矩阵相似的性质

矩阵相似的性质
矩阵相似的性质

1 矩阵的相似

1.1 定义 1.2性质 1.3定理(证明) 1.4 相似矩阵与若尔当标准形 2 相似的条件

3 相似矩阵的应用(相似矩阵与特征矩阵 相似矩阵与矩阵的对角化 相似矩阵在微分方程中的应用 【1 】)

矩阵的相似及其应用 1.1 矩阵的相似

定义 1.1:设,A B 为数域P 上两个n 级矩阵,如果可以找到数域P 上的n 级可逆矩阵X ,使得1B X AX -=,就说A 相似于B 记作A B ∽ 1.2 相似的性质

(1)反身性A A ∽:;这是因为1A E AE -=.

(2)对称性:如果A B ∽,那么B A ∽;如果A B ∽,那么有X ,使1B X AX -=,令1Y X -=,就有11A XBX Y BY --==,所以B A ∽。

(3)传递性:如果A B ∽,B C ∽,那么A C ∽。已知有,X Y 使1B X AX -=,

C 1Y BY -=。令Z XY =,就有111C Y X AXY Z AZ ---==,因此,A C ∽。 1.3 相似矩阵的性质 若,n n A B C ?∈,A B ∽,则: (1)()()r A r B =;

引理:A 是一个s n ?矩阵,如果P 是一个s s ?可逆矩阵,Q 是n n ?可逆矩阵,

那么秩(A )=秩(PA )=秩(AQ )

证明:设,A B 相似,即存在数域P 上的可逆矩阵C ,使得1B C AC -=,由引理2可知,秩

(B )=秩(1

B C AC -=)=秩(AC )=秩(A )

(2)设A 相似于B ,()f x 是任意多项式,则()f A 相似于()f B ,即

11()()P AP B P f A P f B --=?=

证明:设1110()n n n n f x a x a x a x a --=+++ 于是,1

110()n n n n f A a A a A a A a E --=+++ 1

110()n n n n f B a B a B a B a E --=++

+

由于A 相似于B ,则k

A 相似与k

B ,(k 为任意正整数),即存在可逆矩阵X ,使得

1k k B X A X -=,

因此 ()()111110n n n n X f A X X a A a A a A a E X ----=++

+

111

1110n n n n a X A X a X A X a X AX a E -----=++

++

1

110n n n n a B a B a B a E --=++

+

()f B = 所以()f A 相似于()f B 。

(3)相似矩阵有相同的行列式,即,A B trA trB ==;

证明:设A B 与相似,即存在数域P 上的可逆矩阵C ,使得1B C AC -=,两边取行列式

得:111B C AC C A C A C C A ---====,从而相似矩阵有相同的行列式。

又由性质(2)知,A B 与有相同的特征多项式,因而有相同的特征值12,,,n λλλ,而

A 的迹12n trA λλλ=++

+,B 的迹12n trB λλλ=+++,从而trA trB =,即相似

矩阵有相同的迹

(4)A 与B 有相同的Jordan 标准形; (5)相似矩阵同时可逆或同时不可逆。

证明:设A B 与相似,由性质2可知A B =,若A 可逆,即0A ≠,从而0B ≠,故B

可逆;若A 不可逆,即=0A ,从而=0B ,故B 不可逆。 (6)若A 与B 相似,B D 与相似,则0000A B C D ????

? ?????

与相似。

证明:A 与B 相似,即存在可逆矩阵P ,使得1

B P AP -=,

C

D 与相似,即存在可逆矩阵Q ,

使得1

D Q CQ -=,由于110000=0000B A P P D C Q Q --????????

? ? ??????

????? 1

000=000P A P Q C Q -?????? ? ?????????

显然00P Q ??

???

是可逆矩阵。由此可见,则0000A B C D ????

? ?????与相似。

定理1.1:线性变换在不同基下所对应的矩阵是相似的;反过来,如果两个矩阵相似,那么它们可以看作同一个线性变换在两组基下所对应的矩阵。

证明:先证前一部分。设线性空间V 中线性变换A 在两组基:

12,,,n εεε (1) 12,,.,n ηηη(2)

下的矩阵分别为A 和B ,从基⑴到基⑵的过渡矩阵为X ,则:

1212(,,,)(,,.,)n n A A A A εεεεεε=, 1212(,,,)(,,

,)n n A A A B ηηηηηη=

1212(,,

,)(,,.

,)n n X ηηηεεε=

1212(,,

,)(,,

,)

n n A A A A ηηηηηη=12[(,,.

,)]n A X εεε=

12(,,,)n A A A X εεε= 12(,,

,.)n AX εεε= 112(,,.,)n X AX ηηη-=

由此可得 1

B X AX -=

现在证后一部分。设n 级矩阵A 和B 相似,那么它们可以 看作是n 维线性空间V 中一个线性变换 在基12,,.,n εεε下

的矩阵。因为1B X AX -=,令:

1212(,,

,)(,,

,.)n n X ηηηεεε=,显然,12,,n ηηη 也是一组基,A 在这组基下的

矩阵

就是B 。

例一:证明12

n λλλ??

?

? ? ??

?与2

1i i in λλ

λ??

?

? ? ? ??

?

相似,其中 12

,,

,n

i i i 是

1,2,

,n 的一个排列。

证明:设:

1

2

1212(,,)(,,

)n n n A λλεεεεεελ?? ? ?== ? ??

?

,则

2

1

12

1

2(,

,,)(,

,,.)i i n n in A λλ

εεεεεελ?? ? ?== ? ? ??

?

,因为12

n λλλ??

? ? ? ???

2

1i i in λλ

λ?? ?

? ? ? ??

?

是线性变换A 在不同基下的矩阵,故它们相似。

定理2.1:设,A B 是数域P 上的两个n 级矩阵,A 与B 相似的充要条件是它们的特征矩阵

E A λ-和E B λ-等价。

例一:设,,a b c 是实数,b c a A c a b a b c ?? ?= ? ???,c a b B a b c b c a ??

?

= ? ???

,证明A 与B 相似。

证明:

b c a E A c a b a b c λλλλ---?? ?-=--- ? ?---??a b c c a b b c a λλλ---?? ?→--- ? ?---??c a

b b

c a a b c λλλ---?? ?

→--- ? ?---??

c a

b a b

c E B b c a λλλλ---?? ?

→---=- ? ?---??

故E A λ-和E B λ-等价,从而A B ∽

3,矩阵相似的应用 3.1相似矩阵与特征矩阵

定义3.1.1:把矩阵A (或线性变换A )的每个次数大于零的不变因子分解成互相同的一次因式方幂的乘积,所有这些一次因式方幂(相同的必须按出现的次数计算)称为矩阵A (或线性变换A )的初等因子。

定理3.1.1:数域F 上的方阵A B 与相似的充要条件是E A λ-和E B λ-有相同的列式因子。

定理3.1.2:两个同级复数矩阵相似充要条件是它们有相同的初等因子。

例1:证明:任何方阵A 与其转置方阵A ' 相似。

证明:因为E A λ-与E A λ'- 互为转置矩阵,它们对应k 阶子式互为转置行列式,故相等。从而两者有完全相同的各阶行列式因子,于是两者有完全相同的不变因子。故E A λ-与E A λ'- 等价,从而A 与A ' 相似。

例2:证明:相似方阵有相同的最小的多项式。

证法一:设A B 与相似,即可存在可逆矩阵Q ,使1B Q AQ -=,又设A B 与的最小

多项式分别为()()12,g g λλ,于是:()()()111210g B g Q AQ Q g A Q --===,但是,

B 的最小多项式整除任何以B 为根的多项式,故()()12g g λλ=

证法二:设A B 与相似,则E A λ-和E B λ-等价,从而有完全相同的不变因子,但最后一个不变因子就是最小多项式,故A B 与有相同的最小的多项式。

4 相似矩阵与矩阵的对角化

矩阵的对角化问题的解法及其应用都有其明显特色,因而线性代数中通常被单独处理,尽管矩阵相似是完全独立的另一概念,但是却与对角化问题有重要的关联。

定义3.1.2:数域F 上方阵A ,如果与一个F 上的对角方阵相似,则称A 在F 上可对角化。

定理3.2.3:复数矩阵A 与对角矩阵相似的充分必要条件是A 的初等因子全是一次的。

定理3.2.4:复数矩阵A 与对角阵相似的充分必要条件是A 的不变因子都没有重根。

定理3.2.5:复数域上方阵A 与一个对角矩阵相似的充分必要条件是A 的最小多项式没有重根。

定理3.2.6:设A 是n 阶方阵,则以下条件是等价的:(1)A 相似于对角矩阵;(2)属于A 的不同特征值的特征向量线性无关;(3)A 有n 个线性无关的特征向量;(4)A 的每一特征值的代数重数都等于它的几何重数。

例4:设复矩阵A 的最小多项式()21k f λλ=-,证明:A 与对角阵相似。

证明:()()()()221,1,21k k f f k λλλλ-'=-= ,即A 的最小多项式无重根,所以A 的初等因子都是一次的,所以A 相似于对角阵。

例5:设A 为n 阶方阵,()f E A λλ=- 是A 的特征多项式,并令:

()()

()()()

,f G f f λλλλ=

',证明:A 与一个对角矩阵相似的充分必要条件是

()0g A =。

证明:设()()

()

()

1

2

12n n n

r f E A λλλλλλλλ=-=---,其中12,,...r λλλ

互不相等,且12r n n n n ++

=,则:()()()()12r g λλλλλλλ=---。如果A

与一个对角矩阵相似,则E A λ-的初等因子都是一次的,其中全部不同的初等因子是12,,

,r λλλλλλ--- ,它们的乘积就是E A λ-最后一个不变因子

()n d λ,亦即()()()()()12n r d g λλλλλλλλ=---=。

但()n d λ 就 是E A λ-的 最 小 多 项 式 , 所 以()()0n g A d A ==。反之,若()0g A =,则A 的最小多项式()n d λ整除()g λ,因而()n d λ没有重根,故A 与对角矩阵相似。

例7:设131210311A --??

?

= ? ???

,试证明:

(1)A 在复数域上可对角化;(2)A 在有理数域上不可对角化。

证明:⑴()323128f E A λλλλλ=-=-+- ,()23612f λλλ'=-+,

用辗转相除法可证得()()(),1f f λλ'=,故在复数域上A 相似于对角矩阵。

(2)若A 在有理数域上可对角化,那么A 的特征值必须都是有理数,从而()f λ有有理根,而()f λ的首项系数为1,从而()f λ的有理根必为整数根。由于()f λ的常数项为-8,如果()f λ有整数根必为1,2,4,8±±±±,用综合除法验算它们都不是()f λ的根,因此()f λ无有理根,从而得证A 在有理数域上不可对角化。

注:两个矩阵是否相似同数域的大小无关,但是,一个矩阵是否可对角化

(即与一个对角矩阵相似)却同数域的大小有关,例如,二阶方阵0110A -??

= ???在

实数域上不可对角化,但在复数域上却可以对角化,因为此时它与对角矩阵

00i B i ??= ?-??

相似,事实上,取11P i i ??=

?-?? ,即有1

P AP B -=。

旋转矩阵公式法

旋转矩阵公式法!一,选11个号,中了5个号,100%能组合到4个号。假设你选了01、02、03、04、05、06、07、08、09、10、11,则可以组合成以下22注,需投入44元: (1)01、05、07、09、11 (2)01、05、06、08、10 (3)01、04、06、08、09 (4)01、04、05、07、10 (5)01、03、07、08、11 (6)01、03、04、09、10 (7)01、02、06、10、11 (8)01、02、04、08、11 (9)01、02、03、06、07 (10)01、02、03、05、09 (11)02、07、08、09、10 (12)02、05、06、07、08 (13)02、04、07、09、11 (14)02、04、05、06、09 (15)02、03、05、10、11 (16)02、03、04、08、10 (17)03、06、08、09、11 (18)03、06、07、09、10 (19)03、04、05、07、08 (20)03、04、05、06、11 (21)04、06、07、10、11 (22)05、08、09、10、11 二,选11个号,中了4个号,100%能组合到4个号。假设你选了01、02、03、04、05、06、07、08、09、10、11,则可以组合成以下66注,只要132元就能搞定: (1)01、07、08、09、10 (2)01、06、07、09、11 (3)01、05、08、09、11 (4)01、05、07、10、11 (5)01、05、06、08、10 (6)01、04、09、10、11 (7)01、04、06、08、11 (8)01、04、06、07、10 (9)01、04、05、07、08 (10)01、04、05、06、09 (11)01、03、08、10、11 (12)01、03、06、09、10 (13)01、03、06、07、08 (14)01、03、05、07、09 (15)01、03、05、06、11 (16)01、03、04、08、09 (17)01、03、04、07、11 (18)01、03、04、05、10

矩阵的合同-等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ=L ,12(,,,)m B βββ=L 1、若向量组(12,,,m βββL )是向量组(12,,,n λλλL )的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλL )?(12,,,m βββL )则有矩阵A,B 同型且()()~,,r A r B A B A B A B =??;r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>?L L 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

旋转变换(一)旋转矩阵

旋转变换(一)旋转矩阵 1. 简介 计算机图形学中的应用非常广泛的变换是一种称为仿射变换的特殊变换,在仿射变换中的基本变换包括平移、旋转、缩放、剪切这几种。本文以及接下来的几篇文章重点介绍一下关于旋转的变换,包括二维旋转变换、三维旋转变换以及它的一些表达方式(旋转矩阵、四元数、欧拉角等)。 2. 绕原点二维旋转 首先要明确旋转在二维中是绕着某一个点进行旋转,三维中是绕着某一个轴进行旋转。二维旋转中最简单的场景是绕着坐标原点进行的旋转,如下图所示: 如图所示点v 绕原点旋转θ角,得到点v’,假设v点的坐标是(x, y) ,那么可以推导得到v’点的坐标(x’, y’)(设原点到v的距离是r,原点到v点的向量与x轴的夹角是? ) x=rcos?y=rsin? x′=rcos(θ+?)y′=rsin(θ+?) 通过三角函数展开得到 x′=rcosθcos??rsinθsin? y′=rsinθcos?+rcosθsin? 带入x和y表达式得到 x′=xcosθ?ysinθ y′=xsinθ+ycosθ 写成矩阵的形式是: 尽管图示中仅仅表示的是旋转一个锐角θ的情形,但是我们推导中使用的是三角函数的基本定义来计算坐标的,因此当旋转的角度是任意角度(例如大于180度,导致v’点进入到第四象限)结论仍然是成立的。 3. 绕任意点的二维旋转 绕原点的旋转是二维旋转最基本的情况,当我们需要进行绕任意点旋转时,我们可以把这种情况转换到绕原点的旋转,思路如下: 1. 首先将旋转点移动到原点处 2. 执行如2所描述的绕原点的旋转 3. 再将旋转点移回到原来的位置

也就是说在处理绕任意点旋转的情况下需要执行两次平移的操作。假设平移的矩阵是T(x,y),也就是说我们需要得到的坐标v’=T(x,y)*R*T(-x,-y)(我们使用的是列坐标描述点的坐标,因此是左乘,首先执行T(-x,-y)) 在计算机图形学中,为了统一将平移、旋转、缩放等用矩阵表示,需要引入齐次坐标。(假设使用2x2的矩阵,是没有办法描述平移操作的,只有引入3x3矩阵形式,才能统一描述二维中的平移、旋转、缩放操作。同理必须使用4x4的矩阵才能统一描述三维的变换)。 对于二维平移,如下图所示,P点经过x和y方向的平移到P’点,可以得到: x′=x+tx y′=y+ty 由于引入了齐次坐标,在描述二维坐标的时候,使用(x,y,w)的方式(一般w=1),于是可以写成下面矩阵的形式 按矩阵乘法展开,正好得到上面的表达式。也就是说平移矩阵是 如果平移值是(-tx,-ty)那么很明显平移矩阵式 我们可以把2中描述的旋转矩阵也扩展到3x3的方式,变为:

三维旋转矩阵的计算

三维旋转矩阵的计算 旋转矩阵(Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。 在三维空间中,旋转变换是最基本的变换类型之一,有多种描述方式,如Euler 角、旋转矩阵、旋转轴/旋转角度、四元数等。本文将介绍各种描述方式以及它们之间的转换。 1. 旋转矩阵 用一个3阶正交矩阵来表示旋转变换,是一种最常用的表示方法。容易证明,3阶正交阵的自由度为3。注意,它的行列式必须等于1,当等于-1的时候相当于还做了一个镜像变换。 2. Euler角 根据Euler定理,在三维空间中,任意一种旋转变换都可以归结为若干个沿着坐标轴旋转的组合,组合的个数不超过三个并且两个相邻的旋转必须沿着不同的坐标轴。因此,可以用三个沿着坐标轴旋转的角度来表示一个变换,称为Euler角。旋转变换是不可交换的,根据旋转顺序的不同,有12种表示方式,分别为:XYZ、XZY、XYX、XZX、YXZ、YZX、YXY、YZY、ZXY、ZYX、ZXZ、ZYZ,可以自由选择其中的一种。对于同一个变换,旋转顺序不同,Euler角也不同,在指定Euler角时应当首先约定旋转顺序。 2.1 Euler角转化为旋转矩阵 不妨设先绕Z轴旋转γ,再绕Y轴旋转β,最后绕X轴旋转α,即旋转顺序为XYZ,旋转矩阵

3. 旋转轴/旋转角度 用旋转轴的方向向量n和旋转角度θ来表示一个旋转,其中 θ>0表示逆时针旋转。 3.1 旋转轴/旋转角度转化为旋转矩阵 设v是任意一个向量,定义

相似矩阵的性质及应用

华北水利水电大学相似矩阵的性质及应用 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2013年11月6 日

摘要:若矩阵P可逆,则矩阵P-1AP与A称为相似。矩阵相似的概念是为深入研 究矩阵特性而提出的,其中一部分的问题可以转化为与一个对角化矩阵相似问题进而使问题研究简化,而另一些矩阵不能与一个对角矩阵相似,那么这类问题就只能用定义或者若而当标准型来解决。相似矩阵有很多应用。例如:利用相似矩阵的性质来确定矩阵中未知元素方法的完整性;两个相似矩阵属于同一个特征值的特征向量之间的关系;矩阵相似与特征多项式的等价条件及相关结果;尤其是矩阵的标准形及其对角化问题,在高等代数和其他学科中都有极其广泛的应用。本文将讨论相似矩阵的有关性质及其应用。 关键词:相似矩阵;对角化;Jordan标准型;特征向量;特征值 英文题目:The properties and application of similar matrix Abstract:There are a lot of applications about similar matrix. Matrix for further research is the concept of similarity matrix characteristics, and that part of the problem can be converted into similar problems with a diagonalization matrix to simplify the problem study, while others matrix cannot be similar to a diagonal matrix, so this kind of problem can only use a definition or if and when the standard to solve.For example, we can discuss the integrality of the method by using the properties of similar matrices to confirm unknown elements and characteristic subspaces of similar matrices belong to the same characteristic value are isomorphism. Also we may discuss the equivalent conditions for similar matrices and their characteristic polynomial and their corresponding results, especially, applications of digitalization matrices in advanced algebra theory and other subjects are probed into.In this paper I will give out some corresponding properties of similar matrices and show their appliance. Key words:similar matrices; diagonal matrix; Jordan’s normal form; characteristic value; characteristic vector

旋转矩阵

三维旋转矩阵 三维旋转特性 给定单位向量u和旋转角度φ,则R(φ,u)表示绕单位向量u旋转φ角度。 R(0,u)表示旋转零度。 R(φ,u)= R(?φ,?u)。 R(π+φ,u)= R(π?φ,?u)。 如果φ=0,则u为任意值。 如果0<φ<π,则u唯一确定。 如果φ= π,则符号不是很重要。因为- π和π是一致的,结果相同,动作不同。 由旋转矩阵求旋转角和旋转轴 每一个三维旋转都能有旋转轴和旋转角唯一确定,好多方法都可以从旋转矩阵求出旋转轴和旋转角,下面简单介绍用特征值和特征向量确定旋转轴和旋转角的方法。 将旋转矩阵作用在旋转轴上,则旋转轴还是原来的旋转轴,公式表示如下: Ru=u 转化得: Ru=Iu =>(R?I)u=0 可以确定的是u在R-I的零空间中,角度可有下面的公式求得,Tr表示矩阵的迹: Tr(R)=1+2cosθ 从旋转轴和旋转角求旋转矩阵 假设给定单位向量u=(u x,u y, u z) T ,并且u为单位向量即: u x2+u y2+u z2=1,给定绕u旋转的角度θ,可以得出旋转矩阵R: R=[cosθ+u x2(1?cosθ)u x u y(1?cosθ)?u z sinθu x u z(1?cosθ)+u y sinθ u y u x(1?cosθ)+u z sinθcosθ+u y2(1?cosθ)u y u z(1?cosθ)?u x sinθ u z u x(1?cosθ)?u y sinθu z u y(1?cosθ)+u x sinθcosθ+u z2(1?cosθ) ] 上面的公式等价于: R=cosθI+sinθ[u]×+(1?cosθ)u?u 其中[u]×是单位向量u的叉乘矩阵,?表示张量积,I是单位向量. 这是罗德里格斯旋转方程的矩阵表示。下面给出叉乘和张量积的公式:

矩阵相似的性质:矩阵相似例题

1 矩阵的相似 1 定义2性质3定理(证明)4 相似矩阵与若尔当标准形 2 相似的条件 3 相似矩阵的应用(相似矩阵与特征矩阵相似矩阵与矩阵的对角化相似矩阵在微分方程中的应用【1 】) 矩阵的相似及其应用1 矩阵的相似 定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B?X?1AX,就说A相似于B记作A∽B 2 相似的性质 (1)反身性A∽A;这是因为A?E?1AE. (2)对称性如果A∽B,那么B∽A;如果A∽B,那么有X,使B?X?1AX,令Y?X?1,就有A?XBX?1?Y?1BY,所以B∽A。 (3)传递性如果A∽B,B∽C,那么A∽C。已知有X,Y使B?X?1AX, C?Y?1BY。令Z?XY,就有C?Y?1X?1AXY?Z?1AZ,因此,A∽C。 3 相似矩阵的性质若A,B?Cn?n,A∽B,则(1)r(A)?r(B);

Q是n?n可逆矩阵,引理A是一个s?n矩阵,如果P是一个s?s可逆矩阵,那么秩(A) =秩(PA)=秩(AQ) 证明设A,B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,由引理2可知,秩 ?1 (B)=秩(B?CAC)=秩(AC)=秩(A) (2)设A相似于B,f(x)是任意多项式,则f(A)相似于f(B),即 P?1AP?B?P?1f(A)P?f(B) 证明设f(x)?anx?an?1x nn n?1

a1x?a0 a1A?a0E a1B?a0E 于是,f(A)?anAn?an?1An?1? f(B)?anB?an?1B n?1 kk 由于A相似于B,则A相似与B,(k为任意正整数),即存在可逆矩阵X,使得 Bk?X?1AkX, ?1?1 anAn?an?1An?1?因此Xf?A?X?X ?a1A?a0E?X

旋转矩阵公式表

S=10—13的旋转矩阵公式一览 选10个号码,出7中6型旋转矩阵 A,B,C,D,E,F,G A,B,C,D,H,I,J A,B,C,E,F,H,J A,B,C,E,F,I,J A,B,D,E,F,H,J A,B,D,E,F,I,J A,B,E,F,G,H,I A,C,E,G,H,I,J B,D,F,G,H,I,J C,D,E,F,G,H,I C,D,E,F,G,H,J C,D,E,F,G,I,J 一、10个号码(选6中5 - 12注) 2 3 5 6 7 9 ,1 2 4 7 9 10, 3 4 6 7 8 10 3 4 5 6 9 10 ,1 3 5 6 7 10, 1 2 4 5 6 8 1 2 3 4 8 9 ,1 4 5 7 8 9, 2 3 5 7 8 10 1 2 6 8 9 10 ,1 2 3 4 5 10, 1 3 6 7 8 9 二、11个号码(选6中5 – 19注) 2 3 7 9 10 11,2 4 7 8 10 11,1 3 4 6 7 10

2 3 4 6 8 9,1 4 5 7 8 9,3 5 7 8 9 10 1 2 6 8 9 10,1 2 3 4 5 10,1 2 3 7 8 11 1 2 4 6 7 11,2 4 5 8 9 11,3 4 5 6 7 11 1 2 3 5 6 9,2 5 6 7 8 10,1 3 4 8 9 11 1 6 7 8 9 11, 三、12个号码(选6中5 – 33注) 2 3 9 10 11 12, 4 7 8 10 11 12,1 3 6 7 10 12 1 2 5 8 10 12, 1 5 7 9 11 12,3 5 6 8 11 12 2 3 4 6 8 10, 2 6 7 8 9 12,3 5 8 9 10 12 4 5 6 9 10 12, 1 3 4 5 10 11,2 3 7 8 10 11 1 2 4 7 9 10, 2 4 5 8 9 11,3 4 6 7 9 11 1 2 3 5 6 9, 2 5 6 7 10 11,1 3 4 8 9 12 1 6 8 9 10 11, 1 4 5 6 7 8,1 4 5 6 10 11 2 3 4 5 7 12, 1 3 4 8 11 12,1 2 3 5 7 11 1 3 7 8 9 11, 1 2 4 6 9 12,1 2 4 10 11 12 1 2 6 8 11 12, 1 2 3 4 7 8,2 4 6 7 11 12 1 2 3 6 9 11, 5 6 7 8 9 10,3 4 5 7 9 10 四、13个号码(选6中5 - 56注) 3 9 10 11 12 13, 4 7 8 10 12 13,1 3 6 7 12 13 1 2 5 6 7 10,1 2 5 7 12 13,5 6 8 11 12 13

矩阵相似的性质

1 矩阵的相似 1.1 定义 1.2性质 1.3定理(证明) 1.4 相似矩阵与若尔当标准形 2 相似的条件 3 相似矩阵的应用(相似矩阵与特征矩阵 相似矩阵与矩阵的对角化 相似矩阵在微分方程中的应用 【1 】) 矩阵的相似及其应用 1.1 矩阵的相似 定义 1.1:设,A B 为数域P 上两个n 级矩阵,如果可以找到数域P 上的n 级可逆矩阵X ,使得1B X AX -=,就说A 相似于B 记作A B ∽ 1.2 相似的性质 (1)反身性A A ∽:;这是因为1A E AE -=. (2)对称性:如果A B ∽,那么B A ∽;如果A B ∽,那么有X ,使1B X AX -=,令1Y X -=,就有11A XBX Y BY --==,所以B A ∽。 (3)传递性:如果A B ∽,B C ∽,那么A C ∽。已知有,X Y 使1B X AX -=, C 1Y BY -=。令Z XY =,就有111C Y X AXY Z AZ ---==,因此,A C ∽。 1.3 相似矩阵的性质 若,n n A B C ?∈,A B ∽,则: (1)()()r A r B =; 引理:A 是一个s n ?矩阵,如果P 是一个s s ?可逆矩阵,Q 是n n ?可逆矩阵, 那么秩(A )=秩(PA )=秩(AQ ) 证明:设,A B 相似,即存在数域P 上的可逆矩阵C ,使得1B C AC -=,由引理2可知,秩 (B )=秩(1 B C AC -=)=秩(AC )=秩(A ) (2)设A 相似于B ,()f x 是任意多项式,则()f A 相似于()f B ,即 11()()P AP B P f A P f B --=?= 证明:设1110()n n n n f x a x a x a x a --=+++ 于是,1 110()n n n n f A a A a A a A a E --=+++ 1 110()n n n n f B a B a B a B a E --=++ + 由于A 相似于B ,则k A 相似与k B ,(k 为任意正整数),即存在可逆矩阵X ,使得

旋转矩阵原理

旋转矩阵原理 揭秘大乐透旋转矩阵原理及算法 (2014-08-07 13:16:36) 转载? 标分类: 艺眸原创教程 签: 股票 财经 彩票 旋转 矩阵 大乐 透 摘要:本研究针对乐透型彩票模型~采用的覆盖设计数学方法~并针对传统的“恰好全部至少有一次覆盖”的简单目标向“恰好全部覆盖一次的最少成本”的目标升级。此研究的理论依据并不是概率论~是纯粹的数据组合。算法可用于研究并不仅限于乐透型彩票的选号应用~可以拓展应用于医药测试、育种等等其他领域。算法的可靠度较强~算法的 测试结果接近最优解的100%~95%,算法仅供参考学习研究~请勿用于其他目的。 关键词:彩票,旋转矩阵,覆盖设计,算法。 一、绪论

改革开放30多年来~随着人们的精神生活日益丰富~公益彩票行业也激起了广大群众的参与热情~其中原由一是出于对公益事件的支持~二是受彩票巨额奖金的吸引。众所周知~彩票的开奖结果是随机性极强的~国家也大力支持开奖过程的透明化。然而毕竟受到诸多因素限制~即便结果接近“随机”~也呈现出一定规律。这种规律的研究方法很多~较于广大彩民接受的是统计法以及概率论。对于更高层的部分“技术彩民”而言~简单的统计与概率学分析已经无法满足对研究的准确性的要求~因为相对于开奖结果数量的千万种~现有的标本才几千个根本无法作出准确的判断~于是数据的组合运筹开始得到彩民的接受与青睐~因为这种方法可以“摆脱概率”。 在彩票数据的组合之中~有一种方法叫做“聪明组合”~其目标是提高中奖机会。这种所谓的“聪明组合”就是一种数学里面的覆盖设计~简单地讲就是把“可供用于选择的数据”最少地选择~要求是“牺牲最大的胃口能满足最佳的要求”。当然不同的覆盖设计具有不同的设计目标。网络上流 行的一些“中6保5”“中5保4”之类的就是“聪明组合”的应用。 为了更好地让读者理解后文所说的“恰好全部覆盖一次的最少成本”这一概念~先讲述一下所谓的“中M保N”到底是怎么回事。 举个实例:大乐透35选5,篮球12选2的研究此处略去,~如果选择8个数~这8个数里面如果有即将开奖的5个数~现在通过一个组合~要求不管怎样~这个组合都能保证至少有一组能满足中4个,也有可能中5个,。那么~我们称这个组合叫做“大乐透选8中5保4”的“聪明组合”。比如选择的是 {01,02,03,04,05,06,07,08}~开奖结果在这8个数内~下面的组合,5注,将保证能至少有一个中4个结果。 01,02,03,05,08 01,02,04,06,07

20个号码中6保5旋转矩阵

20个号码中6保5旋转矩阵 共计:1073注(金额:¥2146元) 01,06,08,10,11,12 01,02,03,04,05,06 02,07,08,11,15,17 04,06,09,11,12,19 01,06,08,10,14,17 01,02,03,04,05,07 02,07,08,11,16,18 04,06,09,14,17,19 01,06,08,12,13,15 01,02,03,04,09,14 02,07,08,13,14,15 04,06,09,15,19,20 01,06,08,15,16,18 01,02,03,04,18,20 02,07,08,16,19,20 04,06,09,16,18,20 01,06,09,10,11,17 01,02,03,05,08,15 02,07,09,10,11,14 04,06,10,11,13,19 01,06,09,10,12,19 01,02,03,05,10,19 02,07,09,10,19,20 04,06,10,11,14,19 01,06,09,12,16,17 01,02,03,05,12,17 02,07,09,12,13,18 04,06,11,12,16,20 01,06,09,13,14,18 01,02,03,06,09,10 02,07,09,12,15,16 04,06,11,12,19,20 01,06,09,15,17,18 01,02,03,06,15,17 02,07,09,17,18,19 04,06,11,13,16,17 01,06,10,14,15,17 01,02,03,07,08,09 02,07,10,11,19,20 04,06,11,14,15,17 01,06,10,17,19,20 01,02,03,07,16,19 02,07,10,14,16,19 04,06,13,15,16,18 01,06,11,12,14,16 01,02,03,07,17,18 02,07,10,15,18,20 04,07,08,09,10,14 01,06,11,13,17,20 01,02,03,08,12,16 02,07,11,12,14,20 04,07,08,09,12,18 01,06,11,15,18,19 01,02,03,08,16,19 02,07,12,13,16,19 04,07,08,11,15,19 01,06,12,13,14,16 01,02,03,09,13,18 02,07,12,13,17,18 04,07,08,12,13,18 01,06,12,14,15,20 01,02,03,09,19,20 02,07,13,14,16,17 04,07,08,13,17,19 01,06,14,16,19,20 01,02,03,10,11,12 02,07,13,15,18,19 04,07,08,14,18,19 01,07,08,09,11,18 01,02,03,10,13,17 02,07,13,16,18,20 04,07,09,10,11,12 01,07,08,10,11,20 01,02,03,11,12,13 02,08,09,10,11,15 04,07,09,11,19,20 01,07,08,10,12,19 01,02,03,13,14,15 02,08,09,10,11,19 04,07,09,13,17,18 01,07,08,10,18,20 01,02,03,15,18,19 02,08,09,10,13,18 04,07,09,15,18,19 01,07,08,13,15,16 01,02,03,16,17,18 02,08,09,11,12,20 04,07,10,11,12,15 01,07,08,14,16,17 01,02,03,17,18,20 02,08,09,12,14,16 04,07,10,11,14,16 01,07,09,10,13,14 01,02,04,05,12,19 02,08,09,15,16,18 04,07,10,12,14,17 01,07,09,10,15,17 01,02,04,06,07,14 02,08,09,15,17,19 04,07,10,13,19,20 01,07,09,10,17,19 01,02,04,06,11,20 02,08,09,16,17,18 04,07,10,14,16,18 01,07,09,10,18,19 01,02,04,06,15,18 02,08,10,12,16,19 04,07,10,17,18,19 01,07,09,11,12,13 01,02,04,07,08,17 02,08,10,13,14,20 04,07,11,12,13,17 01,07,09,11,15,17 01,02,04,07,09,17 02,08,10,15,16,20 04,07,11,13,16,18 01,07,09,12,14,19 01,02,04,07,10,13 02,08,11,12,13,19 04,07,11,15,17,18 01,07,09,13,15,20 01,02,04,07,11,18 02,08,11,13,18,19 04,07,12,13,16,20 01,07,09,13,17,20 01,02,04,07,13,16 02,08,12,18,19,20 04,07,14,15,16,19 01,07,09,14,15,17 01,02,04,07,17,19 02,08,13,16,17,20 04,07,15,16,17,18 01,07,09,14,16,18 01,02,04,08,09,14 02,09,10,15,17,20 04,08,09,10,14,16 01,07,10,15,16,20 01,02,04,08,11,14 02,09,10,16,19,20 04,08,09,11,17,20 01,07,11,13,14,19 01,02,04,08,12,13 02,09,11,13,15,18 04,08,09,12,15,17 01,07,11,13,15,19 01,02,04,09,12,15 02,09,11,13,15,19 04,08,09,13,19,20 01,07,11,13,17,19 01,02,04,10,16,17 02,09,11,14,17,20 04,08,10,11,12,16 01,07,11,14,15,20 01,02,04,13,14,17 02,09,12,14,17,20 04,08,10,11,13,18 01,07,11,16,17,19 01,02,04,13,15,17 02,09,13,14,15,20 04,08,10,11,18,20 01,07,12,14,16,20 01,02,04,16,18,19 02,09,14,16,18,19 04,08,10,12,17,19 01,07,13,14,18,20 01,02,04,16,19,20 02,09,15,16,17,19 04,08,10,15,17,18 01,08,09,10,13,19 01,02,05,06,07,16 02,10,13,14,16,19 04,08,11,12,16,17 01,08,09,10,15,19 01,02,05,06,09,20 02,10,14,15,17,19 04,08,11,17,19,20 01,08,09,11,12,15 01,02,05,06,10,14 02,11,12,13,15,20 04,08,12,14,19,20 01,08,09,11,13,15 01,02,05,07,11,15 02,11,12,14,15,19 04,08,13,14,15,18 01,08,09,12,14,20 01,02,05,07,12,20 02,11,12,15,16,18 04,08,14,15,17,20 01,08,09,12,17,18 01,02,05,07,15,19 02,11,12,16,17,19 04,09,10,13,14,17 01,08,09,14,15,19 01,02,05,08,09,10 02,11,13,14,17,18 04,09,10,13,15,16 01,08,10,12,14,15 01,02,05,08,09,19 02,12,13,15,17,18 04,09,10,18,19,20

一类矩阵的若干性质及其在考研数学中的应用(原创)

矩阵T αβ的若干性质及其在考研数学中的应用 设向量βα,均为n 维非零列向量,记T αβA =。通过对历年考研试题的研究发现,线性代数部分比较重视对矩阵A 性质的考查,而课本和相关考研辅导书对这些性质没有做系统的研究,从而导致考研学生在遇到相关题目时不知所措。本文将研究矩阵A 的性质,并借助考研数学真题来说明这些性质的应用,进而强调掌握好这些性质的重要性。 1 矩阵),(00≠≠=βααβA T 的性质 性质1 矩阵),(00≠≠=βααβA T 的秩为1。 证明:令()0αT ≠=n a a a ,,,21 ,()0βT ≠=n b b b ,,,21 ,不妨设0≠i a ,则 ????????? ???????→????????????????→????????????????=00000021212112111212112111 n n n n n n n n n n n n i i i n b b b b a b a b a b b b b a b a b a b a b a b a b a b a b a b a b a b a A ????????????? ???→00 000000021 n b b b ,于是A 的秩为1。 性质2 A αβA n 1T )(-=n 。注意,αβT 就是A 的迹。 该性质利用矩阵乘法的结合律即可证明。由于秩为1的矩阵总可以表示为矩阵A 的形式[1] ,因此上述性质也可推广到以下结论: 推论1 秩为1的矩阵的n 次方等于该矩阵迹的n —1次方乘以这个矩阵本身。 性质3 当0≠=βα即T ααA =时,A 的全部特征值分别为0002,,,, α,其中唯一非零特征值对应的线性无关的特征向量为α。 证明:因为矩阵A 是实对称矩阵,所以它一定相似于一个对角阵 ????????????=n 21λλλ Λ 其中n λλ,,1 为A 的n 个特征值。由性质1,1)(=A r ,又因为相似矩阵有相同的秩,故

幂等矩阵的性质及其应用

幂等矩阵的性质及其应用 0 引言 幂等矩阵是一类性质特殊的矩阵,不仅在高等代数中有着重要的应用,在其它课程中,如计量经济学、统计学课程中也有着重要应用。在代数学中,线性变换的许多问题都可以转化为幂等矩阵来解决。但是在通常的高等代数的教材中关于幂等矩阵的讨论是比较少的。因此本文对幂等矩阵的性质做出相关讨论。本文主要给出幂等矩阵特征值、特征子空间和Jordan标准型的基本性质,同时给出了一些相关的应用。 1 主要结果 首先给出幂等矩阵的定义和基本性质。 定义1:若n阶方阵A满足A2=A,则称A为幂等矩阵。 下面给出关于幂等矩阵的一些简单的性质。 定理1:幂等矩阵A的特征值只能是0或者1。 证明:设A为任意一个幂等矩阵。 由A2=A,可得 λ2=λ 其中λ为A的特征值。于是有 λ=1或0, 命题得证。 推论:可逆的幂等矩阵的特征值均为1。 证明:设A为一可逆的幂等矩阵。由A2=A可得 A2A-1=AA-1 即 A=E。 此时有 λE-E=0 即 λ=1 其中,λ为A的特征值。命题得证。 定理2:任意的幂等矩阵A都相似于对角阵,即存在可逆阵P,使得: P-1AP=E■ 00 0, 其中r=R(A)。 证明:A为任意幂等矩阵,J为其Jordan标准型,即存在可逆矩阵P,使得P-1AP=J=■, 其中Ji=■。 由此可得J 2=J。于是有,Ji 2=Ji。 此时,Ji只能为数量矩阵λ■E。 又因为A2=A,所以λ■=0或1,且r=R(A)。命题得证。 定理3:幂等矩阵的特征值为1的特征子空间为其值域,特征值为0的特征子空间为其零(核)空间。 证明:(i)A为一n阶幂等矩阵。?琢为其特征值1对应的特征向量。 则有,A?琢=?琢。由此可得?琢属于A的值域。

旋转矩阵的数学原理

旋转矩阵的数学原理 注意:本章专门为那些有一定数学基础的、对旋转矩阵的设计非常感兴趣的人而写。如果你的数学功底不够,或者只关心旋转矩阵的运用,那么建议你直接跳过这一章。一、从寇克曼女生问题讲起 旋转矩阵涉及到的是一种组合设计:覆盖设计。而覆盖设计,填装设计,斯坦纳系,t-设计都是离散数学中组合优化问题。它们解决的是如何组合集合中的元素以达到某种特定的要求。 为了使读者更容易明白这些问题,下面先从一道相当古老的数学名题讲起。(一)寇克曼女生问题某教员打算这样安排她班上的十五名女生散步:散步时三名女生为一组,共五组。问能否在一周内每日安排一次散步,使得每两名女生在这周内一道散步恰好一次?看起来题目似乎很简单,然而它的彻底解决并不容易。事实上,寇克曼于1847年提出了该问题,过了100多年后,对于一般形式的寇克曼问题的存在性才彻底解决。用1-15这15个数字分别代表这15个女生,下面给出一组符合要求的分组方法:星期日:(1,2,3),(4,8,12),(5,10,15),(6,11,13),(7,9,14) 星期一:(1,4,5),(2,8,10),(3,13,14),(6,9,15),(7,11,12)

星期二:(1,6,7),(2,9,11),(3,12,15),(4,10,14),(5,8,13) 星期三:(1,8,9),(2,12,14),(3,5,6),(4,11,15),(7,10,13) 星期四:(1,10,11),(2,13,15),(3,4,7),(5,9,12),(6,8,14) 星期五:(1,12,13),(2,4,6),(3,9,10),(5,11,14),(7,8,15) 星期六:(1,14,15),(2,5,7),(3,8,11),(4,9,13),(6,10,12)该问题就是最典型的组合设计问题。其本质就是如何将一个集合中的元素组合成一定的子集系以满足一定的要求。表面上看起来,寇克曼女生问题是纯粹的数学游戏,然而它的解却在医药试验设计上有很广泛的运用。寇克曼女生问题是t-设计中很特殊的一类——可分解斯坦纳设计。下面我会详细解释这几个名词的含义。(二)几种组合设计的含义 所谓t-设计是“策略组态,Tactical Configuration”的简称。 不妨用数学语言来定义t-设计: S={S1,S2,……SV}是一个包含有v个元素的集合; B1,B2,……,Bb是S的b个子集,而它们包含的元素个数和都是k个;

相似矩阵的性质及应用毕业论文

相似矩阵的性质及应用毕业论文 一.相似矩阵的定义 定义:设A 、B 为数域P 上两个n 级矩阵,如果可以找到数域P 上的n 级可逆矩阵X ,使得B=1-X AX ,就说A 相似于B ,记做B A ~. 二.相似矩阵的重要性质 性质1 数域P 上的n 阶方阵的相似关系是一个等价关系. 证明:1〉(反身性) 由于单位矩阵E 是可逆矩阵,且A=1-E AE ,故任何方阵A 与A 相似. 2〉(对称性) 设A 与B 相似,即存在数域P 上的可逆方阵C ,使得B=1-C AC ,由此可得A=CB 1-C =11)(--C B 1-C ,显然可逆,所以B 与A 相似. 3〉(传递性)设A 与B 相似,B 与C 相似,即存在数域P 上的n 阶可逆方阵P 、Q ,使B=1-P AP ,C=1-Q BQ ,则 C=BQ=1-Q 1-P APQ=1)(-PQ A (PQ ),从而A 与C 相似. 〈证毕〉 性质2 相似矩阵有相同的行列式. 证明:设A 与B 相似,即存在数域P 上的可逆矩阵C ,使得B=1-C AC ,两边取行列式得:|B |=|1-C AC |=|1-C ||A ||C |=|A ||1-C C |=|A |. 从而相似矩阵有相同的行列式. 〈证毕〉 下面先介绍两个引理 引理1:设A 是数域P 上的n ×m 矩阵,B 是数域P 上m ×s 矩阵,于是 秩(AB )≤min[秩(A ),秩(B )] (1) 即乘积的秩不超过各因子的秩. 证明:为了证明(1),只需要证明秩(AB )≤秩(A ),同时,秩(AB )≤秩(B ).

现在来分别证明这两个不等式. 设A=??????? ??nm n n m m a a a a a a a a a 2 1 22221 11211,B=?? ? ? ? ? ? ??ms m m s s b b b b b b b b b 21222 21112 11 令1B ,2B ,…,m B 表示B 的行向量,1C ,2C ,…n C ,表示AB 行向量.由计算可知,i C 的第j 个分量和m im i i B a B a B a +++ 2211的第j 个分量都等于kj m k ik b a ∑=1 ,因 而i C =m im i i B a B a B a +++ 2111 (i=1,2,…n ). 即矩阵AB 的行向量组n C C C ,,,21 可经B 的行向量组线性表出.所以AB 的秩不能超过B 的秩,也即, 秩(AB )≤秩(B ). 同样,令m A A A ,,21 表示A 的列向量,s D D D ,,21表示AB 的列向量,由计算可知 i D =11A b i +22A b i +…+m mi A b (i=1,2,…,s ). 这个式子表明,矩阵AB 的列向量可以经矩阵A 的列向量组表出,前者的秩不可能超 过后者的秩,这就是说,秩(AB )≤秩(A ). <证毕> 引理2:A 是一个s ×n 矩阵,如果P 是个s ×s 可逆矩阵,Q 是n ×n 可逆矩阵,那么 秩(A )=秩(PA )=秩(AQ ). 证明:令 B=PA,由引理1知秩(B )≤秩(A ); 但是由 A=1-P B, 又由 秩(A )≤秩(B ), 所以

旋旋转矩阵与3D

旋旋转矩阵与3D 旋转矩阵问题在数学上称之为覆盖设计,它属于组合最优化问题的一类,想对它进行深入探索的彩民朋友必须要先去研究一下离散数学和组合数学,才能在旋转矩阵的研究上有所心得。在这里,我们只谈谈旋转矩阵在3D中的运用。 先说一下旋转矩阵的概念,所谓旋转矩阵,简单的说就是从一个集合中抽取一些子集的集合,使此子集合满足一定的条件。例如,在3D中,从{0,1,2,3,4,5,6,7,8,9}这个集合中任选不同的3个数构成的子集系,就形成了3D的120注组六号码。那么,每次从{0,1,2,3,4,5,6,7,8,9}中任选4个号码,至少需要多少个组合才能覆盖住这12 0注组六号码呢?答案是30组,——相信不可能比这个数字再少了。因为4个号码的组合,每一组合正好可以包括4注组六号码,30×4=120;正好与120注组六号码相符。再少就覆盖不住了。 那么,从{0,1,2,3,4,5,6,7,8,9}中任选5个号码,至少需要多少个组合才能覆盖住这120注组六号码呢?答案是17组,有没有比这更小的答案呢?老实说,笔者课本已经丢了9年了,现在暂时无力进行推算了。如果有高人能发现更小的组合覆盖数,欢迎给我来信赐教,邮箱93524010@https://www.360docs.net/doc/b514206858.html,. 相应的从{0,1,2,3,4,5,6,7,8,9}中任选6个号码,需要10个这样的组合才能覆盖住3D中的120注组六号码。 从{0,1,2,3,4,5,6,7,8,9}中任选7个号码,需要6个组合才能覆盖住3D中的120注组六号码。 从{0,1,2,3,4,5,6,7,8,9}中任选8个号码,需要4个组合才能覆盖住3D中的120注组六号码。 从{0,1,2,3,4,5,6,7,8,9}中任选9个号码,需要4个组合才能覆盖住3D中的120注组六号码。 下面给出各个级别的能覆盖住此120注组选号码的矩阵组合: 1.四个号码的矩阵组合30组: 0126、0134、0159、0178、0239、0247、0258、0357、0368、0456、0489、0679、1237、1245、1289、1358、1369、1468、1479、1567、2348、2356、2469、2579、2679、3459、3467、3789、4578、5689 2.五个号码的矩阵组合17组: 01249、01268、01346、01467、01569、02357、02458、03789、12359、12 378、12589、13478、14579、23456、24679、34689、35678 2.六个号码的矩阵组合10组: 012346、012359、012489、013789、026789、045678、123457、156789、2 34568、345679 3.七个号码则矩阵组合6组: 0123489、0156789、0245678、0345679、1234567、2356789 4.八个号码的矩阵组合4组 12345678、03456789、01234569、01256789 5.九个号码的矩阵组合4组 012345678、123456789、023456789、012345679 其中,对实战比较有价值的是5码、6码的组合,这是我们研究的重点,此外,能覆盖住120注组六号码的矩阵组合也不仅仅只有上面所示的这些序列,还能演算出很多种,比如,六个号码的矩阵组合还有: 012567、013568 、014569 、023578、024579、 034589、123678、124679、134689、234789 大家可以验算一下,看是否覆盖住了120注组六号码。

相关文档
最新文档