瑞典SenseAir二氧化碳传感器S8-PWM

瑞典SenseAir二氧化碳传感器S8-PWM
瑞典SenseAir二氧化碳传感器S8-PWM

Gas and Air Sensors

Product Specification

SenseAir? S8-PWM

Miniature CO2 sensor safety switch

CONFIDENTIAL, PRELIMINARY

SenseAir ? S8 Miniature infrared CO 2 sensor module

General

The SenseAir ?

S8-PWM article number 004-0-0058, CO 2 sensor module is designed to be built-in into stationary ventilation equipment, such as window vent or duct exhaust actuators, serving as a linear transmitter of CO2. The sensor utilizes reliable and highly accurate infrared gas sensing technology.

SenseAir ? S8-PWM functional description

During normal operation, the sensor module measures ambient gas CO2 concentrations at two seconds intervals. Measured CO2 concentration is filtered and is transmitted to the PWM Output. The PWM Output continues to keep the last valid value in the case of measurement fault detected.

Warning! ESD sensitive device!

Figure 1: SenseAir ?

S8 Article no. 004-0-0058

深圳市深国安电子科技有限公司

CONFIDENTIAL, PRELIMINARY

_______________________________________________________________________

Note 1: Accuracy is specified over operating temperature range. Specification is referenced to certified calibration mixtures.

Uncertainty of calibration gas mixtures (+-2% currently) is to be added to the specified accuracy for absolute measurements.

Absolute maximum ratings

Stress greater than those listed in Table III may cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational section of these specifications is not implied. Exposure to absolute maximum rating for extended periods may affect device reliability.

__________________________________________________________________________________________ Note 1: Specified parameter relies on specification of subcontractor and is not tested by SenseAir

Note 2: OUT1 (PWM Output) pin is internally pulled up to G+. External pull up to higher voltage will provide resistive divider powering sensor via high resistance.

Gas diffusion area

Diffusion area

Figure 2: Gas diffusion area SenseAir ? S8-PWM

Pin assignment

S1

G+

G0

OUT1, PWM Output

S2

Figure 3: Pin assignment SenseAir ? S8-PWM

深圳市深国安电子科技有限公司

Terminals description

The table below specifies terminals and I/O options of the SenseAir ? S8-PWM

The SenseAir ? S8-PWM is equipped with a 3-pin connector (G+, G0, PWM Output).

Part number of the connector is B3B-PH-SM4-TB, manufacturer JST (https://www.360docs.net/doc/b517369445.html,).

_______________________________________________________________________

Note 1: Specified parameter relies on specification of subcontractor and is not tested by SenseAir.

Note 2: Do not ground S1 input for a long time. FLASH resource will be exhausted in case of permanent S1 grounding.深圳市深国安电子科技有限公司

Mechanical properties

Sensor PCB may be colour green or black. Optical bench assembly (OBA) may be colour silver or black.

Please refer to mechanical drawing for detailed specification of dimensions and tolerances.

WARNING!

Under no circumstances should any force be applied to the OBA, this may permanently harm the sensor and most definitely affect performance.

Sensor should be handled holding PCB only. Never touch sensor with bare hands, make sure that operators use ESD gloves.

Note! ESD sensitive device!

Never apply force to OBA!

Handle sensor by holding PCB only!

Never touch sensor with bare hands!

Figure 4: Mechanical properties SenseAir ? S8-PWM Article No 004-0-0058

Installation and soldering

During installation and assembly of sensor to PCB it is essential that compatible materials are used and that soldering process is managed. Avoid introduction of stress to the sensor’s PCB or OBA.

SenseAir recommends hand soldering only.

NB! Transport, handling and assembly may affect calibration. If for some reason the sensor needs to be re-calibrated, please refer to paragraph Maintenance.

Please, contact SenseAir for further information!

Maintenance and ABC (Automatic Baseline Correction)

The models based on SenseAir ? S8platform are basically maintenance free in normal environments thanks to the built-in self-correcting ABC algorithm (Automatic Baseline Correction). This algorithm constantly keeps track of the sensor’s lowest reading over preconfigured time interval and slowly corrects for any long-term drift detected as compared to the expected fresh air value of 400ppm (or 0.04%vol) CO2.

Discuss your application with SenseAir in order to get advice for a proper calibration strategy.

When checking the sensor accuracy, PLEASE NOTE that the sensor accuracy is defined at continuous operation (at least 3 weeks after installation with ABC turned on)!

Table 4. ABC default configurations for SenseAir ? S8 article no. 004-0-0058

Calibration

Rough handling and transportation might result in a reduction of sensor reading accuracy. With time, the ABC function will tune the readings back to the correct numbers. The default “tuning speed” is however limited to about 30-50 ppm/week.

For post calibration convenience, in the event that one cannot wait for the ABC algorithm to cure any calibration offset two manual calibration procedures are offered. A switch input (calibration switch ‘S1’) is defined for the operator or master system to select one of the two prepared calibration codes. Optional calibrations are bCAL(background calibration),which requires that the sensor is exposed to fresh air (400 ppm CO2) and CAL(zero calibration), which requires the sensor measuring cell to be completely evacuated from CO2 e.g. by exposing it to Nitrogen or Soda Lime CO2 scrubbed air. Make sure that the sensor environment is steady and calm!

S1

Figure 5: Position of calibration switch S1

Sensor PWM output timing diagram

0 ppm:

深圳市深国安电子科技有限公司

Gas and Air Sensors

SenseAir? AB SenseAir? North America S enseAir? Chengdu Gas Sensors Ltd. Box 96 1603 S. Eastside Loop, Suite 207 First floor 8th of Xingke Road Stationsgatan 12 Tucson, AZ 85710 Hi-Tech Industry Park

SE- 82060 Delsbo USA Jinniu district, Chengdu

Sweden Sichuan province

China

Phone: +46(0)653 – 71 77 70 Phone: +1 52.0.207.5032 Phone: +86-028 - 875 928 85 Fax: +46(0)653 – 71 77 89 Fax: +86-028 – 875 928 85

E-mail: info@https://www.360docs.net/doc/b517369445.html, E-mail: infoamerica@https://www.360docs.net/doc/b517369445.html, E-mail: info@https://www.360docs.net/doc/b517369445.html,

Web page: https://www.360docs.net/doc/b517369445.html, Web page: https://www.360docs.net/doc/b517369445.html,

二氧化碳传感器的工作原理

随着我国大气污染日益严重,近日杭州、北京等大半个中国都被雾霾严重袭击。传感器作为测量气体浓度的一种检测装置也在此同时不断的出现和发展。传感器的种类繁多,每种传感器都适用一定的应用领域,在测量气体上包括化学传感器、陶瓷传感器和测量湿度的温湿度记录仪,二氧化碳传感器等。 传感器需要经常校准,并只能在清洁的环境中工作。传统的co2传感器对于像co2这样的不可燃气体的测量尤其困难,化学传感器很难胜任这项工作,使用寿命也很短。其他的各种间接测量方法,由于它们通常不仅仅对一种气体组成度敏感。所以其精度很低且漂移量较大。与化学二氧化碳传感器相比,光学测量仪器有许多优点,但其昂贵的价格也确时降低了它的市场竞争力。不过,随着产品集成化程度的提高,其生产成本也正在降低。 这种co2传感器的工作原理是:采用了单束双波长非发散性红外线洲量方法,其独特之处在于它的滤光镜——1种袖珍电子调谐干扰仪。这种滤光铣保证了它所透过的光波波长的精确性和稳定性,避免了由于滤光镜厦探刹器不匹配而发生的问题及传统的旋转式滤光镜所产生的磨损。本文所要讨论的是光学测量方法中的一种即非发散性红外线测量。 各种气体都会吸收光。不同的气体吸收不同波长的光,比如co2就对红外线(波长为4。26m)最敏感。二氧化碳分析仪通常是把被测气体吸入一个测量室,测量室的一端安装有光源而另一端装有滤光镜和探测器。滤光镜的作用是只容许某一特定波长的光线通过。探测器则测量通过测量室的光通量。探测器所接收到的光通量取决于环境中被测气体的浓度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/b517369445.html,/

防爆传感器标准

沈阳市东华检测仪器厂企业标准 Q/DH01-2010 BCG系列防爆传感器 2010-12-28发布 2010-01-01实施 沈阳市东华检测仪器厂

Q/DH01-2010 前言 本标准依据GB3836.1-2000《爆炸性气体环境用电气设备第1部分:通用要求》、GB3836.2-2000《爆炸性气体环境用电气设备第2部分:隔爆型“d”》和GB/T 1.1-2000《标准化工作导则第1部分:标准的结构和编写规则》进行编写。 本标准于2009年12月28日首次发布。 本标准由沈阳市东华检测仪器厂提出并起草。 本标准主要起草人:张品

Q/DH01-2010 BCG-系列防爆传感器 1范围 本标准规定了BCG系列防爆传感器(以下简称传感器)的产品分类、要求、试验方法、检验规则、标志、包装、运输及贮存。 本标准适用于报警仪的设计、制造与检验。 传感器主要适用于爆炸性气体环境中1区或2区危险区域,爆炸性气体为ⅡA、ⅡB级,温度组别为T1-T6组以下场所。与搪玻璃层破损报警仪(TPB08-1)配套形成有效的监控系统,监控容器是否有破损情况。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所用的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB3836.1-2000 爆炸性气体环境用电气设备第1部分:通用要求 GB3836.2-2000 爆炸性气体环境用电气设备第2部分:隔爆型“d” GB3836.8-2003 爆炸性气体环境用电气设备第8部分:“n”电气设备 GB4208-2008 外壳防护等级(IP代码) GB/T13384-1992 机电产品包装通用技术条件 GB14048.1-2006 低压开关设备和控制设备总则 3 产品分类 3.1 型号含义 型号含义如下: B CG- □□ 公称直径 容器型号 传感器 防爆 3.2 基本参数 传感器的基本参数应符合表1的规定。 表1

安全监控系统升级安全技术措施升级改造

改造安全监控系统升级施措术技安工施全 位:调度室单编制:

单位负责人: 日13月7年2017 日期: 审批记录 生产矿长:年月日 机电矿长:年月日 总工程师:年月日 安监处长:年月日

通风科:年月日 调度室:年月日 安监处:年月日 机电科:年月日 生产科:年月日

审批意见:

安全监控系统升级改造施工安全技术措施 一、概述 田庄煤矿安全监测监控系统采用江苏三恒科技股份有限公司生产的KJ70N系统,该系统自2007年投入使用,一直运行稳定、数据可靠。根据国家煤矿安全监察局《煤矿安全监控系统升级改造技术方案》(煤安监函〔2016〕5号)、山东煤矿安全监察局《关于转发国家煤矿安监局〈煤矿安全监控系统升级改造技术方案〉的通知》(鲁煤监技装〔2017〕13号)要求,通过对安全监测监控系统改造,不断提高煤矿安全监控系统的准确性、灵敏性、可靠性、稳定性和易维护性,进一步发挥科学技术的保障作用,提升事故防控预警和应急处置能力。为保证KJ70N安全监测监控系统升级改造任务的顺利完成,特编制本安全技术措施。 二、施工时间 2017年7月----2017年12月 三、施工地点 地面及井下安装安全监测监控系统的所有区域 四、劳动组织 负责人:李鹏 参加人员:各工区电工、安全监测工、调度中心通讯管理员及网络管理员、监测监控厂家工程技术人员.

五、操作准备: 1、备齐安装所用工具、仪器、仪表以及设备说明书和图纸。 2、备齐安装所需分站、断电器、各种传感器、监控电缆、传感器标校用设备等。 3、对准备安装的分站、断电仪、传感器等设备应检查其是否符合《GB3836.1-1983爆炸性环境用防爆电器设备》的要求。还应保证仪器外形应无严重损伤变形,观察窗、指示灯罩应完整无缺,所有紧固件不得有松动和失落。 4、确定安装顺序:仪器检查——登记——安装——检查质量——登记 六、安全监测监控系统升级方案 1、地面中心站 地面中心站对现有监控主备机软件升级为最新系统软件,完善监控系统软件分级报警、断电等控制功能、多网和多系统融合、自诊断和自评估功能、数据分析等功能;对监控系统数据库进行升级,增加关键数据加密功能监控通过软件接口与人员定位、广播等系统实现联动和数据交换。升级上传程序,具备多路数据同时上传,保证上传数据的安全可靠。 2、传输网络建设 主传输全部采用光缆传输,在地面机房分别安设网络交换机,建立安全监控系统专用环网,分站就近接入环网交换机,分站到传感器采用通讯电缆或无线传输。

现代温室大棚智能设计

现代温室大棚智能设计控制系统 设计报告 项目编号: 指导教师: 组员:

摘要 本设计从使用简单、调整方便和功能完备出发,采用LPC1114处理器,开发了全程菜单操作环境,以LCD12864液晶显示,采用UAN-480射频无线传输数据。具有全中文提示和参数显示设置,4×4行列式键盘输入,采用了DS18B20温度传感器、DHT11湿度传感器和MG811二氧化碳传感器,实现对温室大棚的检测。具有DS1302实时时钟显示,人工设定温室大棚环境条件,当温室大棚环境发生改变时,系统自动记录检测数据,通过GSM模块实现短消息报警,并自动控制风机和除湿机工作,进行温室大棚的降温和除湿,及植物浸水检测。配备无线烟感、无线门禁和水浸检测器输入,增强了仓库防火防盗的能力,与移动网络的结合实现无人值守。 关键词:LPC1114;LCD液晶;GSM;UAN-480 Abstract This design from the simple to use, easy to adjust and complete functions, adopting LPC1114 processor, developed a full menu operating environment to LCD12864 liquid crystal display, a full Chinese display prompts and parameters set, 4 ×4 determinant keyboard input, using the DS18B20 temperature sensor, DHT11 humidity sensors and MG811 carbon dioxide sensor to realize the detection storage environment. With the DS1302 real time clock display, manual settings warehouse storage environmental conditions, when the storage environment changes, the system automatically records test data, through the GSM module for SMS alarm, and automatic control of fans and dehumidifiers work, the grain depots in the cooling and dehumidification. Equipped with a wireless smoke detector, flood detector, wireless access and input, and enhance the warehouse fire, water and security capacity, and the combination of mobile networks to achieve unattended. Key words: LPC1114; LCD; GSM; Wireless inpu

CO2传感器在呼气末二氧化碳(ETCO2)

CO2传感器在呼气末二氧化碳(ETCO2)监测中的应用 呼气末二氧化碳(ETCO2)监测是一项无创、简便、实时、连续的功能学监测指标。 其在急诊科的临床工作中得到了越来越广泛的使用。工采了解到在呼吸过程中将测得的二氧化碳浓度与相应时间一- -对应描图,即可得到所谓的二氧化碳曲线。 对于小气道梗阻导致通气困难的患者,如重症哮喘和慢性阻塞性肺病患者,在采用二氧化碳分压监测仪时,由于肺泡内气体排出速度缓慢,时相Ⅱ波形上升趋于平缓。气体存留在肺泡内的时间较久,肺泡气的二氧化碳分压更接近静脉血二氧化碳分压。这一部分气体在呼气后期缓慢排出,使得二氧化碳波形在时相Ⅲ呈斜向上的鲨鱼鳍样特征性改变。 严重气道梗阻患者,因死腔通气比例增大,可导致呼出气二氧化碳分压显著下降。对于治疗性低通气患者,例如急性呼吸窘迫综合征患者进行保护性肺通气策略治疗时,小潮气量(6mL/kg甚至更低)通气增加了二氧化碳滞留的风险。实时监测ETCO2,可以及时发现二氧化碳潴留,并减少动脉血气检查频次。 低通气高危患者监测,推荐深度镇静镇痛或麻醉患者监测ETCO2。对于存在低通气风险的患者,例如镇痛镇静、门急诊手术的患者,使用ETCO2监测仪发现的通气异常早于氧饱和度下降和可观察到的低通气状态。 呼吸末二氧化碳测量技术近年来有了很大的发展,特别是二氧化碳检测设备的关键部件,如红外光源和红外探测器的发展,为二氧化碳传感器检测技术的进步提供了很大的帮助。该技术在临床实践中的应用越来越广泛,临床对该技术的要求也越来越高。例如,对信号质量控制、呼吸参数测量的准确性和可靠性提出了更高的要求。 工采英国GSS高速响应红外二氧化碳传感器(NDIR CO2传感器) - SprintIR,具有高速检测(20Hz)的特性,其非扩散红外光吸收技术的感测技术适用于捕捉CO2浓度快速度变化的领域,如新陈代谢评估和呼吸机。 1/ 1

各类传感器介绍

目前,被人们所关注传感器的类型: 压力传感器、光电传感器、位移传感器、超声波传感器、温度传感器、湿度传感器、光纤传感器。 一、压力传感器 压力传感器、压力变送器的种类及选用 压力传感器及压力变送器分为表压、绝压、差压等种类。常见0.1、0.2、0.5、1.0等精度等级。可测量的压力范围很宽,小到几十毫米水柱,大的可达上百兆帕。不同种类压力传感器及压力变送器的工作温度范围也不同,常分成0~70℃、-25~85℃、-40~125℃、-55~150℃几个等级,某些特种压力传感器的工作温度可达400~500℃。 压力传感器及压力变送器基于不同的材料及结构设计有着不同的防水性能及防爆等级,接液腔体由于材料、形状的差异可测量的流体介质种类也不同,常分为干燥气体、一般液体、酸碱腐蚀溶液、可燃性气液体、粘稠及特殊介质。压力传感器及压力变送器作为一次仪表需与二次仪表或计算机配合使用,压力传感器及压力变送器常见的供电方式为:DC 5V、12V、24V、±12V等,输出方式有:0~5V、1~5V、0.5~4.5V、0~10mA、 0~20mA、 4~20mA等及Rs232、Rs485等与计算机的接口。 用户在选择压力传感器及压力变送器时,应充分了解压力测量系统的工况,根据需要合理选择,使系统工作在最佳状态,并可降低工程造价。 压力传感器常见精度参数及试验设备 传感器静态标定设备:活塞压力计:精度优于0.05% 数字压力表: 精度优于 0.05% 直流稳压电源: 精度优于0.05%。 传感器温度检验设备:高温试验箱:温度从0℃~+250℃温度控制精度为±1℃,低温试验箱:温度能从0℃~-60℃温度控制精度为±1℃ 传感器静态性能试验项目:零点输出、满量程输出、非线性、迟滞、重复性、零点漂移、超复荷。 传感器环境试验项目:零点温度漂移、灵敏度漂移、零点迟滞、灵敏度迟滞。(检查产品在规定的温度范内对温度的适应能力,此项参数对精度影响极为重要) 压力传感器使用注意事项 压力传感器及压力变送器在安装使用前应详细阅读产品样本及使用说明书,安装时压力接口不能泄露,确保量程及接线正确。压力传感器及压力变送器的外壳一般需接地,信号电缆线不得与动力电缆混合铺设,压力传感器及压力变送器周围应避免有强电磁干扰。压力传感器及压力变送器在使用中应按行业规定进行周期检定。 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,简单介绍一些常用传感器原理及其应用:

安全避险系统有效性评估

安全避险系统有效性评估报告 为加强矿井防灾抗灾能力,在发生安全灾害后,能够缩小事故范围、降低事故损失,根据《煤矿安全规程》第六百七十三条的规定,矿井必须根据险情或事故情况下矿工避险的实际需要,建立井下紧急撤离与避险设施,并与监测监控、人员位置监测、通信联络等系统结合,构成井下安全避险系统。为此矿对各系统进行调查分析,编制了矿井安全避险系统有效性评估报告。 一、监测监控系统: (一)监测监控基本情况: 我矿为低瓦斯矿井,为加强对井下有毒有害气体的管理,建立了瓦斯管理与瓦斯防治系统,配了专职瓦斯检查员,建立了瓦斯巡回检查、瓦斯超限处理、密闭管理、瓦斯日报等一系列管理制度。瓦斯日报每天由矿长、总工程师、通风矿长审查并签字。 现采用江苏三恒科技有限公司生产的KJ70N型综合监测监控系统。地面调度监控中心站配备2套监控主机,1主1备,确保系统24小时正常运行,系统具有对甲烷、一氧化碳、风速、温度、水位、粉尘、二氧化碳等环境参数的采集、显示与报警功能;具有对馈电状态、风机开停、风门开关、各种机电设备开停等生产参数的采集、显示、报警、控制等功能。形成了瓦斯个体巡回检测与安全监控监测双重瓦斯防治系统。 监控设备情况一览表

(二)井下设备情况: 根据我矿目前实际情况,根据《煤矿安全规程》要求在井下各地点安装监控设备: 永久性避难硐室、中央变电室、10#联络巷变电所、中央水泵房,151采区水泵房、各采掘工作面、主井机房,共安装23台分站、低浓度甲烷传感器40台、一氧化碳传感器19台、温度传感器15台、风速传感器5台、二氧化碳传感器5台、水位传感器2个、负压传感器1个、氧气传感器5台、开停25个、风门传感器14个、烟雾传感器6台、风筒传感器4个。 (三)传感器监控布置地点: 1、矿井总回、综采工作面回风巷及上隅角与工作面、掘进工作面回风巷及工作面、回风流中机电设备上风侧、避难硐室

六大系统评估1

会审表 会审地点签字会审时间 会审人员签字矿长年月日常务矿长年月日总工程师年月日生产矿长年月日机电矿长年月日安全矿长年月日通风矿长年月日安检科年月日技术科年月日机电科年月日调度室年月日通讯中心年月日通风科年月日编制年月日

会审意见表 会审 意见

安全避险系统有效性评估报告为加强矿井防灾抗灾能力,在发生安全灾害后,能够缩小事故范围、降低事故损失,根据《煤矿安全规程》第六百七十三条的规定,矿井必须根据险情或事故情况下矿工避险的实际需要,建立井下紧急撤离和避险设施,并与监测监控、人员位置监测、通信联络等系统结合,构成井下安全避险系统。为此矿对各系统进行调查分析,编制了矿井安全避险系统有效性评估报告。 一、监测监控系统 (一)监测监控基本情况 我矿为低瓦斯矿井,为加强对井下有毒有害气体的管理,建立了瓦斯管理和瓦斯防治系统,配了专职瓦斯检查员,建立了瓦斯巡回检查、瓦斯超限处理、密闭管理、瓦斯日报等一系列管理制度。瓦斯日报每天由矿长、总工程师、通风矿长审查并签字。 地面装备有一套由中煤科工集团重庆研究院的KJ90NB型煤矿综合监控系统,系统具有对瓦斯、一氧化碳、风速、温度等环境参数的采集、显示和报警功能;具有对馈电状态、风机开停、风门开关、各种机电设备开停等生产参数的采集、显示、报警、控制等功能。形成了瓦斯个体巡回检测和安全监控监测双重瓦斯防治系统。 监控设备情况一览表 名称型号 设备数量 (台) 名称型号 设备数量 (台) 使用备用使用备用

防爆环网交 换机 KJJ127 监控大分站KJ90-F16 11 5 甲烷传感器KJ9701A 27 25 监控中分站KJ90-F8 5 2 风速传感器GFY15 9 8 温度传感器GW50(A) 20 10 开停传感器GT-L(A) 15 20 烟雾传感器GQF0.1(B) 5 5 CO传感器GTH500(B) 23 9 风筒传感器GFK70(A) 2 5 风门状态传 感器GFK40T 5 5 馈电/断电 仪 KDG3K 5 5 氧气传感器GYH25 6 5 CO2传感器GRG5H 4 4 (二)井下设备情况 根据我矿目前实际情况,根据设计在井下各地点安装3#临时避难硐室、5#永久性避难硐室、中央变电所、5#变电所、3#变电所、5#二采区变电所、各采掘工作面、主井机房,共安装16台分站、低浓度甲烷传感器27台、一氧化碳传感器23台、温度传感器20台风速传感器9台、二氧化碳传感器4台、水位传感器1个、负压传感器1个、氧气传感器6台、开停15个、风门传感器5个、烟雾传感器5台、风筒传感器2个。 (三)传感器监控布置地点 1、矿井总回、采掘工作面回风巷及上隅角和工作面、乳化液泵站、避难、硐室内外、各变电所安装甲烷传感器。 2、矿井总回、采掘工作面回风巷及上隅角、避难硐室内外、各皮带运输机头安装一氧化碳传感器。 3、矿井总回、采掘工作面回风巷及上隅角、避难硐室内外、变电所、水泵房、乳化液泵站安装温度传感器。

MG811型CO2气体传感器

1 MG811型CO2气体传感器 特点 对CO2有良好的灵敏度和选择性受温湿度的变化影响较小良好的稳定性、再现性 应用 空气质量控制系统发酵过程控制 温室CO2浓度检测 结构及测试电路 元件结构及测试电路如下图。传感器由固体电解质层(1),金电极(2),铂引线(3),加热器(4),陶瓷管(5),100目双层不锈钢网(6),镀镍铜卡环(7),胶木基座(8),针状镀镍铜管脚(9)组成。 工作原理 本传感器采用固体电解质电池原理,由下列固体电池构成: 空气,Au|NASICON||碳酸盐|Au,空气,CO 2 当传感器置于CO2气氛中时,将发生以下电极反应: 负极:2Li ++CO 2+1/2O 2+2e -=Li 2CO 3正极:2Na ++1/2O 2+2e -=Na 2O 总电极反应:Li 2CO 3+2Na +=Na 2O +2Li ++CO 2 传感器敏感电极与参考电极间的电势差(EMF)符合能斯特方程: EMF =Ec -(R x T)/(2F)ln (P(CO 2)) 上式中:P(CO 2)—CO2分压Ec —常量R —气体常量 T —绝对温度(K )F —法拉第常量 在图1B 中,元件加热电压由外电路提供,当其表面温度足够高时,元件相当于一个电池,其两端会输出一电压信号,其值与能斯特方程符合得较好。元件测量时放大器的阻抗须在100—1000G Ω之间,其测试电流应控制在1pA 以下

深圳鑫赛创电子科技有限公司E-mail:sales@https://www.360docs.net/doc/b517369445.html, 2规格: 灵敏度特性: 图2给出了传感器的灵敏度特性曲线。 其中: 温度:28℃、相对湿度:65%、氧气浓度:21% EMF:元件在不同气体,不同浓度下的输出电势 响应恢复特性: 从图3中可以看出:固体电解质元件具有较好的响应恢复特性。 温湿度特性: 符号参数名称技术条件备注V H 加热电压 6.0±0.1V AC or DC R H 加热电阻30.0±5%Ω室温 I H 加热电流约200mA P H 加热功耗约1200mW Tao 使用温度-20—50Tas 储存温度-20—70 ?E M F 输出信号 30—50mV 350— 10000ppmCO2 2

二氧化碳传感器方案

XXX公司 二氧化碳传感器在会议室内使用的方案 XXXX公司 2013年4月10日

目录 第一部分二氧化碳的概述 (3) 第二部分二氧化碳传感器在通风控制领域的应用 (4) 第三部分二氧化碳传感器的在楼宇自中的优点 (8) 第四部分XXX项目涉及二氧化碳传感器改造的房间 (9)

第一部分二氧化碳的概述 我们的地球被一层大气包围着,其中氧气占21%,78%是氮气,1%是其它气体。这1%气体当中,就有只有一小部分为二氧化碳气体,约为300ppm(百万分之一,即0.03%),它比空气重1.5倍;可吸收红外波,产生温室效应。 二氧化碳在空气中的含量越高,对人体的影响就越大,当二氧化碳含量高出0.7%时,人体就会感到不舒服,当超过10%时,人体就会出现昏迷和死亡。达到20%,人就会在几秒内死亡(详见图一)。因此在人群比较密集的地方,二氧化碳含量是一个非常重要的参数,直接关系到人体舒适度和安全。但是它又是植进行光合作用的重要元素,也可以说,没有二氧化碳,也就没有自然界的生机勃勃。因此,由于二氧化碳气体这些特性,使得像机场、大厦、办公室、厂矿、温室、实验室、化工、食品保鲜等行业都会需要对二氧化碳值进行测量。

图一:二氧化碳含量所产生的影响 第二部分二氧化碳传感器在通风控制领域的应用根据相关标准,室内二氧化碳(CO2)的浓度和通风率之间有着密切的关系。无论是在空间内, 人多或是少的情况下,此系统能有效地节约宝贵的能源和保持室内良好的空气品质。一般上, 安装以CO2控制为基础的通风控制系统带来的好处显现, 设备的投资可在两年内由所节省的能源得到回报。目前,这种通风控制系统已经被广泛地应用在带有先进大楼集中管理(BMS)系统的智能化楼宇群中。 本系统结构应用在需要实现通风控制的环境中。 如下图,整个自动化通风系统的最小组成包括:一个eSENSE2传感器及一个PP-116电源模块(可以提供传感器24VDC电源和控制换气扇230VAC电源的继电开关)。

本安防爆温湿度传感器

壁挂王字壳温湿度变送器用户手册(本安防爆模拟量型) 1. 产品介绍 1.1 产品概述 该变送器属于工厂用防爆温湿度变送器,本安型防爆,现场搭配二进二出4-20mA隔离型安全栅使用可实现本质安全回路。适用于除易产生瓦斯的煤矿外其他爆炸性气体环境以及可燃性气体粉尘环境,防爆标志:Ex ib IIB T6 Gb/Ex ibD A21 IP65 T80℃。探头多种类型可选。采用标准工业接口4~20mA模拟量信号输出,可接入现场数显表、PLC、变频器、工控主机等设备。安全可靠,外观美观,安装方便。 1.2 功能特点

采用瑞士进口的测量单元,测量精准。采用专用的模拟量电路,使用范围宽,规格齐全,安装方便。可同时适用于四线制与三线制接法。 1.3 主要技术指标 直流供电(默认)24V DC(22V~26V) 防爆标志Ex ib IIB T6 Gb/Ex ibD A21 IP65 T80℃ 最大功耗1.2W 精度 (默认)湿度±3%RH(5%RH~95%RH,25℃) 温度±0.5℃(25℃) 变送器电路工作温度-40℃~+60℃,0%RH~80%RH 探头工作温度-40℃~+120℃,默认-40℃~+80℃ 探头工作湿度0%RH-100%RH 长期稳定性湿度≤1%RH/y 温度≤0.1℃/y 响应时间湿度≤8s(1m/s风速) 温度≤25s(1m/s风速) 输出信号电流输出4~20mA 负载能力电流输出≤600Ω 1.4. 计算方法

例如量程-40~+80摄氏度,4~20mA输出,当输出信号为12mA时,计算当前温度值。此温度量程的跨度为120度,用16mA电流信号来表达,120度/16mA=7.5度/mA,即电流1mA代表温度变化7.5度.测量值12mA-4mA=8mA.8mA*7.5度/mA=60度。60+(-40)=20度,当前温度为20度。 1.5. 常见问题及解决办法 无输出或输出错误 可能的原因: 1)量程对应错误导致PLC计算错误,量程请查阅第一部分的技术指标。 2)接线方式不对或者接线顺序错误。 3)供电电压不对(建议使用标准24V直流电压供电)。 4)变送器与采集器之间距离过长,造成信号紊乱。 5) PLC采集口损坏。 6)设备损坏。

基于MSP430单片机监测环境温湿度以及二氧化碳浓度毕设

基于MSP430单片机监测环境温湿度以及二 氧化碳浓度毕设 设计总讲明Ⅱ General Description of Construction Design Ⅳ 第1章绪论6 1.1 研究的目的及意义6 1.2 国内外研究的情形7 1.3 系统的要紧性能指标和工作任务8 1.4 方案论证8 第2章工具简介 10 2.1 C语言10 2.2 IAR软件11 第3章硬件设计16 3.1 主控芯片的介绍16 3.1.1 MSP430F149的工作方式17 3.1.2 P口介绍19 3.1.3 MSP430指令的介绍24 3.1.4 MSP430中断介绍和储备器断介绍26 3.1.5 MSP430定时器28 3.1.6 时钟模块 30 3.1.7 比较器模块31 3.1.8 模数转换模块32 3.2 电源电路的设计32 3.3 晶振和复位电路以及USB下载电路的设计35 3.4 液晶显示模块LCD12864 37 3.5 时钟芯片DS1302 39 3.5.1 DS1302 的差不多组成和工作原理40 3.5.2 DS1302 内部寄存器41

3.6 温湿度芯片45 3.7 二氧化碳气体传感器49 3.7.1 二氧化碳浓度传感器TGS4160概述49 3.7.2 TGS4160的内部结构49 3.7.3 TGS4160的工作原理50 3.7.4 二氧化碳检测电路设计 52 3.8 超限操纵处理模块52 第4章软件设计 54 4.1 程序的流程图设计54 4.1.1 主程序设计流程图54 4.1.2 温湿度和气体采集及处理框图 69 4.1.3 LCD12864显示流程图85 第5章调试与体会91 5.1 调试过程91 5.2 总结体会92 致谢93 参考文献 95

二氧化碳传感器检测原理

CO2传感器/变送器原理 目前检测CO2的方法主要有化学法、电化学法、气相色谱法、容量滴定法等这些方法普遍存在着价格贵、普适性差等问题测量精度还较低。而传感器法具有安全可靠、快速直读、可连续监测等优点目前应用于二氧化碳气体传感器主要有电化学式、热传导式、电容式、固体电介质式和红外吸收式等。下面主要介绍几种传感器 1、固体电解质CO2气体传感器 固体电解质CO2气体传感器是由Gauthier提出的。初期用K2CO3固体电解质制备的电位型CO2传感器受共存水蒸气影响很大难以实用后来有人利用稳定化锆酸盐Zr O2?MgO设计一种CO2敏感传感器。La F3单晶与金属碳酸盐相结合制成的CO2传感器具有良好的气敏特性在此基础上有人提出利用稳定化锆酸盐/碳酸盐相结合而成的传感器。1990年日本山田等人采用NASICON(Na+超导体)固体电解质和二元碳酸盐(Ba CO3Na2CO3)电极使传感器响应特性有了大的改进。但是这类电位型的固态CO2传感器需要在高温(400~600℃)下工作且只适宜于检测低浓度CO2应用范围受到限制。现有采用聚丙烯腈(PAN)、二甲亚砜(DMSO)和高氯酸四丁基铵(TBAP)制备了一种新型固体聚合物电解质。以恰当用量配比PAN(DMSO)2(TBAP)2聚合物电解质呈有高达10-4S·cm- 1的室温离子电导率和好的空间网状多孔结构 由其在金微电极上成膜构成的全固态电化学体系在常温下对CO2气体有良好的电流响应特性消除了传统电化学传感器因电解液渗漏或干涸带来的弊端又具有体积小、使用方便的独到优点但其成本过。

2、电容式传感器 电容式传感器是利用金属氧化物一般比其碳酸盐的介电常数要大利用电容的变化来检测CO2。报道采用溶胶——凝胶法以醋酸钡和钛酸丁脂为原材料乙醇和醋酸为溶剂制备了BaTi O3纳米晶材料。采用这种纳米晶材料为基体制备电容式CO2气体传感器.其缺点是检测低浓度CO2时输出倍号小且易受其他气体的影响。 3、光纤CO2传感器 光纤CO2传感器利用CO2与水结合后生成的碳酸酸性很弱其酸性的检测多采用灵敏度较高的荧光法如杨荣华等人研制的基于荧光碎灭原理的有叶琳的聚氯乙烯敏感膜其原理是利用环糊精对叶琳的荧光增强效应且该荧光能被溶液中二氧化碳碎灭该膜响应速度快、重现性好、抗干扰能力强测定碳酸的范围达到了 4.75×10?7~3.90×10?5mol/L这对化学传感器来说是一个较好的性能指标。该方法克服了化学发光传感器消耗试剂的不足不必连续不断地在反应区加送试剂。但其系统繁琐此外使用寿命也较短。 4、红外吸收型CO2传感器(如安易买商城上销售的TELASIA VS08-K 二氧化碳传感器/变送器) 红外吸收c o2传感器是利用不同气体对红外辐射有着不同的吸收光谱吸收强度与气体浓度有关的事实来检测co2浓度的。红外吸收型气体分析检测仪一般由红外辐射源(白炽灯或者红外LED)测量气样室波长选择装置(滤光片)红外探测装置(如热电探测器热电池)组成。如果气体吸收谱线在入射光谱范围内那么红外辐射透过被测气体后在

传感器的防爆问题

、传感器的防爆问路 防爆技术某础 在有甲烷、煤尘混炸危险场历使用的电气设备行防爆措施,措合国家有关安全规程的要求。 1.防爆电气设备的类型 防爆电气设备按其所采用的防爆原理不同可分为:隔爆型(标志d)、增安型(标志e)、本质安全型(标志i)、正压型(标志p)、充油型(标志o)、充砂型(标志q)、无火花见(标志n)、特殊型(标志s)。根据应用场所不同又分为两类:I类煤矿用防爆电气设备;E类工厂用防爆电气设备。在矿井通信和监控系统中,以隔爆型、本质安全型以及两者的混合型最为常见。 2.隔爆型 隔爆型电气设备具有一个特殊的外壳——防爆外壳,当壳内发生燃炸时,其压力不致使外壳爆破,并且逸出外壳的火焰温度已足够的低,不致引起壳外面甲烷、煤尘等爆炸。也就是说,把爆炸范围限制在外壳之内,贝达到隔爆的目的。 隔爆外壳一股采用具有一定强度的钢板铸钢或铸铁。外竞由壳体和盖子共同构成,壳体与盖子之间的接合面(称作隔爆面)需具有规定的宽度和间隙,并符合一定的光洁度。 显而易见,隔爆外壳必须具有两个性质,一是耐爆性,即内部甲烷或煤尘爆炸的压力、温度不使外壳损坏、变形,这是由外壳材料的性质和外壳的机械构造来保证的;二是不传爆性,即隔爆面要能使内部爆炸生成物冷却至安全温度以下。 3.本质安全型、 本质安全型主要是通过合理选择电气没备电路和电路参数,使电路在正常工作和规定的故障状态下产生的电火花和热效应均不致引起周围可燃性气体的燃烧或爆炸。本质安全型电气设备不需要隔爆设备那样笨重的外壳,并且其引出线不论在正常工作状态还是在规定的故障状态下都是安全的。因此,在矿井监控系统中获得了广泛的应用。 (二)传感器的防爆类型 传感器的防爆类型有:隔爆型、隔爆兼本质安全型和本质安全型。随着电子技术的发展和设备功耗的降低,本质安全型传感器的比例在日益上升。这是由于本质安全型电气设备与其他类型的防爆电气设备相比,具有重量轻、尺寸小、制造工艺简单、成本低等优点,特别是本质安全信号,在传输电缆的各种故障情况下,都不会导致燃烧和爆炸事故发生,这是其它各种防爆方法都无法做到的。 本质安全型: 简称:本安型 用途:电器或设备防爆类别 解释:通过控制设备本身能量水平,使其在正常工作或故障条件下均低于点燃爆炸性气体的临界条件,不至产生火花或低于点燃爆炸性气体的温度,而不是通过其他方式屏蔽或阻拦。 相关概念: 1.本安型点燃保护方式 欧洲标准EN 50 020 中包括了设计和检验这类电气设备的特别条款,它们以本安型点燃保护方式应用于爆炸性中。 与其它方式不同,本安型点燃保护方式涉及的不仅是单个设备,而且涉及整个本安电路。如果在一个电路中不会由于火花或热效应而点燃爆炸性环境,则称该电路为本安型电路。

传感器的吊挂位置及规范

采掘工作面传感器的吊挂位置一:综采工作面 1:上隅角甲烷传感器设置 上隅角甲烷传感器设在采煤工作面切顶线的煤帮处,其具体位置距巷帮和老塘侧充填带不大于800毫米,距顶板不大于300毫米。设置报浓度≥1%,断电浓度以≥1.5%,断电范围是工作面及进、回风巷中全部非本质安全检查型电气设备,复电浓度≤1%。 2:使携式瓦斯检测报警仪设置。 吊挂位置与上隅角甲烷传感器相同(更靠近老唐侧),报警浓度≥1%。 3:工作面甲烷传感器设置 工作面甲烷传感设在回风流距工作面割煤线(煤壁)10m范围内,其具体位置距巷帮不小于200毫米,距顶板不大于300毫米,设置报警浓度以≥1%,断电浓度≥1.5%,断电范围是工作面及进、回风巷中全部非本质安全型电气设备,复电浓度为≤1%。

4.工作面中部甲烷传感器设置 中部传感器设在回风巷中部,其具体位置距巷帮不小于200毫米,距顶板不大于300毫米,设置报警浓度为≥1%,断电浓度为≥1% ,断电范围是工作面及进、回风巷中全部非本质安全型电气设备,复电浓度为≤1%。 5:工作面回风流甲烷传感器设置。 回风流甲烷传感器设在距回风口10~15m 处,其具体位置距巷帮不小于200毫米,距顶板不大于300毫米,设置报警浓度为≥1%,断电浓度为≥1%,断电范围是工作面及jin/回风巷中全部非本质电气设备,复电浓度为≤1%。6:采煤机机载断电仪。 工作采煤机载式瓦斯断仪必须保证灵敏可靠,设置报警浓度≥1%,断电浓度≥1.5%,断电范围采煤机电源,复电浓度≤1%. 7:一氧化碳传感器 设在距回风巷口10一15m处,其具体位置距巷帮不小于200毫米,距顶板不大于300毫

二氧化碳传感器 CO2

IRceL ? CO2 Technical Specifications Non-Dispersive Infra-Red (NDIR)0-5% vol. Carbon Dioxide Within ± (0.1% vol CO 2 + 4% of concentration) <35 Seconds < ±0.003% CO 2< ±0.075% CO 2 See Operating Principles OP17 Product Dimensions All dimensions in mm All tolerances ±0.15mm unless othewise stated IMPORTANT NOTE: Connection should be made via PCB sockets only. Soldering to the pins will seriously damage your sensor. All performance data is based on conditions at 20°C, 50%RH and 1013mBar, using City Technology recommended circuitry. For sensor performance data under other conditions, refer to the Characterisation Note and Operating Principles. Carbon Dioxide (CO 2) Gas Sensor Part Number: IRCEL-CO2R MEASUREMENT Operating Principle Measurement Range Accuracy (-20°C to +50°C)Response Time (T 90)Repeatability: Zero 5% CO 2Linearity 3-5 VDC, 3.3 V to utilise EEPROM calibration <100 mW at 3.3 V 2 Hz, 50% duty cycle 0.005% CO 2 at zero 0.15% CO 2 at range <10 Seconds ELECTRICAL Supply Voltage Power Consumption Recommended Lamp Frequency Minimum Resolution Warm-up Time Stainless Steel (see back page) 23 g Any MECHANICAL Housing Material Weight Orientation General Purpose Portable / Fixed CO 2 Detection -20°C to +50°C 0 to 99% RH (non-condensing)700 to 1300 mBar with compensation ENVIRONMENTAL Typical Applications Operating Temperature Range Operating Humidity Range Operating Pressure Range < 80 ppm CO 2 per month -20°C to +50°C > 5 years 12 months from date of despatch LIFETIME Long Term Zero Drift Recommended Storage Temp MTBF Standard Warranty Key Features & Benefits: ?Integrated thermister for accurate temperature compensation ?EEPROM programmed with sensor specfic performance characteristics ? Compact Size Pin Function 1Lamp return 2Lamp +5V 3+5V pyro supply 4Detec tor output 5Referenc e output 6Thermis tor output 7 0V py ro s upply 中国  北京赛斯维测控技术有限公司北京市朝阳区望京西路48号金隅国际C座1002 电话:+86 010 8477 5646传真:+86 010 5894 9029邮箱:i angarmy@https://www.360docs.net/doc/b517369445.html,

安全仪器监测工试题

济宁二号煤矿安全仪器监测工题库 一.单选题(每空1分) 1.井下敷设信号电缆和主传输电缆时,应避免与动力电缆同一侧走线。如果信号电缆与动力电缆在同一侧敷设时,其间距应大于 mm。C A.100 B.200 C.300 2.带式输送机滚筒下风侧()m处应设置烟雾传感器。C A.3-5 B.20-25 C.10-15 3,开采容易自燃,自燃煤层及地温高的矿井采煤工作面温度传感器的报警值为()℃。B A.26 B.30 C.34 4.()是矿井安全监控最基本、最重要的功能。B A.瓦斯监测 B. 断电控制 C. 传感器设置 D.甲烷超限报警 5.甲烷超限断电及甲烷风电闭锁的控制执行时间不应大于( )s。B A.1 B.2 C.3 D.5 6.低浓度甲烷传感器经大于( )%CH4的甲烷冲击后,应及时进行调校或更换。C A. 1 B. 4 C. 1.5 7.( )一氧化碳传感器具有灵敏度高,响应时间快,稳定性高等优点,广泛用于煤矿监测系统中。A A. 电化学式 B.红外 C. 热导式 8.安全测控仪器发生故障时,必须及时处理,在更换和故障处理期间必须采用( )等安全措施,并填写故障记录。A A.人工监测 B.撤出人员 C.携带便携式甲烷检测报警仪 9.系统必须由()完成甲烷浓度超限声光报警和断电/复电控制功能。C A.甲烷断电仪 B.甲烷传感器 C.现场设备 10.安全监控设备必须定期进行调试,校正,每月至少()次。A A 1 B 2 C 3 11.采掘工作面的进风流中,氧气浓度不低于20%,二氧化碳浓度不超过()%。B A 0.75 B 0.5 C 1.5 12.使用局部通风机供风的地点必须实行(),保证停风后切断停风区内全部非本质安全型电气设备的电源。B A 瓦斯电闭锁 B 风电闭锁 C 故障闭锁 13.采区回风巷,采掘工作面回风巷风流中瓦斯浓度超过1.0%或二氧化碳浓度超过()%时,必须停止工作,撤出人员,采取措施,进行处理。C A 1 B 0.75 C 1.5 14.煤矿企业应建立安全仪表()检验制度.高瓦斯矿井,煤(岩)与瓦斯突出矿井,必须装备矿井安全监控系统。A A 计量 B 瓦斯 C 二氧化碳 15.配制甲烷校准气样的装置和方法必须符合国家有关标准,相对误差必须小于()%。A A 5 B 6 C 10

基于STM32与3G技术的植物工厂远程监测系统

基于STM32与3G技术的植物工厂远程监测系统 【摘要】植物工厂代表着未来农业的发展方向,是农业产业化进程中吸收应用高新技术成果最具活力和潜力的领 域之一。植物工厂的发展方向是大型化和家庭化,然而不论何种发展方向,都要求我们可以从客户端中远程实时的检测植物工厂的植物的生长状态与环境参数情况。所以基于3G 通讯技术,我们设计了一套远程监测系统,并给出了软硬件的设计方案。实验结果证明,对植物工厂可以起到长期稳定的监测效果。 【关键词】植物工厂3G STM32 引言:近年来国家越来越重视农业生产问题,而植物工厂则是国际上公认的设施农业最高级的发展阶段,是一种技术高度密集,不受或很少受自然条件制约的全新生产方式。目前植物工厂的检测方式一般都是在植物工厂内部使用显 示屏幕方式直接呈现,然而对于未来大规模植物工厂或者家庭植物工厂而言[1],用户更需要的是远程就可以得知植物工厂内植物的生长情况与环境参数如何。正是由于这种需求,所以我们设计了本系统。 一、系统框架 本系统由感知层子系统,传输层子系统与应用层子系统

构成。其中感知层子系统与传输层子系统主要由下位机硬件构成,而应用层子系统则是通过C++语言进行编程的客户端。总体框架如图1所示。 二、感知层子系统 本子系统硬件由STM32F103ZET6单片机作为主控芯片,采用了DHT11大气温湿度传感器,BH1750FVI光照强度传感器,SMS-II-100土壤温湿度传感器与MG811二氧化碳浓度传感器。利用单片机对传感器检测到的数字量或模拟量进行采集和转化,以便后续通过传输层子系统发送到上位机进行处理。 1、主控制器模块。本系统采用的控制单元是意法半导体公司的STM32单片机,它具有32位处理器,时钟频率达到72MHZ,具有丰富的外设资源,是专为高性能,低功耗,低成本的嵌入式设备而设计的芯片,较强的运算能力足以达到本系统的要求。它主要负责采集和处理传感器数据并通过3G模块将数据打包传送至上位机中。 2、多传感器检测模块。1)DHT11温湿度传感器。DHT11数字温湿度传感器包括一个电阻式感湿元件和一个NTC测温元件,并与一个高性能8位单片机相连接。该传感器测量湿度的量程为20~90% RH,精度为±5% RH,测量温度量程为0~50 ℃,精度为±2℃,工作电压为3.5~5,5V,工作电流平均为0.5mA,分辨率为8位,采样周期为1s。值得注意

相关文档
最新文档