汽车仿真分析

汽车仿真分析
汽车仿真分析

. ..

z AVL-Cruise整车性能分析

1 模型的构建要求

1.1 整车动力性、经济性计算分析参数的获取

收集和整理关于该车的整车配置组件参数数据。主要包括发动机动力性、经济性参数;变速箱档位速比参数;后桥主减速比参数;轮胎参数;整车参数等。具体参数项目见附录1。

1.2 各配置组件建模

1.2.1 启动软件

在桌面或程序中双击AVL-Cruise快捷图标,进入到AVL-Cruise用户界面,

点击下图所示工具图标,进入模型创建窗口。

进入模型创建窗口

1.2.2 建立整车参数模型

进入模型创建窗口后,将鼠标选中Vehicle Model,鼠标左键点击整车图标,按住左键将图标拖曳到建模区,如下图所示:

双击整车图标后打开整车参数输入界面,根据参数输入要求依次填写数据:

Author:此处填写计算者,不能用中文,可以用汉语拼音和英文,该软件所有填写参数处均不能出现中文。

. ..

z

Comment :此处填写分析的车型号。

Notice1、Notice2、Notice3:此处填写分析者认为需要注意的事项,比如特殊发动机型号等,没有可 以不填。

1.2.2.1 整车参数数据填写规则

序号 驾驶室形式 迎风面积 风阻系数 备注

1 奇兵车身(平顶) 5.0(1830*2760) 0.7 迎风面积=前轮距*整车高度

2 奇兵车身(高顶) 6.422(1900*3380) 0.75

3 6系、9系平顶车身 6.1(2020*3020) 0.8 重卡风阻系数参考值:0.7-1

4 6系、9系高顶车身 7.0(2020*3460) 0.9 5

高顶加导流罩

7.3(2020*3637)

0.92

进入模型创建窗口后,将鼠标选中Engine Model ,鼠标左键点击发动机图标,按住左键将图标拖曳到建模区,如下图所示:

作者名称、注解说明,可以不填

注解说明,可以不填

油箱容积 内外温差:0

试验台架支点高度:100

内外压差:0 牵引点到前轴距离

轴距

空载、半载、满载下整车重心到前轴中心距离、重心高度、鞍点高度、前轮充气压力、后轮充气压力

整备质量 整车总重

迎风面积

风阻系数

前轮举升系数

后轮举升系数

双击发动机图标后打开发动机参数输入界面,根据参数输入要求依次填写数据:

1.2.3.1 发动机参数输入规则

序号 发动机惯量 达到全功率的响应时间

柴油热值 柴油密度 1 参考值:1.25

参考值:0.1

参考值:44000kj/kg

0.82kg/L

2 3

按照图示箭头位置单击按钮,弹出外特性输入窗口:

型号

是否有增压器 发动机排量

发动机工作温度

缸数 冲程数 怠速转速 额定最高转速

惯量 达到全功率响应时间0.1S

燃油类型

热值

燃油密度

作者名陈、注解说明 注解说明

. ..

z

发动机转速与扭矩的关系从外特性数据表中可以直接得到;填写时注意对应关系即可。 1.2.3. 3 发动机万有特性曲线输入

发动机万有特性数据的输入需要注意数据与单位一致;当万有特性数据只有相对油耗(g/kwh )数据时,发动机的万有特性数据输入需要使用Properties 选定指定油耗图来输入数据,如下图:

此处根据厂家提供的发动机数据输入转速与扭矩关系

此处根据厂家提供的发动机数据输入转速、扭矩、燃油消耗率的关系数据

通过选定指定油耗图弹出:Specific Consumptoin Map窗口,在这个窗口里分别输入转速、BMEP、燃油消耗率的对应数据关系。其中BMEP=2*3.14*n(转速)/V(排量)。

1.2.4变速箱模型建立

将变速箱模块拖曳到建模窗口中。

双击图标后弹出变速箱对话框:

添加注解或评论添加注

解或评

单击此

处输入

速比

. ..

此处输入变速

箱各档位速比

1.2.5离合器模型建立

将离合器模块拖曳到建模窗口中。

单击离合器模块弹出离合器对话框:

z

单击Pressure 弹出压盘力窗口如下图:

1.2.6后桥主减器模型建立

如下图单击鼠标左键弹出Gear Box 控制模块,鼠标左键选中Single Ratio 并拖曳到建模窗口:

鼠标左键双击Single Ratio 弹出主减速器参数窗口:

添加注解

输入惯量

输出惯量

最大传递扭矩

单击此处

离合行程

压盘力

此处填写离合行程与压盘力的关系曲线

输入惯量参考值:1.35; 输出惯量参考值:0.11

汽车碰撞模拟实验台设计

目录 1 绪论 (1) 1.1 课题来源与国内外现状 (1) 1.1.1 研究背景 (1) 1.1.2 汽车安全性的种类 (1) 1.1.3 汽车模拟碰撞的研究 (2) 1.1.4 本课题主要内容 (3) 2. 碰撞试验台结构特点和技术要求 (4) 2.1 结构特点和技术要求 (4) 2.2 缓冲过程建模 (4) 3. 碰撞试验台的设计和计算 (5) 3.1 碰撞试验台的总体设计 (5) 3.2 导轨机构的设计和计算 (5) 3.3 小车的选择和设计及释放机构 (6) 3.4 墙体的选择 (7) 3.5 传动装置 (7) 4. 减速缓冲装置的设计和计算 (9) 4.1 减速缓冲器的种类 (9) 4.2 吸能缓冲器 (9) 4.3 多孔式液压缓冲器 (11) 4.4 圆槽减速缓冲器的设计计算 (14) 4.4.1 液压缓冲器的设计原理 (14) 4.4.2 缓冲器的结果设计 (19) 4.4.3 液压缓冲器装配图 (21) 4.4.4 驻退液 (22) 4.4.5 缓冲装置的运动 (22) 结论 (24) 致谢 (25) 参考文献 (26) 附录一液压缸体设计VB编程代码 (28) 附录二加速度曲线VB编程代码 (30) 附录三液压缸设计数据表 (31) 附录四液压缸圆槽设计数据表 (33)

1.1 课题来源与国内外现状 随着科技的进步、经济的发展、人民生活水平的不断提高,汽车己经成为人们学习、工作、生活中不可缺少的代步工具,对人们的生活、生产产生了深刻的影响。作为一种便捷的现代化交通工具,汽车在给人们带来极大便利的同时,也因其造成的交通事故给人类的生命和财产安全带来了严重威胁。随着全球汽车保有量的不断增加,交通事故也随之增加,交通事故己经成为全球范围内的一大社会问题。 这是一组让人膛目结舌的数字。美国的汽车保有量为1.3亿辆,每年道路交通死亡4万人左右;日本的汽车保有量近8000万辆,每年道路交通死亡1.1万人,去年降到8000人。中国的汽车保有量是3000万辆,每年道路交通死亡近11万人,单车事故率相当于美国的近13倍,日本的近40倍。除去交通状况等客观因素,一个不可回避的原因就是中国汽车安全系数低,我国交通事故的严重程度由此可想而知。随着我国道路交通状况的不断改善,我国汽车的保有量不断增加,车速也逐渐提高,交通事故总量和所造成的人员伤亡与财产损失近年来也呈上升趋势。加强道路交通系统和汽车安全的研究,预防交通事故,是需要全社会共同关注和迫切改善的重要课题[1-2]。 汽车安全性问题与汽车的各种性能等直接或间接有关,对其研究最初是与提高汽车的整车性能的研究交织在一起的。随着二战后汽车工业的持续发展,到60年代中期,西方发达国家中汽车的保有量和汽车的动力性能有了明显的提高,公路上的车流密度和车流速度己达到了一个空前高的水平,汽车事故发生率空前高涨,汽车安全性受到了公众和政府部门的高度重视。从这一时期开始,各国相继制定或修订了安全法规,如美国的汽车安全标准FMVSS等[3]。在这些法规的制约下,以及为了提高汽车产品的竞争力,各大汽车制造商和一些研究机构开展了汽车安全性的专门研究。汽车安全性研究逐渐从汽车技术研究的其他领域分离出来形成了一个独立的分支。 1.2 汽车安全性的种类 汽车安全性可划分为主动安全性和被动安全性[4-5]。被动安全性是指汽车发

面向汽车动力学控制的汽车仿真软件开发

面向汽车动力学控制的汽车仿真软件开发1 李幼德,刘巍, 李静 吉林大学汽车工程学院 (130022) E-mail :aweii_liu@https://www.360docs.net/doc/b419061926.html, 摘 要:汽车动力学仿真软件对汽车电控系统的开发具有重要意义。本文利用Matlab/Simulink 软件编制适用于汽车电控制系统开发的汽车动力学模型,并编制了图形用户界面,并针对样车进行了不同工况的模拟。 关键词:汽车动力学,图形用户界面,仿真 1.引言 随着汽车电子控制系统的发展,特别是汽车电控制系统开发手段的发展,以Matlab/Simulink 和Dspace 为开发平台的V 流程的电控系统开发方法已被越来越多的开发商所采用。在汽车电控制系统的开发中,例如汽车牵引力控制系统(TCS )、汽车制动防抱死控制系统(ABS )和汽车稳定性控制系统(ESP )等,为了研究汽车各控制系统的控制算法,汽车动力学仿真模型是必不可少的。而传统的汽车动力学仿真模型(如Adams 和Simpack 等),由于仿真的实时性较差,并不能够满足汽车电控制系统开发的要求。因此,开发基于Matlab/Simulink 平台的汽车动力学仿真软件对于汽车电控系统具有重要的使用价值。 2.汽车动力学模型 考虑汽车动力学模型运行实时性的要求,汽车动力学模型需要进行适当的简化。因此,忽略汽车的侧倾和俯仰运动,以及悬架的影响,但是考虑了汽车载荷的转移。在汽车动力学模型中,包括:发动机模型、传动系模型、轮胎模型、车轮模型以及整车模型等。 2.1发动机模型 发动机模型的输入包括:油门开度、反馈的发动机转速。整个的发动机将简化为一个一阶惯性环节系统[1]。 1 2 1sT e e T e M sT ?= + (1) 其中:e M 发动机的动态输出力矩;为发动机的静态输出力矩,为系统时间常数,为系统滞后时间常数而拉氏变换变量。 e T 2T 1T s 2.2制动器模型 制动器模型采用的是盘式制动器模型,公式如下: b w T A n s P b μη=????? (2) 1 本课题得到高等学校博士学科点专项科研基金(项目编号:20020183025)资助 - 1 -

汽车碰撞虚拟仿真

(一)研究目的 随着社会的发展,科技在飞速得更新,汽车受到越来越多的人的青睐,成为人们的代步工具。然而,随着汽车的不断增加,汽车交通事故也越来越多,如何更好地了解事故原因减少汽车事故成为了重点。由于现如今的大学生汽车事故试验实验涉及到的人身安全、汽车设备昂贵,汽车操作危险性高,实验损坏后不易修复等问题,使得学生实验操作机会很少,而且不敢深入实验,达不到预定的实验效果。通过软件仿真,就可以很好地解决这个问题。 (二)研究内容 “汽车碰撞”虚拟实验仿真汽车爆胎,汽车正碰、侧碰、追尾、汽车刹车不及时等实验。 (三)国内外研究现状及发展动态 由于计算机软、硬件的发展和汽车市场的竞争日益激烈,国际上近20年来,汽车碰撞的计算机仿真技术发展迅速。进入80年代,欧美等先进国家推出了用于汽车碰撞仿真的商业化软件包,这些功能强大的软件包在安全车身开发、事故鉴定分析、碰撞受害者保护、碰撞试验用标准假人开发和人体生物力学等研究工作中发挥了较大作用。 国内一些高校和科研机构正在积极从事汽车碰撞理论与仿真技术的研究。尽管总体上与国外相比还有很大差距,但预计不久的将来,在我国会有适于工程应用的仿真软件问世,汽车碰撞的计算机仿真技术将会有更为广泛的应用。车辆碰撞计算机仿真技术的一个主要应用方面就是交通事故的再现,辅助事故处理人员快速、高质量地进行现

场勘察、参数计算和事故分析,进而研究事故发生的原因,探求避免事故、减少损失的策略。 (四)创新点与项目特色 “汽车碰撞”虚拟实验项目是基于多媒体、仿真和虚拟现实等技术,在计算机上实现的机械操作虚拟实验环境,实验者可以像在真实的环境中一样完成各种预定的实验项目,所取得的实验效果等价于甚至优于在真实环境中所取得的效果。机械安全工程虚拟实验平台项目的开发、建设与应用彻底打破空间、时间限制,提高实验的效率和效果;有利于减少资源消耗与环境污染;避免真实实验和操作所带来的各种危险。 (五)技术路线、拟解决的问题及预期效果 1、“汽车碰撞”虚拟实验仿真汽车爆胎,汽车正碰、侧碰、追尾,汽车刹车不及时等实验。 重点解决以上实验的计算机虚拟仿真的软件实现,以及足够的容错、纠错能力。 2、前期工作关于有关被仿真实验项目、要求、注意事项、实验过程等都已经确定;马上要开展的工作重点在于有关开发软件的确定以及相关编程技巧的掌握与熟练。 3、预期成果与形式: 虚拟实验平台实现以下基本功能: 1.完全基于Web:分布在各地的用户只要访问特定的地址或者在实验机房进行实验。

汽车整车动力性仿真计算

汽车整车动力性仿真计算 1 动力性数学模型的建立 汽车动力性是汽车最基本、最重要的性能之一。汽车动力性主要有最高车速、加速时间t 及最大爬坡度。其中汽车加速时间表示汽车的加速能力,它对平均行驶车速有着很大影响,而最高车速与最大爬坡度表征汽车的极限行驶能力。根据汽车的驱动力与行驶阻力的平衡关系建立汽车行驶方程,从而可计算汽车的最高车速、加速时间和最大爬坡度。其中行驶阻力(F t )包括滚动阻力F R 、空气阻力F Lx 、坡度阻力F St 和加速阻力F B 。 根据图1就可以建立驱动的基本方程,各车节之间的连接暂时无需考虑。而车辆必须分解为总的车身和单个车轮。节点处只画出了x 方向的力;z 方向的力对于讨论阻力无关紧要,可以忽略。 图1 (a )车辆,车轮和路面;(b )车身上的力和力矩; (c )车轮上的力和力矩;(d )路面上的力 如果忽略两个车节间的相对运动,根据工程力学的重心定理,汽车(注脚1)和挂车(注 脚2)的车身运动方程为: ∑=++--=+n j j Lx X αG G F x m m 12121sin )()( (1)

其中1G 和2G 是车节的车身重量,1m 和2m 它们的质量,α是路面的纵向坡度角,∑j X 是n 车轴上的纵向力之和,L F 是空气阻力。 由图1(c ),对第j 个车轴可列出方程 αG F X x m Rj xj j Rj Rj sin -+-= (2) j zj j xj Rj Rj Rj e F r F M φ J --= (3) Rj G 是该车轴上所有车轮的重量,Rj m 是它们的质量,Rj J 是绕车轴的车轮转动惯量之和,xj F 是在轮胎印迹上作用的切向力之和,zj F 是轴荷,Rj M 是第j 个车轴上的驱动力矩。 如果假设车轴的平移加速度Rj x 和车身的加速度x 相等,由式(1)到式(3)在消去力j X 和xj F 以后就得到方程 ∑∑∑ ∑∑=====--++-=+++n j j j zj Lx n j Rj n j j Rj Rj n j j Rj n j Rj r e F F αG G G r M φ r J x m m m 1 1 211 11 21sin )()( 引进总质量和总重量(力) m m m m n j Rj =++∑=121 mg G G G G n j Rj ==++∑=1 21 把车轮角加速度转化为平移加速度x ,即得到 ∑∑∑ ===++++=n j j j zj Lx n j j j Rj n j j Rj r e F F αG x R r J m r M 1 11 sin )( (4) 右边是由4项阻力组成,我们称之为 1)滚动阻力∑==n j j j zj R r e F F 1 (5) 令j j r e f = ,f 为阻力系数,代入式(5),则整车的滚动阻力为 zj n j R F f F ∑==1(5-1) 还常常进一步假定,所有车轮(尽管比如各个车轮胎压不同)的滚动阻力系数相等,又因为所有车轮轮荷zj F 之和等于车重G ,如果车辆行驶在角度为α的坡道上,则轮荷之和等于αcos G (参看图1) ,这样,式(5-1)可改写为 αfG F f F n j zj R cos 1==∑= 因为道路上的坡度较α不是很大,整车滚动阻力因而近似于整车车轮阻力 G f F R R =(5-2) 2)空气阻力2 a D 15 .21u A C F Lx =(6) 3)上坡阻力αG F St sin =(7) 在式(4)中的αG sin 项用以表示上坡阻力 αG F St sin =(7-1) 参看式(7)。如果我们用αtan 以及等价的值p 来取代αsin ,那么上述表达式就更为直

基于虚拟试验的轿车正面碰撞安全性分析(正式)

编订:__________________ 审核:__________________ 单位:__________________ 基于虚拟试验的轿车正面碰撞安全性分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2394-61 基于虚拟试验的轿车正面碰撞安全 性分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、引言 长期以来,轿车安全性能一直是汽车工业界非常关注的课题。用实车碰撞试验可测定轿车安全性能,但因其需在实物样机上安装各种测试设备,进行实地试验,成本高、时间长,所以探索新的试验方法一直是汽车工业界所追求的目标。随着计算机技术的发展和各种应用软件的出现,人们可以用计算机来模拟轿车碰撞试验。利用虚拟现实技术设计的汽车虚拟试验场可逼真地实现试验过程,通过交互改变汽车设计参数、试验道路环境,可以验证设计方案,从而达到缩短设计周期、降低开发成本、提高产品质量的目的。与传统的实车试验相比,应用虚拟试验场具有快速、逼真、可重复性等特点,可无危险、无损坏地进行碰

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

1.4 汽车总体设计整车性能仿真与系统匹配要点

1.4 汽车总体设计整车性能仿真与系统匹配 1.4.1动力性能仿真计算 (1) 计算目的 汽车的动力性是汽车重要基本性能指标之一。动力性的好坏,直接影到汽车在城市和城际公路上的使用情况。因此在新车开发阶段要进行动力性计算,预测今后生产车型是否满足使用要求。使汽车具有良好的动力学性能. (2) 已知参数如表所示

a 设计载荷确定: 该车型设计载荷根据德国标准DIN 70020规定:在空车重量(整备质量)的基础上加上座位载荷。5座位轿车前面加2人、后排加1人,也称为半载作为设计载荷, 重量假定为68kg加上随身物品7kg,重心对于不可调整座位在R点(设计H点)前50mm,可调整作为R点前100mm处。我国标准常常规定满载作为设计工况. 对于该计算车型如采用德国标准, 则具体计算为:1070kg+3*(68kg+7kg)=1295kg b 迎风面积: 根据迎风面积计算公式:A=0.78BH确定,其中:A迎风面积,B车宽,H 车高。对于该车型而言具体计算为:A=0.78*1710mm*1427mm=1.90m2 c 传动效率: 根据该轿车的具体传动系统形式,传动系统的传动效率大体可以由变速器传动效率,单级主减速器传动效率,万向节传动效率组成。 具体计算为:95%(变速器)乘96%(单级主减速器)乘98%(万向节)=89.4%,

同时考虑到,一般情况下采用有级变速器的轿车的传动系统效率在90%到92%之间,对上述计算结果进行圆整,对传动系统效率取为90% d 滚动阻力系数: 滚动阻力系数采用推荐拟和公式进行计算: )19440/1(2 0a u f f +=, 其中: f 取为0.014(良好水泥或者沥青路面), a u 为车速km/h 。 (3) 发动机外特性曲线 i. AJR 发动机 ii AFE 发动机 图1.4.1 发动机外特性曲线 (4) 基本理论概述 汽车动力性能计算主要依据汽车驱动力和行驶阻力之间的平衡关系: j i w f t F F F F F +++= (1.4.1) 表1.4.2 各种受力名称 发 动 发动机

基于Cruise的整车动力性能仿真分析

2009年第2期 车辆与动力技术V eh icle &Pow er T echno l ogy 总第114期 文章编号:1009-4687(2009)02-0024-03 基于Cruise 的整车动力性能仿真分析 王 锐, 何洪文 (北京理工大学电动车辆国家工程实验室,北京 100081) 摘 要:动力性是汽车各种性能中最基本、最重要的性能.目前通常使用理论公式计算的方法对汽车动力性指标进行分析,本文利用Cruise 仿真软件对整车进行了建模与动力性仿真,并将仿真与理论计算结果进行比较和分析.结果表明,采用Cruise 建模仿真得到的动力性指标均比结果理论计算得出的结果更加准确.关键词:C ru i se ;动力性;建模仿真中图分类号:U 462. 3+1 文献标识码:A Sim ulati on and Analysis on Vehicular Po wer Perfor m ance w it h Cruise WANG Ru,i HE H ong -w en (N ati onal Eng i nee ri ng L aboratory f o r E l ectric V eh icle ,Beiji ng i nstit ute o f techno l ogy ,Be iji ng , 10081) Abst ract :The po w er perfor m ance is the m ost basic and i m portan t perfor m ance for auto m ob iles ,w hich is usua lly ca lculated by theoretical for m u las .In this paper ,a ne w m ethod for po w er perfor m ance calculation w it h so ft w are C ruise is i n troduced .The si m ulati o n resu lts are co m pared w itch t h e oues got by theoretical for m ulas ,where the results got by C r u ise are proven fo be m ore precise .K ey w ords :C r u ise ;po w er perfor m ance ;m ode ling and si m ulati o n .修稿日期:2008-10-15 作者简介:王 锐(1985-),男,硕士生;何洪文(1975-),男,副教授. 动力性是汽车各种性能中最基本、最重要的性能,关系到开发过程中发动机功率和转矩、各档传动比等参数的选择,更决定了汽车运输效率的高 低[1]. 目前计算整车动力性常采用理论公式计算的基本方法[2-4] .理论计算的方法较为简单,但是工作量较大,得出的结果也仅仅是理论值,与实际情况有一定的差别.而随着计算机技术的发展,采用建模仿真进行动力性计算已成为研发汽车动力系统的一个重要手段.通过建立系统的数学模型和仿真模型并对其实际工作状况进行仿真分析,能够很好地预测各种条件下的系统性能,从而不但可以事先灵活地调整设计方案,合理优化参数,而且可以降低 研究费用,缩短开发周期 [5,6] .目前在汽车仿真领 域常用的仿真软件有ADV I SOR 、PSAT 等,但是模型的逻辑结构复杂.本文选取建模较为方便的C ruise 软件进行动力性建模仿真,与理论计算结果进行了比较.结果表明,利用C ruise 软件进行动力性能分析,能够在减小工作量的同时,得到比理论计算更接近于实际情况的结果. 1 利用C ruise 建立整车模型 C ruise 是针对汽车整车及部件性能的仿真软件,可以用于车辆的动力性、燃油经济性以及排放性能的仿真,利用其模块化的建模理念可以直观和

汽车碰撞模拟分析流程

汽车碰撞模拟分析流程-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

ANSYS 汽车碰撞分析流程Flow Chart of Auto Impact Analysis Prepared By 史志远 Date: Nov.1, 2004

汽车碰撞模拟分析流程 一、碰撞安全性试验介绍: 在汽车模拟分析的过程中,提高汽车碰撞安全性的目的是在汽车发生碰撞时确保乘员生存空间、缓和冲击、防止发生火灾等等。但是从碰撞事故分析中可知,汽车碰撞事故的形态也千差万别,所以对汽车碰撞安全性能的评价也必须针对不同的碰撞形态来进行。按事故统计结果,汽车碰撞事故主要可分为正面碰撞、侧面碰撞、追尾碰撞和翻车等几种类型。但随着公路条件的改善,正面碰撞和侧面碰撞形态成了交通事故中最常见的碰撞形式。 按照碰撞试验的目的区分,现在碰撞试验大体可以分为三类: 1)由政府法规要求的强制性试验:例如FMVSS208、ECE R94法规规定的正面碰撞试 验,FMVSS214、ECE R95法规规定的侧面碰撞试验等等; 2)由汽车制造厂自己制定的碰撞试验方法:例如用于提出改善汽车碰撞安全性的新 措施等等; 3)为消费者提供信息的试验:例如美国、欧洲等国家实施的新车评价程序 (NCAP), 汽车安全法规中规定了达到政府规定的最低安全性能要求,NCAP以 更高的车速进行正面碰撞试验,以展示汽车产品的碰撞安全性能。 由于法规试验是政府强制实施的,所以,汽车碰撞试验法规是人们关注的热点。下表列出了一些美国FMVSS, 欧洲ECE的汽车被动安全性法规的试验项目。 表一 FMVSS 与 ECE 的一些汽车安全性法规

汽车性能论文汽车安全性能论文

汽车性能论文汽车安全性能论文 汽车性能测试仿真平台的建立 摘要:为能够快速地改善上述实车测试的缺失以及提供车辆进行测试之后的相关评估性能指针并做为各车厂于开发新车过程中之依据,不但能够大幅度的缩短测试的时间,而且可以准确地获得该车辆的相关性能表现,这些都是建立汽车性能测试仿真平台,进行进行车辆性能测试的目标。 关键词:车辆;性能测试;仿真平台 1 仿真平台系统架构 在仿真实车测试性能过程中,驾驶者会被指定目标道路轨迹去依循,并将测出的车辆动态变量做为评估与分析车辆性能指针的用途。因此,本研究根据上述目的来规划建构出一套车辆性能测试仿真平台。 此车辆性能测试仿真平台架构包括了驾驶者动态仿真模块(driver motion model)、车辆动态仿真模块(vehicle dynamics model)、以及测试道路轨迹产生模块(desired trajectory generation)。因此将上述模块作结合的后,所获得的车辆性能测试仿真系统也就能够仿真真实驾驶者反应于操作车辆进行相关道路测试,同时根据量测出的相关车辆动态响应来做为评估与分析的车辆性能指针。

上图1红色虚线所包围的区域即为本研究车辆性能测试仿真平台的驾驶者动态仿真模块。其控制架构是真实人类于操控车辆的反应行为,包括有驾驶者实时补偿控制动态以及预期控制动态行为反应,最后再根据上述动态来规划出适合的驾驶者动态仿真模块。而图1的架构中,驾驶者实时补偿控制动态能够立即辨别出当下车辆运动轨迹参数与目标道路轨迹参数,并输出前轮转向角度?来调整车辆的动态行为以达到依循目标道路轨迹的目的;另外,驾驶者预期控制动态则透过观察即将到来的道路轨迹,并提前调整车辆动态亦可达到依循目标道路轨迹的目的。 2 实时补偿控制动态模型的建立 在驾驶者实时补偿控制部分,驾驶者反应会实时修正当下车辆运动轨迹与目标道路轨迹的间的误差,并调整车辆动态行为来追踨目标道路轨迹,此种驾驶者反应行为称为驾驶者实时补偿控制动态(compensatory control behavior)。驾驶者模型是以一个前馈暨回馈控制架构来组成并用来仿真真人实时补偿控制动态的反应行为。其中在回馈控制法则设计上,是以一个PID控制器以及延迟时间影响来做为驾驶者回馈控制动态。 如上式所示,为驾驶者实时补偿的回馈控制量;而则为车辆运动轨迹参数与目标道路轨迹参数的间的差异;另外Kp、Ki以及Kd 分别为PID控制器的大小、积分以及微分增益值,其中Kp代表驾驶者对依循道路轨迹误差的修正幅度大小,Ki代表驾驶者抵消外界干

车辆动力学相关的软件及特点

SIMPACK车辆动力学习仿真系统 SIMPACK软件是德国INTEC Gmbh公司(于2009年正式更名为SIMPACK AG)开发的针对机械/机电系统运动学/动力学仿真分析的多体动力学分析软件包。它以多体系统计算动力学(Computational Dynamics of Multibody Systems)为基础,包含多个专业模块和专业领域的虚拟样机开发系统软件。SIMPACK软件的主要应用领域包括:汽车工业、铁路、航空/航天、国防工业、船舶、通用机械、发动机、生物运动与仿生等。 SIMPACK是机械系统运动学/动力学仿真分析软件。SIMPACK软件可以分析如:系统振动特性、受力、加速度,描述并预测复杂多体系统的运动学/动力学性能等。 SIMPACK的基本原理就是通过搭建CAD风格的模型(包括铰、力元素等)来建立机械系统的动力学方程,并通过先进的解算器来获取系统的动力学响应。 SIMPACK软件可以用来仿真任何虚拟的机械/机电系统,从仅仅只有几个自由度的简单系统到诸如一个庞大的火车。SIMPACK软件可以应用在我们产品设计、研发或优化的任何阶段。 SIMPACK软件独具有的全代码输出功能可以将我们的模型输出成Fortran或C代码,从而可以实现与任意仿真软件的联合。 车辆动力学仿真carsim CarSim是专门针对车辆动力学的仿真软件,CarSim模型在计算机上运行的速度比实时快3-6倍,可以仿真车辆对驾驶员,路面及空气动力学输入的响应,主要用来预测和仿真汽车整车的操纵稳定性、制动性、平顺性、动力性和经济性,同时被广泛地应用于现代汽车控制系统的开发。CarSim可以方便灵活的定义试验环境和试验过程,详细的定义整车各系统的特性参数和特性文件。 CarSim软件的主要功能如下: 适用于以下车型的建模仿真:轿车、轻型货车、轻型多用途运输车及SUV; 可分析车辆的动力性、燃油经济性、操纵稳定性、制动性及平顺性; 可以通过软件如MATLAB,Excel等进行绘图和分析; 可以图形曲线及三维动画形式观察仿真的结果;包括图形化数据管理界面,车辆模型求解器,绘图工具,三维动画回放工具,功率谱分析模块;程序稳定可靠; CarSim软件可以扩展为CarSim RT, CarSim RT 是实时车辆模型,提供与一些硬件实时系统的接口,可联合进行HIL仿真;

汽车碰撞模拟实验台设计

汽车碰撞模拟实验台设计 1 绪论 1.1 课题来源与国内外现状 随着科技的进步、经济的发展、人民生活水平的不断提高,汽车己经成为人们学习、工作、生活中不可缺少的代步工具,对人们的生活、生产产生了深刻的影响。作为一种便捷的现代化交通工具,汽车在给人们带来极大便利的同时,也因其造成的交通事故给人类的生命和财产安全带来了严重威胁。随着全球汽车保有量的不断增加,交通事故也随之增加,交通事故己经成为全球范围内的一大社会问题。 这是一组让人膛目结舌的数字。美国的汽车保有量为1.3亿辆,每年道路交通死亡4万人左右;日本的汽车保有量近8000万辆,每年道路交通死亡1.1万人,去年降到8000人。中国的汽车保有量是3000万辆,每年道路交通死亡近11万人,单车事故率相当于美国的近13倍,日本的近40倍。除去交通状况等客观因素,一个不可回避的原因就是中国汽车安全系数低,我国交通事故的严重程度由此可想而知。随着我国道路交通状况的不断改善,我国汽车的保有量不断增加,车速也逐渐提高,交通事故总量和所造成的人员伤亡与财产损失近年来也呈上升趋势。加强道路交通系统和汽车安全的研究,预防交通事故,是需要全社会共同关注和迫切改善的重要课题[1-2]。 汽车安全性问题与汽车的各种性能等直接或间接有关,对其研究最初是与提高汽车的整车性能的研究交织在一起的。随着二战后汽车工业的持续发展,到60年代中期,西方发达国家中汽车的保有量和汽车的动力性能有了明显的提高,公路上的车流密度和车流速度己达到了一个空前高的水平,汽车事故发生率空前高涨,汽车安全性受到了公众和政府部门的高度重视。从这一时期开始,各国相继制定或修订了安全法规,如美国的汽车安全标准FMVSS等[3]。在这些法规的制约下,以及为了提高汽车产品的竞争力,各大汽车制造商和一些研究机构开展了汽车安全性的专门研究。汽车安全性研究逐渐从汽车技术研究的其他领域分离出来形成了一个独立的分支。 1.2 汽车安全性的种类 汽车安全性可划分为主动安全性和被动安全性[4-5]。被动安全性是指汽车发生不可避免的交通事故后,能够对车内乘员或车外行人进行保护,以免发生伤害或使伤害减低到最低程度的性能。目前,汽车被动安全性研究内容包括车身结构抗撞性研究、碰撞生物力学研究以及乘员约束系统及安全驾驶室内饰组件的开发研究这三个方面。

汽车碰撞仿真技术

汽车碰撞安全技术 学号:2009********** 班级:2009级****** 姓名:******* 球撞板建模仿真分析实验 (一)试验目的 巩固汽车仿真分析基础知识,使对仿真分析有更深的认识,学习Hyperworks、LS-DYNA 软件基础,学习仿真分析的基本思想和基本方法步骤。 (二)试验设备 计算机、Hyperworks软件和LS-DYNA软件。 (三)试验原理 仿真分析主要分为数据前处理、后处理和分析计算等几个阶段,本实验主要通过建立球和板的几何模型、画分网格、给球和板富裕材料和截面属性、加载边界条件、建立在和条件、接触处理、定义控制卡片。删除临时阶段、节点重新排号、将文件导出成KEY文件、运营LS0DYNA进行分析仿真等步骤,模拟球撞板的过程,得出响应的仿真动画和仿真计算结果。(四)仿真步骤 1)建模过程 首先建立临时节点,并以此建立球模型和板模型。球为以临时节点为球心,5mm为半径;板距离球心的距离为5.5mm,即板和球的最小距离为0.5mm。 2)画网格 利用hypermesh画出球和板的二位网格。 3)定义模型特性 给ball和plane定义材料为20号刚体材料,其杨氏模量分别为200000和100000,泊松比均为0.3。 4)定义边界条件 将plane板上最外面的四行节点分别建成4个set。 5)建立载荷条件 定义球的位移,即给定球向板方向的距离,由此模拟球撞击板的过程。 6)定义接触 先做出两个用于接触的sagment,在这两个sagment上建立接触关系。 7)定义控制卡片 即建立Analysis-control cards (1)选择Control_Enegy,将hgen设置为2,return; (2)按next找到Control_Termination,将ENDTIM设为0.0001s,return; (3) 按next找到Control_Time_step,将DTINIT设为1*10-6s,将TSSFAC设置为0.6,点击return; (4) 按next找到DATABASE_BINARY_D3PLOT,将DT设置为5*10-6,return; (5) 按next找到DATABASE_OPTION,将MATSUM设置为1*10-6,将RCFORC设置为1*10-6,return. 8)删除临时节点 进入Geom中的temp nodes面板,删除临时节点。 9)节点重新排号 在tool-renumber面板中重新排序

纯电动车经济性能影响因素仿真教学文案

纯电动车经济性能影响因素仿真 1 纯电动汽车经济性能指标 纯电动汽车是以二次电池为储能载体二次电池以铅酸电池镍氢电池埋离子电池为主。由于二次电池目前在储电量、充放电性能、使用寿命、成本等方面无法与内燃机相比,因此近一时期以来,研究进展不大,大多数研究单位已将研究目标转为混合动力汽车。纯电动汽车的经济性能是在保证动力性的前提下,汽车以尽量少的能量消耗行驶的能力,纯电动汽车在等速行驶、加速行驶和循环工况下的能量消耗率和续驶里程来决定经济性能的优劣。车辆能耗经济性评价常用的指标都是以一定的车速或者循环行驶工况为基础,以车辆行驶一定里程的能量消耗量或一定能量可反映出车辆行驶的里程来衡量。纯电动汽车能量消耗率是动力电池存放的电量维持汽车某一工况下运行的能力,如单位里程消耗的能量、百公里消耗能量;续驶里程是指纯电动汽车从动力电池全充满状态开始到试验规定结束时所走过的里程,如以45km/h行驶的里程等。为了使电动汽车能耗经济性评价指标具有普遍性,其评价指标应该具有以下三个条件: (1)可以对不同类型的电动汽车进行比较; (2)指标参数值与整车存储能量总量无关; (3)可以直接通过参数指标进行能耗经济性判断; 不同的纯电动汽车在不同的行驶工况下能量消耗率和续驶里程可能会不同,很难用统一的公式进行计算,下面将运用仿真的方法得出纯电动汽车的续驶里程和能量消耗率。 2 铃木电动车仿真分析 根据目前国内外有关学者对纯电动汽车的研究结论,可以看出,纯电动汽车的研发出现了难以进行下去的问题。一方面是由于纯电动汽车面临的成本和续驶里程等问题,一直没有很好的解决;另一方面,和人们对电动汽车的要求过于完美化,提出不切实际的过高要求有关。因此,对纯电动车经济性能影响因素的分析和研究,可以对解决这个问题找到一些方法或者启示。 电动汽车仿真软件ADVISOR由美国国家再生能源实验室开发,使用后向仿真为主、前向仿真为辅的混合设计方法,具有车辆总成参数匹配与优化、传动/驱动系统能量转化分析、排放特性/能量消耗对比、车辆能量管理策略评价、整车综合性能预测分析等功能。以下是铃木某款纯电动车的整车部分参数,汽车采用永磁电机和镍氢电池,并建立ADVISOR的仿真模型,分析影响纯电动汽车经济性能的参数[2]。建立ADVISOR的仿真模型需要的参数有整车整备质量、空气阻力系数、迎风面积、轴距、最大载荷、电机最大功率、电机额定电压、电机最大扭矩、电池容量、主减速比。在已知以上参数的情况下建立ADVISOR的仿真模型。微型电动汽车具有无污染、低噪音、小体积、低速度和易驾驶等优点,使得它可以穿梭与大城市的各种道路,能够直接到达出租车都不能到达的身居小巷。微型电动汽车的最高时速一般为45km/h,虽然比一般小汽车的速度慢,但比步行或骑自行车快得多。因此微型电动汽车作为代步工具是相当合适的。另外,微型电动汽车的低速度也提高了它在居住区行驶时的安全性。驾驶微型电动汽车,比驾驶小汽车简单得多。ADVIDOR提供了道路循环(Drive Cycle)、多重循环(Multiple)和测试过程(Test Procedure)3种仿真工况来仿真车辆的性能。道路循环提供了CYC.ECE、CYC.FTP和CYC.1015等56种国外标准的道路循环供用户选择,另外提供了行程设计器(Trip Buider),可以将多达8种不同的道路循环任意组合在一起,综合仿真车辆的性能。多重循环功能可以用批量处理的方式以相同的初始条件,快速计算和保存不同的道路循环情况下的仿真结果,并将它们显示在一起,供用户比较。测试过程包括

车辆动力学仿真

车辆动力学仿真 课程编码:202060 课程英文译名:Dynamics Simulation of Vehicle System 课程类别:专业课 开课对象:车辆工程专业开课学期:第7学期 学分:2.5学分;总学时: 40学时;理论课学时:32学时;上机学时: 8学时 先修课程:理论力学、材料力学、机械原理、机械设计、机械振动 教材:车辆动力学模拟及其方法,威鲁麦特(德),北京理工大学出版社, 1998.5 ,第1版 参考书:【1】汽车系统动力学,张洪欣,同济大学出版社, 1996 ,第1版【2】汽车系统动力学及仿真,雷雨成,国防工业出版社, 1997 ,第1版一、课程的性质、目的和任务 《车辆系统动力学仿真》是车辆工程专业理论性较强的专业课。本课程的目的是,使学生初步学会汽车动力学分析方法,能够解决工程实际问题,以便增强其研究和解决车辆动力学问题的能力。本课程的任务,是以数学力学模型为基础,结合虚拟样机仿真技术,讲授汽车的垂直动力学、横向动力学、纵向动力学,为继续学习和掌握汽车新科技创造条件。 二、课程的基本要求 对汽车动力学有一定的了解,掌握有关的基本概念、基本理论和基本方法及其应用,掌握汽车多体动力学仿真的方法。具体要求为: 1.对汽车动力学仿真的基本概念和基本分析方法有明确的认识; 2.掌握单自由度系统的振动系统,自由振动、强迫振动的微分方程的建立方法; 3.掌握多自由度系统的振动系统的微分方程,初步掌握多自由度系统振动的模态分析方法; 4.了解随机振动的一些基本概念,掌握路面不平度功率谱密度的概念及其计算方法; 5.掌握汽车垂直动力学模型的建立方法,以及路面激励对汽车振动的影响; 6.掌握汽车弹簧、减震器、橡胶金属部件、轮胎等部件垂向动力学的特性; 7.掌握汽车纵向动力学微分方程,掌握滚动阻力、爬坡阻力、加速阻力的计算方法; 8.掌握驱动附着率、制动附着率对行驶极限的影响; 9.掌握汽车横向动力学的微分方程建立方法,及其横向动力学微分方程的特性; 10.掌握汽车操作稳定性的概念及其影响汽车操作稳定性的因素; 11.掌握轮胎的真实特性,初步掌握轮胎动力学的初步概念。

汽车碰撞模拟分析流程

ANSYS 汽车碰撞分析流程Flow Chart of Auto Impact Analysis Prepared By 史志远 Date: Nov.1, 2004

汽车碰撞模拟分析流程 一、碰撞安全性试验介绍: 在汽车模拟分析的过程中,提高汽车碰撞安全性的目的是在汽车发生碰撞时确保乘员生存空间、缓和冲击、防止发生火灾等等。但是从碰撞事故分析中可知,汽车碰撞事故的形态也千差万别,所以对汽车碰撞安全性能的评价也必须针对不同的碰撞形态来进行。按事故统计结果,汽车碰撞事故主要可分为正面碰撞、侧面碰撞、追尾碰撞和翻车等几种类型。但随着公路条件的改善,正面碰撞和侧面碰撞形态成了交通事故中最常见的碰撞形式。 按照碰撞试验的目的区分,现在碰撞试验大体可以分为三类: 1)由政府法规要求的强制性试验:例如FMVSS208、ECE R94法规规定的正面碰撞 试验,FMVSS214、ECE R95法规规定的侧面碰撞试验等等; 2)由汽车制造厂自己制定的碰撞试验方法:例如用于提出改善汽车碰撞安全性的新 措施等等; 3)为消费者提供信息的试验:例如美国、欧洲等国家实施的新车评价程序(NCAP), 汽车安全法规中规定了达到政府规定的最低安全性能要求,NCAP以更高的车速 进行正面碰撞试验,以展示汽车产品的碰撞安全性能。 由于法规试验是政府强制实施的,所以,汽车碰撞试验法规是人们关注的热点。下表列出了一些美国FMVSS, 欧洲ECE的汽车被动安全性法规的试验项目。

二、人体伤害评价指标: 在碰撞试验或碰撞模拟分析的过程中,都使用了标准的碰撞试验假人,通过测量假人的响应计算出伤害的指标,用于定量的评价整车及安全部件的保护效能。 1) Hybrid III假人家族的伤害评价基准值: 下表列出了正面碰撞试验用的Hybrid III假人家族的伤害评价基准值。Hybrid III第50百分位男性假人是目前生物保真性最好的正面碰撞试验假人,另外,为了评价汽车对不同身材乘员的安全保护性能,按比例方法开发了第95百分位男性的大身材假人和第5百分位女性的小身材假人。 2)侧面碰撞假人的伤害评价基准值: 下表所示为目前使用的用于侧面碰撞用的假人SID, EuroSID-1的伤害评价基准值:

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

相关文档
最新文档