Z 3Y XY 3, XZ 3, XY 2Z , XYZ 2, X 2Y 2, Y 2Z 2 , Z 2X 2 Y 4, Z 4 Y 3Z , Y 2Z 2, YZ 3。 X 2YZ , Y 2ZX , Z 2XY 解法三:还可按3个字母,2个字母,1个字母的顺序轮换写出(略) 例3 讨论不等式ax0时,解集是xa , 当a=0,b>0时,解集是所有学过的数, 当a=0,b ≤0时,解集是空集(即无解) 例4 如图把等边三角形各边4等分,分别连结对应点,试计算图中所有的三角形个数 解:设原等边三角形边长为4个单位,则最小的等边三角形边长是1个单位, 13A B

四年级奥数第一讲_图形的计数问题

第一讲图形的计数问题 一、知识点: 几何图形计数问题往往没有显而易见的顺序,而且要数的对象通常是重叠交错的,要准确计数就需要一些智慧了.实际上,图形计数问题,通常采用一种简单原始的计数方法-一枚举法.具体而言,它是指把所要计数的对象一一列举出来,以保证枚举时无一重复、.无一遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯. 二、典例剖析: 例(1)数出右图中总共有多少个角 分析:在∠AOB内有三条角分线OC1、OC2、OC3,∠AOB被这三条角分线分成4个基本角,那么∠AOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本角组成的角有2个(即∠AOC3、∠C1OB),最后是包含有4个基本角组成的角有1个(即∠AOB),所以∠AOB内总共有角: 4+3+2+1=10(个) 解:4+3+2+1=10(个) 答:图中总共有10个角。 方法2:用公式计算:边数×(边数—1)÷2 5×(5-1)÷2=10 练一练: 数一数右图中总共有多少个角?

例(2 )数一数共有多少条线段?共有多少个三角形? 分析:①要数多少条线段:先看线段AB、AD、AE、AF、AC纵向线段,再看BC、MN、GH 这3条横向线段: (4×3÷2)×5+(5×4÷2)×3=60(条) ②要数有多少个三角形,先看在△ABC中,被GH和MN分成了三层,每一层的 三角形一样多,所以只要算出一层三角形个数就可以了。 (5×4÷2) ×3=30(个) 答:在△ABC中共有线段60条,共有三角形30个。 练一练: 图中共有多少个三角形? 例(3)数一数图中长方形的个数 分析:长边线段有:6×5÷2=15 宽边线段有: 4×3÷2=6 共有长方形:15×6 = 90(个) 答:共有长方形90个。

(三年级奥数)枚举法

教师姓名学科数学上课时间年月日---学生姓名年级三年级 课题名称枚举法 教学目标1、做到不重补漏,把复杂的问题简单化; 2、按照一定的规律,特点去枚举; 3、从思想上认识到枚举的重要性。 教学重点枚举法 教学过程 枚举法 【课题引入】 枚举法是一种常见的分析问题、解决问题的方法。一般地,根据问题要求,一一枚举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏的有限种情况,一一枚举各种情况,并加以解决,最终达到解决整个问题的目的。这种分析问题、解决问题的方法,称之为枚举法。枚举法是一种常见的数学方法,当然枚举法也存在一些问题,那就是容易遗漏掉一些情况,所以应用枚举法的时候选择什么样的标准尤其重要。 运用枚举法解题的关键是要正确分类,要注意一下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。 【例题学习】 例1:用数字1、3、4可以组成多少个不同的三位数? 【即时练习】 1、用0、3、5可以组成多少个不同的三位数?

2、用4、7、8这三个数字,可以组成多少个没有重复数字的三位数,它们有哪些?其中最大的数和最小的数各是多少? 【例题学习】 例2、用0,2,5,9可以组成多少个是5的倍数的三位数? 【即时练习】 1、从1、 2、 3、 4、 5、6这些数中,任取两个数,使其和不能被3整除,则有_______种取法。 2、从l~9这9个数码中取出3个,使它们的和是3的倍数,则不同取法有_______种。 3、小明的两个口袋中各有6张卡片,每张卡片上分别写着1,2,3,……,6。从这两个口袋中各拿出一张卡片来计算上面所写两数的乘积,那么,其中能被6整除的不同乘积有_____个。

第四讲运用枚举法解应用题

第四讲运用枚举法解应用题 【知识要点】根据问题的要求,一一列举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏的有限种情况,一一列举各种情况,最终达到解决整个问题的目的,这种分析问题、解决问题的方法,称之为枚举法。运用枚举法解应用题时,必须注意无重复、无遗漏,为此必须力求有次序、有规律地进行枚举。 一.用数字1、2、3可以组成多少个不同的三位数?分别是哪几个数?【分析】解:根据百位上数字的不同,我们可将它们分成三类:第一类:百位上的数字为1,有123,132; 第二类:百位上的数字为2,有____________ 第三类:百位上的数字为3,有____________ 答:可以组成______个不同的三位数。 二.小明有面值为5角和8角的邮票各2枚,他用这些邮票能付多少种不同的邮资(寄信时,所需邮票的钱数)? 解: 答:能付______种不同的邮资。 三.用一台天平和重1克、3克、9克的砝码各一个,当砝码只能放在同一个盘内时,可以称出多少种不同的重量? 【分析】可以用树形图把解题过程表示出来。 1 用其中的一个砝码 3 9 1+3=4 称出重量 1+9=10 3+9=12 用其中的三个砝码 1+3+9=13 答:可以称出7种不同的重量。 四.班级中共有30个人,学号分别为1~30号,现在按学号排队报数,第一次报数后,报到单号的人全部站出来,余下的人继续从1开始报数,报到单号的人全部站出来,以此类推,问到第几次这些人全部都站出来了,最后站出来的人是第几号? 解: 答:到第______次全部都站出来,最后站出来的是第几号?

五. 如右图所求,数字1 5处,规定每次只能移动到邻近的一格,且总是向右 移动,例如:1-2-4-5就是一条移动路线,问共有多 少种不同的移动路线? 【分析】解:移动棋子,从1到5,对1来说,向右移动到邻近一格,有两种方法1-2或1-3,对2来说,向右移动到邻近一格,也有两种方法,2-3或2-4,以此类推,我们用树形图一步一步填写: 4 5 3 2 5 4 5 1 4 5 3 5 数一数图中5的个数就是移动和路线数。 答:共有______种移动路线。 六. 用长48厘米的铁丝围成各种长方形(长和宽都是整厘米数,且长和宽不 相等),围成的最大的一个长方形的面积是多少平方厘米? 答:围成最大的一个长方形的面积是______平方厘米。 七. 商店出售饼干,现存10箱5千克重的,4箱2千克重的,8箱1千克重 的。一顾客要求买9千克的饼干,为了便于携带要求不开箱。问营业员有多少种发货的办法?

奥数-枚举法

枚举法 例1 如下图所示,已知长方形的周长为20厘米,长和宽都是整厘米数,这个长方形有多少种可能形状?哪种形状的长方形面积最大?(边长为1厘米的正方形的面积叫做1平方厘米). 解:由于长方形的周长是20厘米,可知它的长与宽之和为10厘米.下面列举出符合这个条件的各种长方形. (注意,正方形可以说成是长与宽相等的长方形). 下面把5种长方形按实际尺寸大小一一画出来,见下面图(1)~(5).

例2 如右图所示,ABCD是一个正方形,边长为2厘米,沿着图中线段从A到C的最短长度为4厘米.问这样的最短路线共有多少条?请一一画出来. 解:将各种路线一一列出,可知共6条,见下图. 注意,如果题中不要求将路径一一画出,可采用如右图所示方法较为便捷.图中交点处的数字表示到达该点的路线条数,如O点处的数字2,表示由A到O有2条不同的路径,见上图中的(1)和(2);又H点处的数字3的意义也如此,见上图中的(1)、(2)、(3)可知有3条路径可由A到H.仔细观察,可发现各交点处的数字之间的关系,如O点的2等于F点和E点的数字相加之和,即1+1=2,又如,C点的6等于G点和H点的数字相加之和,即3+3=6.

例3 在10和31之间有多少个数是3的倍数? 解:由尝试法可求出答案: 3×4=12 3×5=15 3×6=18 3×7=21 3×8=24 3×9=27 3×10=30 可知满足条件的数是 12、15、18、21、24、27和30共7个. 注意,倘若问10和1000之间有多少个数是3的倍数,则用上述一一列举的方法就显得太繁琐了,此时可采用下述方法: 10÷3=3余1,可知10以内有3个数是3的倍数; 1000÷3=333余1,可知1000以内有333个数是3的倍数; 333-3=330,则知10~1000之内有330个数是3的倍数. 由上述这些例题可体会枚举法的优点和缺点及其适用范围. 例4 两个整数之积为144,差为10,求这两个数? 解:列出两个数积为144的各种情况,再寻找满足题目条件的一对出来: 1 2 3 4 6 8 9 12 144 72 48 36 24 18 16 12 可见其中差是10的两个数是8和18,这一对数即为所求. 例5 12枚硬币的总值是1元,其中只有5分和1角的两种,问每种硬币各多少个? 解:列举出两种硬币的可能搭配:

(完整)六年级奥数假设法解题讲座

六年级奥数假设法解题讲座 假设法解题(一) 一、知识要点 假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。有些题目用假设法思考,能找到巧妙的解答思路。 运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。 二、精讲精练 【例题1】 甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少? 【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。 解:乙:(185-42×4)÷(1-1/5×4)=85 答:甲数是100,乙数是85。 练习1: 1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?

2.甲、乙两个消防队共有338人。抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人? 3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨? 【例题2】 彩色电视机和黑白电视机共250台。如果彩色电视机卖出1/9,则比黑白电视机多5台。问:两种电视机原来各有多少台? 【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。 黑白电视机增加5台后,相当于彩色电视机的(1-1/9)=8/9。 (250+5)÷(1+1-1/9)=135(台) 250-125=115(台) 答:彩色电视机原有135台,黑白电视机原有115台。 练习2: 1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔? 2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?

小学奥数教师版-7-1-1 加法原理之分类枚举(一)

7-1-1.加法原理之分类枚举(一) 教学目标 1.使学生掌握加法原理的基本内容; 2.掌握加法原理的运用以及与乘法原理的区别; 3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则. 加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致. 知识要点 一、加法原理概念引入 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决. 例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法? 分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法. 在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数. 二、加法原理的定义 一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理. 加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则: 1完成这件事的任何一种方法必须属于某一类; 2分别属于不同两类的两种方法是不同的方法. 只有满足这两条基本原则,才可以保证分类计数原理计算正确. 运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”. 三、加法原理解题三部曲 1、完成一件事分N 类; 2、每类找种数(每类的一种情况必须是能完成该件事); 3、类类相加 枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.

奥数解题方法:关于枚举法

奥数解题方法:关于枚举法 在进行归纳推理时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么这结论是可靠的,这种归纳方法叫做枚举法. 1. 在研究问题时,把所有可能发生的情况一一列举加以研究的方法叫做枚举法(也叫穷举法)。 2. 用枚举法解题时,常常需要把讨论的对象进行恰当的分类,否则就无法枚举,或解答过程变得冗长、繁琐、当讨论的对象很多,甚至是无穷多个时,更是必须如此。 3. 枚举时不能有遗漏。当然分类也就不能有遗漏,也就是说,要使研究的每一个对象都在某一类中。分类时,一般最好不重复,但有时重复没有引起错误,没有使解法变复杂,就不必苛求。 4. 缩小枚举范围的方法叫做筛选法,筛选法遵循的原则是:确定范围,逐个试验,淘汰非解,寻求解答。 例题:已知甲、乙、丙三个数的乘积是10,试问甲、乙、丙三数分别可能是几? 分析:在寻找问题的答案时,应该严格遵循不重不漏的枚举原则,由于10的因子有1、2、5、10,因此甲、乙、丙仅可取这四个自然数,先令甲数=1、2、5、10,做到不重不漏,再考虑乙、丙的取法。 解: 因为10的因子有:1、2、5、10,故甲、乙、丙三数的取法可列下表: 甲=1 乙=1 丙=10 乙=2 丙=5 乙=5 丙=2 乙=10 丙=1 甲=2 乙=1 丙=5 乙=5 丙=2 甲=5 乙=1 丙=2

乙=2 丙=1 甲=10 乙=1 丙=1 总共得到问题的九组解答。 甲=1 、1、1、1 、2、2、5、5、10 乙=1 、2、5、10、1、5、1、2、1 丙=10、5、2、1 、5、1、2、1、1 说明 如果没有枚举的思想,只是盲目地猜试,既费时间,又有可能重复或漏掉解答。

举一反三- 三年级奥数 - 第31讲 用假设法解题

第31讲用假设法解题 一、专题简析: 假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。 解答“鸡兔同笼”问题的基本关系式是: 兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。 二、精讲精练 例1:鸡、兔共30只,共有脚84只。鸡、兔各有多少只? 练习一 1、鸡、兔共100只,共有脚280只。鸡、兔各多少只?

2、鸡、兔共50只,共有脚160只。鸡、兔各几只? 例2:鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只? 练习二 1、鸡兔共笼,鸡比兔多25只,一共有脚170只。鸡、兔各几只? 2、买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元。两种票各买了几张?

例3:某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。共有12道题,王刚得了84分。王刚做错了几题? 练习三 1、某小学进行英语竞赛,每答对一题得10分,答错一题倒扣2分,共15题,小华得了102分。小华答对几题? 2、运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。运后运费为8880元,损失了几箱? 例4 :水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。原来水果糖有几块?

四年级奥数教程及训练-05枚举法解题

最新小学四年级奥数练习题第五讲 枚举法解应用题 【知识要点和基本方法】 一般地,根据问题要求,一一枚举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏的有限种情况,一一枚举各种情况,并加以解决,最终达到解决整个问题的目的,这种分析问题、解决问题的方法,称之为枚举法,我们也可以通俗地称枚举法为举例子。枚举法是一种常见的数学方法,当然枚举法也存在一些问题,那就是容易遗漏掉一些情况,所以应用枚举法的时候选择什么样的标准尤其重要。 【例题精选】 例1.用数字1,2,3可以组成多少个不同的数字?分别是哪几个数? 分析:根据百位上数字的不同,我们可以把它们分为三类: 第1类:百位上的数字为1,有123,132; 第2类:百位上的数字为2,有213,231; 第3类:百位上的数字为3,有312,321。 所以可以组成123,132,213,231,312,321,共6个三位数。 课堂练习题: 用0、6、7、8、9这五个数字组成各个数位上数字不相同的两位数共有多少个? 例2.小明有面值为5角、8角的邮票各两枚。他用这些邮票能付多少种不同的邮资(寄信时,所需邮票的钱数) 分析:我们可根据小明寄信时所用邮票枚数的多少,把它们分成四类——一枚、二枚、三枚、四枚。 一枚:5角 二枚:10角,13角 三枚:18角,21角 四枚:26角 课堂练习题: 10元钱买6角邮票和8角邮票共14张,问两种邮票各多少张? 例3.用一台天平和重1克、3克、9克的砝码各一个(不再用其他物体当砝码),当砝码只能放在一个盘内时,可称出不同的重量有多少种? 分析:共有三个重量各不相同的砝码,可以取出其中的一个、两个或三个来称不同的重量,一一列举这三种情况。1个:1克,3克,9克 2个:4克,10克,12克 3个:13克 同学们可以思考一下:如果砝码可以放天平的两边,又能称出多少不同的重量? 例4.课外小组组织30人做游戏,按1-30号排队报数。第一次报数后,单号全部站出来;以后每次余下的人中第一个人开始站出来,隔一人站出来一人。到第几次这些人全部站出来了?最后站出来的人应是第几号? 分析:根据题目的特点,先用排列法把题中的条件、问题排列出来,再用枚举法完成题目的要求。 例5.用长48厘米的铁丝围成各种长方形(长和宽都是整厘米数,且长和宽部不相等),围成的最大一个长方形面积是多少平方厘米? 分析:各种长方形的长和宽之和都是48÷2=24(厘米)。两数的和一定,当两数越接近,它们的乘积越大,当两数相等的时候,乘积最大。

四年级奥数枚举法和列表法

枚举法 [知识要点] 一般地,根据问题要求,一一列举问题,并加以解决,最终达到解决整个问题的目的。这种分析问题、解决问题的方法,称之为枚举法。 运用枚举法解决应用题时,必须注意无重复、无遗漏。为此必须力求有次序、有规律地进行枚举。 [典型例题] 例1 用7、4、2三张数字卡片,能排成多少个无重复数字的三位数,它们分别是哪几个数? 例2 用数字2,4,5,可以组成多少个无重复数字的三位数?分别是哪几个数?其中最大、最小各是多少? 例3 小明有面值为5角邮票一枚、8角的邮票两枚,他用这些邮票能付多少种不同的邮资(寄信时,所需邮票的钱数?)

2.用一台天平和重1克、3克、9克的砝码各一个(不用其他物体当砝码),当砝码只能放在同一盘内时,可称出不同的重量有多少种? 3.把6支相同的铅笔分给3个小朋友,使每个小朋友都分到铅笔,那么有多少种不同的分法? 4.用2张10元和1张50元一共可以组成多少种币值(组成的钱数)? 5.麦当劳推出一种优惠活动, 汉堡类有:A、鸡腿汉堡 B、麦辣鸡腿汉堡; 饮料类有:C、雪碧 D、可口可乐; 冰淇淋类有:(1)草莓冰淇淋(2)奶油冰淇淋 汉堡只能选一种,饮料只能选一种,冰淇淋只能选一种,每次各类选一种,有多少种不同的选择,它们分别是哪些?

1.用数字4,8,9,可以组成多少个无重复数字的三位数?分别是哪些数? 2.用数字0,1,4可组成多少个无重复数字的三位数?分别哪些? 3.由1角,2角,5角元的人民币各一张,一共可以组成多少种币值。(组成的钱数) 4.有7本相同的书,分别借给2名同学,每人至少借一本,有多少种不同的借法?

五年级奥数假设法解题

五年级奥数:假设法解题 专题分析: 假设法解题是一种常用的思维方法,在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。 【例题】:有5元和10元的人民币共14张,共100元,问5元和10元的人民币各多少张? 【思路】:先假设有14张5元的,则总数是70元,那么与实际相差30元,所以这30元就是10元人民币少出来的,因此10远人民币的张数是30÷(10-5)=6(张)。也可以假设有14张10元的…… 练习一: 1、笼中共有鸡兔100只,鸡和兔的脚共248只,求笼中鸡兔各多少只? 2、一堆2分和5分的硬币共39枚,共值1.5元。问2分和5分的银币各有多少枚? 3、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为一元和一角的人民币。求换来的这两种人民币各多少张? 【例题】:用大小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱。现有18车货,价值3024元。若每箱便宜2元,则这批货物价值2520元。问大小汽车各多少辆?

【思路】:根据“若每箱便宜2元,则这批货物价值2520元。”可以知道一共便宜了504元,这样可以计算出货物有252箱。假设18辆都是大汽车,可以装324箱,比实际多装72箱。用一辆大汽车换一辆小汽车可少运6箱,所以有12辆小汽车。6辆大汽车。 练习二: 1、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次。平均每天运14次。这几天中有几天是雨天? 2、有鸡蛋18箩,每只大箩装180个,每只小箩装120个,这批蛋共值302.4元。若将每个鸡蛋便宜2分出售,这些鸡蛋可卖252元。问大箩、小箩各有多少个? 3、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元。如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问有多少千克大西瓜? 【例题】:甲乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。两人各投10次,共得152分。其中甲比乙多得16分,问两人各中多少次? 【思路】:根据共得152分。其中甲比乙多得16分,可计算甲得84分,乙得68分。甲投10次,假设全中。应得100分,这样比实际多了16分,由于脱靶一次扣6分,所以甲脱靶一次应扣16分,这样可计算出甲脱靶了1次。同理可计算乙脱靶了2次。那么计算甲乙投中的次数就容易了。

四年级奥数巧数长正方形的个数

第 4 讲巧数长(正)方形的个数 数图形时要有次序、有条理,才能不遗漏、不重复,一般步骤应是:仔细观察,发现规 律,应用规律。 长方形是用“点”或者“线”来数的,而正方形是用“块”来数的。 数长方形的公式:长边上的线段和×宽边上的线段和 数正方形的公式:1、一个被划分成m×n 的小正方形的长方形中共可以数出的正方形的 个数是: m×n+(m-1)×(n-1)+(m-2)×(n-2 )+??????????+1×【n-(m-1)】(其中m

上图上长有6 条线段,即3+2+1=6(个)宽边上有3 条线段,即2+1=3(个)因此,根据数长方形公式:6×3=18(个)答:上图中共有18 个长方形。 2、下图中共有多少个长方形? 分析与解答: 这道题比例1 横竖都多了一条线,那么长方形的个数明显增多了,利用公式仍然要数出长边上的线段数和宽边上的线段数即 长边上的线段和:4+3+2+1=10 个宽边上的线段和:3+2+1=6个 因此根据数长方形公式:10×6=60 个 答:上图中共有60 个长方形。 3、下图中共有多少个正方形? 分析与解答: 我们先来数一数:只含一个正方形的有9个(即3×3=9);含有4个正方形的有4个(即 2×2=4);含有9 个正方形的有1个 通过刚才的数,我们发现图中正方形的个数为1× 1+2× 2+3×3=1+4+9=14 个,以后我们碰到类似的题目可以用这种方法数出正方形的个数。

相关文档
最新文档