海量数据处理技巧

海量数据处理技巧
海量数据处理技巧

浅谈海量数据处理技巧

摘要随着计算机应用系统不断的发展和完善,在各个领域产生了大量的数据,这些数据有着非常大的查询和分析价值。但随着数据量的增大,对于如何处理海量数据查询效率的问题,已经迫在眉睫。

关键词海量数据;索引;分表存储

中图分类号tp39 文献标识码a 文章编号 1674-6708(2011)35-0170-02

1 数据源的处理

1.1 文本数据导入到sql server数据库中

主要有以下3种方式:

方式一:通过程序从文本格式的数据中每整理出一条记录就执行insert语句插入到sql数据库中;

方式二:通过程序从文本格式的数据中整理出多条记录,再批量执行insert语句插入到sql数据库中;

方式三:编写存储过程,把这些从文本格式的数据通过存储过程导入到sql数据库中。因为,存储过程提供了许多标准sql语言中所没有的高级特性。其传递参数和执行逻辑表达式的功能,有助于应用程序设计者处理复杂任务。另外,这些过程存储在本地sql 服务器上,减少了执行该过程所需的网络传输带宽和执行时间。

1.2 数据库的设计

如何处理数据库中海量数据,以及处理数据库海量数据的经验和技巧

如何处理数据库中海量数据,以及处理数据库海量数据的经验和技巧 疯狂代码 https://www.360docs.net/doc/b41720366.html,/ ?:http:/https://www.360docs.net/doc/b41720366.html,/DataBase/Article11068.html 海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。 基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提 高了处理效率和处理的成功率。在实际的工作环境下,许多人会遇到海量数据这个复杂而艰巨的问题,它的主要难点有以下几个方面:一、数据量过大,数据中什么情况都可能存在。 ;如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。二、软硬件要求高,系统资源占用过高 对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。三、要求很高的处理方法和技巧。 这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。下面我们来详细介绍一下处理海量数据的经验和技巧:一、选用优秀的数据库工具 现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用 Oracle或者DB2,微软公 司最近发布的SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘,傲博知识库等相关工具也要进行选择,象好的ETL工具和好的OLAP工具都十分必要, 例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005则只需要花费3小时。二、编写优良的程序代码 处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。三、对海量数据进行分区操作 对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式 ,不过处理机制大体相同。例 如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷, 而且还可以将日志,索引等放于不同的分区下。四、建立广泛的索引 对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复 合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合 操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。五、建立缓存机制 当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/Buffer,这对于这个级别的数据量是可行的。六、加大虚拟内存 如果系统资源有 限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为

海量数据处理面试题

1. 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url? 方案1:可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。 s 遍历文件a,对每个url求取,然后根据所取得的值将url分别存储到1000个小文件(记为)中。这样每个小文件的大约为300M。 s 遍历文件b,采取和a相同的方式将url分别存储到1000各小文件(记为)。这样处理后,所有可能相同的url都在对应的小文件()中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。 s 求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。 方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。 2. 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。 方案1: s 顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为 )中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。

海量数据处理笔试面试题4

海量数据处理专题(一)——开篇 2010-10-08 13:03 转载自08到北京 最终编辑08到北京 大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 本贴从解决这类问题的方法入手,开辟一系列专题来解决海量数据问题。拟包含以下几个方面。 1.Bloom Filter 2.Hash 3.】 4.Bit-Map 5.堆(Heap) 6.双层桶划分 7.数据库索引 8.倒排索引(Inverted Index) 9.外排序 10.Trie树 11.MapReduce 海量数据处理专题(二)——Bloom Filter 2010-10-08 13:04 【 转载自08到北京 最终编辑08到北京 【什么是Bloom Filter】 Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。因此,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省。这里有一篇关于Bloom Filter的详细介绍,不太懂的博友可以看看。 【适用范围】

海量数据处理小结

海量的数据处理问题,对其进行处理是一项艰巨而复杂的任务。原因有以下几个方面: 一、数据量过大,数据中什么情况都可能存在。如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。 二、软硬件要求高,系统资源占用率高。对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。 三、要求很高的处理方法和技巧。这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。那么处理海量数据有哪些经验和技巧呢,我把我所知道的罗列一下,以供大家参考: 一、选用优秀的数据库工具现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软公司最近发布的SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的ETL工具和好的OLAP工具都十分必要,例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005则只需要花费3小时。 二、编写优良的程序代码处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。 三、对海量数据进行分区操作对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。 四、建立广泛的索引对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。 五、建立缓存机制当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/Buffer,这对于这个级别的数据量是可行的。 六、加大虚拟内存如果系统资源有限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为1GB,1个P4 2.4G的CPU,对这么大的数据量进行聚合操作是有问题的,提示内存不足,那么采用了加大虚拟内存的方法来解决,在6块磁盘分区上分别建立了6个4096M的磁盘分区,用于虚拟内存,这样虚拟的内存则增加为4096*6 + 1024 = 25600 M,解决了数据处理中的内存不足问题。 七、分批处理海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,然后处理后的数据再进行合并操作,这样逐个击破,有利于小数据量的处理,不至于面对大数据量带来的问题,不过这种方法也要因时因势进行,如果不允许拆分数据,还需要另想办法。不过一般的数据按天、按月、按年等存储的,都可以采用先分后合的方法,对数据进行分开处理。八、使用临时表和中间表数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为零,大表变小表,分块处理完成后,再利用一定的规则进行合并,处理过程中的临时表的使用和中间结果的保存都非常重要,如果对于超海量的数据,大表处理不了,只能拆分为多个小表。如果处理过程中需要多步汇总操作,可按

(重点学习)海量数据处理方法总结

海量数据处理方法总结 大数据量的问题是很多面试笔试中经常出现的问题,比如baidu,google,腾讯这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 1 Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集。 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。 还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit 数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。 举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。 注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。 扩展: Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为

数据分析师常见的7道笔试题目及答案

数据分析师常见的7道笔试题目及答案 导读:探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧 重于已有假设的证实或证伪。以下是由小编J.L为您整理推荐的实用的应聘笔试题目和经验,欢迎参考阅读。 1、海量日志数据,提取出某日访问百度次数最多的那个IP。 首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如模1000,把 整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用 hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000 个最大的IP中,找出那个频率最大的IP,即为所求。 或者如下阐述: 算法思想:分而治之+Hash 1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理; 2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)24值,把海量IP日 志分别存储到1024个小文件中。这样,每个小文件最多包含4MB个IP地址; 3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址; 4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP; 2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。 假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也 就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。 典型的Top K算法,还是在这篇文章里头有所阐述, 文中,给出的最终算法是: 第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计(之前写成了排序,特此订正。July、2011.04.27); 第二步、借助堆这个数据结构,找出Top K,时间复杂度为N…logK。 即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一 个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比所以,我们最终的时间复杂度是:O(N) + N?*O(logK),(N为1000万,N?为300万)。ok,更多,详情,请参考原文。 或者:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10 个元素的最小推来对出现频率进行排序。 3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。 方案:顺序读文件中,对于每个词x,取hash(x)P00,然后按照该值存到5000 个小文件(记为x0,x1,…x4999)中。这样每个文件大概是200k左右。 如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到 分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树 /hash_map等),并取出出现频率最大的100个词(可以用含100 个结点的最小堆),并把

常用 大数据量、海量数据处理 方法 算法总结

大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 1.Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。 还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。 举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。 注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。 扩展: Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。 问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢? 根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。

【精品】海量数据处理分析

海量数据处理分析 北京迈思奇科技有限公司戴子良 笔者在实际工作中,有幸接触到海量的数据处理问题,对其进行处理是一项艰巨而复杂的任务。原因有以下几个方面: 一、数据量过大,数据中什么情况都可能存在。如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。 二、软硬件要求高,系统资源占用率高。对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。 三、要求很高的处理方法和技巧。这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。 那么处理海量数据有哪些经验和技巧呢,我把我所知道的罗列一下,以供大家参考: 一、选用优秀的数据库工具 现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软公司最近发布的SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的ETL工具和好的OLAP工具都十分必要,例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005则只需要花费3小时。 二、编写优良的程序代码 处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。 三、对海量数据进行分区操作 对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。 四、建立广泛的索引 对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。

基于一种海量数据处理分析系统设计文档

中科基于一种海量数据处理分析 系统的设计文档 一、海量数据处理的背景分析 在当前这个信息量飞速增长的时代,业的成功已经越来越多地与其海量数据处理能力相关联。高效、迅速地从海量数据中挖掘出潜在价值并转化为决策依据的能力,将成为企业的核心竞争力。数据的重要性毋庸置疑,但随着数据的产生速度越来越快,数据量越来越大,数据处理技术的挑战自然也越来越大。如何从海量数据中挖掘出价值所在,分析出深层含义,进而转化为可操作的信息,已经成为各互联网企业不得不研究的课题。数据量的增长,以及分析需求的越来越复杂,将会对互联网公司的数据处理能力提出越来越高的要求、越来越大的挑战。但每一个场景都有其特点与功能,充分分析其数据特性,将合适的软件用在合适的场景下,才能更好地解决实际问题。 二、海量数据处理分析的特点 (一)、数据量大,情况多变 现在的数据量比以前任何时期更多,生成的速度更快,以前如果说有10条数据,繁琐的操作时每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,情况多变,手工操作是完不成任务的。例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序将会终止。海量数据处理系统的诞生是输入层每个神经元的输入是同一个向量的一个分量,产生的输出作

为隐藏层的输入,输出层每一个神经元都会产生一个标量结果,所以整个输出层所有神经元的输出构成一个向量,向量的维数等于输出层神经元的数目在人工神经网络模型中,各个神经元通过获取输入和反馈,相对独立地进行训练和参数计算。其拓扑结构的重要特点便是每一层内部的神经元之间相互独立,各个层次间的神经元相互依赖。 由于各个层次内部神经元相互独立,使得各个层次内部的神经元的训练可以并行化。但由于不同层之间的神经元具有相互依赖关系,因此各个层次之间仍然是串行处理的。可以将划分出的每一层内部的不同神经元通过map操作分布到不同的计算机上。各个神经元在不同的计算终端上进行训练,在统一的调度和精度控制下进行多个层次的神经元的训练,这样神经网络算法的训练就可以实现并行化。训练结束后,同样可以通过每层内节点的并行化处理快速地得到输出结果。在神经网络算法中,每层内的节点都可以进行并行化处理,并行化程度非常高。 (二)、软硬件要求高,系统资源占用率高 各种应用对存储系统提出了更多的需求,数据访问需要更高的带宽,不仅要保证数据的高可用性,还要保证服务的高可用性;可扩展性:应用在不断变化,系统规模也在不断变化,这就要求系统提供很好的扩展性,并在容量、性能、管理等方面都能适应应用的变化;对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,对电脑的内存、显卡、硬盘及网络都要求相对较高!其中对网络要求高的原因是因为其引入目前最前沿的“云端计算”好多东西都要从网络上调用;对硬盘要求是最高的,用SATA6.0的固态硬盘,对整机性能限制比较大的就是高速系统总线对低速硬盘传输,32位的系统,最大只能认到3.5G内存,就是说,不论你装几根内存条,装多大容量的内存条,你装8G的,它也只能用到3.5G,64位的系统就可以突破了这个限制。如果你的电脑配置不是特别高的话,XP是比较好的选择。32位的XP是最低要求。基于23G互操作测试生成23G互操作测试报告测试起始点时间、测试终止点时间、 3G网络驻留时间(秒)、2G网络驻留时间(秒)、3G覆盖总采样点、3G覆盖总采样点不同区间数量统计、3G覆盖总采样点不同门限范围内数量统计、2G覆盖总采样点、2G覆盖总采样点不同区间数量统计、2G覆盖总采样点不同门限范围内数量统计、3G到2G重选成功次数、2G到3G重选成功次数、3G到2G切换尝试次数、3G到2G切换成功次数、切换掉话次数和其它掉话次数。

2016年数据分析面试常见问题

1、海量日志数据,提取出某日访问百度次数最多的那个IP。 首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。 或者如下阐述: 算法思想:分而治之+Hash 1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理; 2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)24值,把海量IP日志分别存储到1024个小文件中。这样,每个小文件最多包含4MB个IP地址; 3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址; 4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP; 2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。 假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。 典型的Top K算法,还是在这篇文章里头有所阐述, 文中,给出的最终算法是:

第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计(之前写成了排序,特此订正。July、2011.04.27); 第二步、借助堆这个数据结构,找出Top K,时间复杂度为N‘logK。 即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比所以,我们最终的时间复杂度是:O(N)+ N’*O(logK),(N为1000万,N’为300万)。ok,更多,详情,请参考原文。 或者:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。 3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。 方案:顺序读文件中,对于每个词x,取hash(x)P00,然后按照该值存到5000个小文件(记为x0,x1,…x4999)中。这样每个文件大概是200k左右。 如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map 等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100个词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。 4、有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个

大数据量,海量数据 处理方法总结

大数据量,海量数据处理方法总结 从目前大公司用的比较多的数据处理系统角度,你可以去看看关于Hadoop,Hbase,Hive的书,纯粹讲海量数据处理的没见过, https://www.360docs.net/doc/b41720366.html,/~ullman/mmds.html,这个是关于海量数据挖掘的 大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 1.Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是counting Bloom filter,用一个counter 数组代替位数组,就可以支持删除了。 还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m 至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。 举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。 注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。 扩展: Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集

基于海量数据的数据分析方案设计

基于海量数据的数据分析方案设计 data analysis program design based on mass data 摘要:随着互联网,移动互联网和物联网的发展,谁也无法否认,我们来到了一个海量数据的时代。随着数据积累的越来越多,现在许多行业大多面临基于海量数据的分析问题,该文从基于海量数据挖掘的分析方法出发,利用河南省2005到2009年交通事故的数据,设计了一个数据分析方案。 关键词:海量数据,数据挖掘,回归模型,方案 Abstract: with the development of Internet, mobile Internet and development of Internet of things, nobody can deny that we come to a massive data era. As data accumulate more and more, many industries are facing problems based on large amounts of data analysis . This paper ibased on the analysis of mass data mining method of Henan province from 2005 to 2009, using the data of traffic accidents, designes a data analysis program. Key words: mass data, data mining, regression model, scheme 一、引言 随着信息技术的发展,人们积累的数据越来越多。事实上,数据本身是没有意义的,只有用以进行分析处理才真正起到作用。因此,可以说激增的数据背后更重要的是隐含的信息,人们希望能够对这些数据进行更高层次的分析,以便更好地利用这些数据。 海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。 在实际的工作环境下,许多人会遇到海量数据这个复杂而艰巨的问题,它的主要难点有以下几个方面:数据量过大,数据中什么情况都可能存在;软硬件要求高,系统资源占用过高;要求很高的处理方法和技巧。 基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提高了处

十七道海量数据处理面试题与Bit-map详解

十七道海量数据处理面试题与Bit-map详解 第一部分、十七道海量数据处理面试题 1. 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文 件共同的url? 方案1:可以估计每个文件安的大小为50G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。 1. 遍历文件a,对每个url求取,然后根据所取得的值将url分别存储到1000个 小文件(记为,这里漏写个了a1)中。这样每个小文件的大约为300M。 2. 遍历文件b,采取和a相同的方式将url分别存储到1000小文件中(记为)。这样 处理后,所有可能相同的url都在对应的小文件()中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。 3. 求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。 方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。 读者反馈@crowgns: 1. hash后要判断每个文件大小,如果hash分的不均衡有文件较大,还应继续hash分文件,换个hash 算法第二次再分较大的文件,一直分到没有较大的文件为止。这样文件标号可以用A1-2表示(第一次hash 编号为1,文件较大所以参加第二次hash,编号为2) 2. 由于1存在,第一次hash如果有大文件,不能用直接set的方法。建议对每个文件都先用字符串 自然顺序排序,然后具有相同hash编号的(如都是1-3,而不能a编号是1,b编号是1-1和1-2),可 以直接从头到尾比较一遍。对于层级不一致的,如a1,b有1-1,1-2-1,1-2-2,层级浅的要和层级深的每个文件都比较一次,才能确认每个相同的uri。 2. 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能 重复。要求你按照query的频度排序。 方案1: 1.顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。 2.找一台内存在2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout 输出到文件中。这样得到了10个排好序的文件(,此处有误,更正为b0,b1,b2,b9)。 3.对这10个文件进行归并排序(内排序与外排序相结合)。 方案2:

运营必备的 15 个数据分析方法

提起数据分析,大家往往会联想到一些密密麻麻的数字表格,或是高级的数据建模手法,再或是华丽的数据报表。其实,“分析”本身是每个人都具备的能力;比如根据股票的走势决定购买还是抛出,依照每日的时间和以往经验选择行车路线;购买机票、预订酒店时,比对多家的价格后做出最终选择。 这些小型决策,其实都是依照我们脑海中的数据点作出判断,这就是简单分析的过程。对于业务决策者而言,则需要掌握一套系统的、科学的、符合商业规律的数据分析知识。 1.数据分析的战略思维 无论是产品、市场、运营还是管理者,你必须反思:数据本质的价值,究竟在哪里?从这些数据中,你和你的团队都可以学习到什么? 数据分析的目标 对于企业来讲,数据分析的可以辅助企业优化流程,降低成本,提高营业额,往往我们把这类数据分析定义为商业数据分析。商业数据分析的目标是利用大数据为所有职场人员做出迅捷、高质、高效的决策,提供可规模化的解决方案。商业数据分析的本质在于创造商业价值,驱动企业业务增长。 数据分析的作用 我们常常讲的企业增长模式中,往往以某个业务平台为核心。这其中,数据和数据分析,是不可或缺的环节。 通过企业或者平台为目标用户群提供产品或服务,而用户在使用产品或服务过程中产生的交互、交易,都可以作为数据采集下来。根据这些数据洞察,通过分析的手段反推客户的需求,创造更多符合需求的增值产品和服务,重新投入用户的使用,从而形成形成一个完整的业务闭环。这样的完整业务逻辑,可以真正意义上驱动业务的增长。 数据分析进化论 我们常常以商业回报比来定位数据分析的不同阶段,因此我们将其分为四个阶段。 阶段 1:观察数据当前发生了什么? 首先,基本的数据展示,可以告诉我们发生了什么。例如,公司上周投放了新的搜索引擎 A 的广告,想要

大数据开发笔试

1、hdfs原理,以及各个模块的职责 答:Hadoop Distributed File System即:Hadoop分布式文件系统,就是把数据划分成不同的Block 分别存储在不同节点的设备上。它分为两个部分:NameNode和DateNode,NameNode相当于一个领导,将文件系统的Meta-data存储在内存中,这些信息主要包括了文件信息、每一个文件对应的文件块的信息和每一个文件块在DataNode的信息等。它管理集群内的DataNode,当客户发送请求过来后,NameNode 会根据Meta-data指定存储到哪些DataNode上,而其本身并不存储真实的数据。 2、mr的工作原理 答:当客户提交作业后,MapReduce库先把任务splits不同的块,然后根据“移动计算比移动数据更明智”的思想,把任务分发到各个DataNode上。在不同的DataNode上分别执行Map操作,产生键值对,然后通过shuffle重新洗牌,把键值相同的键值对传给同一个reduce,把键值不同的键值对传给不同的reduce进行处理,最后输出结果。这些按照时间顺序包括:输入分片(input split)、map阶段、combiner 阶段、shuffle阶段和reduce阶段。(5个阶段) 3、map方法是如何调用reduce方法的 答:Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方,Hadoop的shuffle过程就是从map 端输出到reduce端输入之间的过程。 map过程的输出是写入本地磁盘而不是HDFS,但是一开始数据并不是直接写入磁盘而是缓冲在内存中,缓存的好处就是减少磁盘I/O的开销,提高合并和排序的速度。默认的内存缓冲大小是100M(可以配置),所以在书写map函数的时候要尽量减少内存的使用,为shuffle过程预留更多的内存,因为该过程是最耗时的过程。当缓冲的内存大小使用超过一定的阈值(默认80%),一个后台的线程就会启动把缓冲区中的数据写入(spill)到磁盘中,往内存中写入的线程继续写入知道缓冲区满,缓冲区满后线程阻塞直至缓冲区被清空。在数据spill到磁盘的过程中会有一些额外的处理,调用partition函数、combine函数(如果设置)、对数据进行排序(按key排序)。如果发生多次磁盘的溢出写,会在磁盘上形成几个溢出写文件,在map过程结束时,要将这些文件进行合并生成一个大的分区的排序的文件。 reduce端可能从n多map的结果中获取数据,而这些map的执行速度不尽相同,当其中一个map运行结束时,reduce就会从jobtractor中获取该信息。map运行结束后tasktractor会得到消息,进而将消息汇报给jobtractor,reduce定时从jobtractor获取该信息,reduce端默认有5个线程从map端拖拉数据。 4、shell如何判断文件是否存在,如果不存在该如何处理? if[!-f"$file"];then touch"$file" fi 不存在就创建一个吧。

相关文档
最新文档