基于MATLAB的(7,4)汉明码的编译仿真

基于MATLAB的(7,4)汉明码的编译仿真
基于MATLAB的(7,4)汉明码的编译仿真

摘要

在通信系统中,要提高信息传输的有效性,我们将信源的输出经过信源编码用较少的符号来表达信源消息,这些符号的冗余度很小,效率很高,但对噪声干扰的抵抗能力很弱。汉明码(Hamming Code)是一种能够自动检测并纠正一位错码的线性纠错码,即SEC(Single Error Correcting)码,用于信道编码与译码中,提高通信系统抗干扰的能力。

为了提高信息传输的准确性,我们引进了差错控制技术。而该技术采用可靠的,有效的信道编码方法来实现的。纠错码是一种差错控制技术,目前已广泛应用于各种通信系统和计算机系统中,纠错编码主要用于数字系统的差错控制,对于保证通信、存储、媒体播放和信息转移等数字传递过程的质量有着重要意义,是通信、信息类科知识结构中不可缺少的一部分。

关键字:通信系统、MATLAB 线性分组码、Hamming码

一、引言 (1)

二、设计原理 (2)

2.1 汉明码的构造原理 (2)

2.2 监督矩阵H (3)

2.3 生成矩阵G (4)

2.4 校正子(伴随式)S (5)

三、(7,4)汉明码编码的设计 (7)

3.1 (7,4)汉明码编码方法 (7)

3.2 编码流程图 (7)

3.3 (7,4)汉明码编码程序设计 (7)

四、(7,4)汉明码的译码器的设计 (8)

4.1 (7,4)汉明码译码方法 (8)

4.2 译码流程图 (10)

4.3(7,4)汉明码译码程序的设计 (10)

五、(7,4)汉明码编译码程序的编译及仿真波形 (11)

六、总结 (13)

七、参考文献 (14)

附录 (15)

一、引言

当计算机存储或移动数据时,可能会产生数据位错误,这时可以利用汉明码来检测并纠错,简单的说,汉明码是一个错误校验码码集,由Bell实验室的R.W.Hamming发明,因此定名为汉明码。

与其他的错误校验码类似,汉明码也利用了奇偶校验位的概念,通过在数据位后面增加一些比特,可以验证数据的有效性。利用一个以上的校验位,汉明码不仅可以验证数据是否有效,还能在数据出错的情况下指明错误位置。

在接受端通过纠错译码自动纠正传输中的差错来实现码纠错功能,称为前向纠错FEC。在数据链路中存在大量噪音时,FEC可以增加数据吞吐量。通过在传输码列中加入冗余位(也称纠错位)可以实现前向纠错。但这种方法比简单重传协议的成本要高。汉明码利用奇偶块机制降低了前向纠错的成本。

二、设计原理

2.1 汉明码的构造原理

线性分组码是一类重要的纠错码,应用很广泛。在(n ,k )分组码中,若监督码元是按线性关系模2相加而得到的,则称其为线性分组码。

一般来说,若汉明码长为n ,信息位数为k ,则监督位数r=n-k.若希望用r 个监督位构造出r 个监督关系式来指示一位错码的n 种可能位置,则要求

n r ≥-12 或 112++≥-r k r

现在以(7,4)分组码为例来说明线性分组码的特点。设其码字为A=[6a ,

012345,,,,,a a a a a a ],前4位是信息元,后3位是监督元,可用下列线性方程组来描述该分组码产生监督元:

显然,这3个方程是线性无关的。代入上述公式可得(7,4)码的全部码组,如表1所示。

表1 (7,4)汉明码的全部码组

? ? ?

? ? ⊕ ⊕ = ⊕ ⊕ = ⊕ ⊕ = 3 4 6 0

3 5 6 1

4 5 6 2 a

a a a a a a a a a a a

由上表可知:(7,4)汉明码的最小码距0d =3,它能纠1位错或检2位错。

由此可见,汉明码是能够纠正单个错误的线性分组码,其特点是:最小码距0d =3,码长n 与监督位r 满足关系式:n r ≥-12,说明上述所说的(7,4)线性分组码就是汉明码。同时,由于码率n r n r n n k -=-=1)(,故当n 很大和r 很小时,码率接近1,可见,汉明码是一种高效码。

2.2 监督矩阵H

式(3.1)所示的(7,4)汉明码的监督方程可以改写为:

02456=⊕⊕⊕a a a a

01356=⊕⊕⊕a a a a (式2.2.1)

00346=⊕⊕⊕a a a a

用矩阵的形式可以将上式表示为:

(摸2) (式2.2.2)

上式可以简记为:

T T A H 0=? 或 0=?A H T

式中

A =[a6 a5 a4 a3 a2 a1 a0] 0=[0 0 0]

右上标“T ”表示将矩阵转置。例如,HT 是H 的转置,即HT 的第一行为H 的第一列,HT 的第二行为H 的第二列等等。

其中,H成为监督矩阵,只要监督矩阵H给定,编码时信息位和监督位的关系也就随即确定下来了。

2.3 生成矩阵G

上面汉明码例子中的监督位公式为

(式2.3.1)也可改写成矩阵形式:

(式2.3.2)或者写成

(式2.3.3)式中,Q为一个k*r阶矩阵,它为P的转置,即Q=PT

上式表示,在信息位给定后,用信息位的行矩阵车乘矩阵Q就产生出监督位。

若将(2.2.1式)的监督方程补充完整并写成矩阵的形式:

(式2.3.4)

即:A=G ·[6a 345a a a ]=G ·M 即汉明码的编码原理 上式中

G=?????

????

???011....0001101....0010110....0100111....1000 (式2.3.5)

G 为生成矩阵,根据式2.3.4知:由G 和信息码就能产生所有码字。生成矩阵也可分为两部分,即

G=[]Q I k , (式2.3.6)

上式中

Q=T P =????

?

????

???011101110111 (式2.3.7) Q 为r k ?阶矩阵,k I 为k 阶单位阵。

因此,如果找到了码的生成矩阵G ,则编码的方法就完全确定了。具有[KQ]形式的生成矩阵称为典型生成矩阵。由典型生成矩阵得出的码组A 中,信息位的位置不变,监督位附加于其后,这种形式的码称为系统码。

2.4 校正子(伴随式)S

设一发送码组A=[0121,,...,a a a a n n --],在传输的过程中可能发生误码。接受码组B=[0121,,...,,b b b b n n --],收发码组之差定义为错误图样E 。

E=B-A (式2.4.1)

其中,E=[0121,,...,,e e e e n n --],令S=T

H B ?。

T T T H E H E A H B S ?=+=?=)( (式2.4.2)

式中S 称为校正子,他用来表示错码位置。

可见:校正子S 与错误图样E 之间由确定的线性变换关系。若S和E之间一一对应,则S将能代表错码位置。

(7,4)汉明码的校正子和错误图样之间的对应关系如表2所示。

表2 (7,4)汉明码S 与E 对应关系

由上表可知:

当S=001时,则出错在1 位,即b0 出错;

当S=010时,则出错在2 位,即b1 出错;

当S=100时,则出错在3 位,即b2 出错;

当S=011时,则出错在4 位,即b3 出错;

当S=101时,则出错在5 位,即b4 出错;

当S=110时,则出错在6 位,即b5 出错;

当S=111时,则出错在7 位,即b6 出错;

当S=000时,则无错。

三、(7,4)汉明码编码的设计

3.1 (7,4)汉明码编码方法

(7,4)汉明码的编码就是将输入的4 位信息码M=[ 3456a a a a ]加上3 位监督码012b b b 从而编成7位汉明码[6a 012345,,,,,a a a a a a ],编码输出B=[6a 5a 4a 3a 2a 1a 0a ].

由式A = M ·G=[3456a a a a ]·G 可知,信息码M 与生成矩阵G 的乘积就是编好以后的(7,4)汉明码。

3.2 编码流程图

编码程序的设计流程图

3.3 (7,4)汉明码编码程序设计

根据(7,4)汉明码的编码原理,将上式计算所得的监督位和输入的信息位一起输出,则此次编码就算完成了。 (7,4)汉明码的编码源程序见下文附录。

四、(7,4)汉明码的译码器的设计

4.1 (7,4)汉明码译码方法

(7,4)汉明码的译码器的功能就是把输入的7 位汉明码B=[23456b b b b b 01b b ] 译为4位信息码3a 2a 1a 0a ,并且根据伴随矩阵S 从而纠正编码中可能出现的1 位错码。

根据监督矩阵H 和生成矩阵G 的关系,即:

H = [P r I ] ,其中r I 是33?的单位阵, G = [k I Q ] ,其中

k

I 是44?的单位阵,

T Q P = (式4.1.1) 生成矩阵

G=??

??????????011....0001101....0010110....0100111. (1000)

=[]Q I k , 由式(4.1.1),得P=??????????101111011110 监督矩阵

(式4.1.2)

由式(2.2.2)知T T T H E H E A H B S ?=+=?=)(,其中E=[0121,,...,,e e e e n n --]

从而即可得到校正子S 与(7,4)汉明码各位之间的关系:

24562a a a a S +++=

13561a a a a S +++= (式4.1.3) 03460a a a a S +++=

算出校正子S (012S S S )后,对照表2,即可判断出哪位出错,并纠正出错的那位,从而输出正确的码字。

[]r PI H =??

??

?

?????=001101101011011001110

表3 (7,4)汉明码译码输入、输出对应关系

4.2 译码流程图

译码程序设计的流程图:

4.3(7,4)汉明码译码程序的设计

根据前面分析的译码原理,在程序中,C 表示错误在哪一位。若第1 位(a0)出错,则C 输出0;若第2 位出错,则C 输出1;……;若无错,则C 输出0。这样译码程序就可以编出来了。译码源程序见附录

五、(7,4)汉明码编译码程序的编译及仿真波形

输入信息元序列[1 0 0 0] 输出序列为:[ 1 0 0 0 1 1 1]

hanmingencode

value

v a l u e

hanmingdecode

value

v a l u e

[ 0 0 0 0 1 1 1] 错误在第一位(蓝线表示正确的译码【0 0 0 1 0 1 1】, 红线表示错误的接收序列【1 0 0 1 0 1 1】)

输入信息元序列[1 0 0 1] 输出序列为:[ 1 0 0 1 1 0 0]

hanmingencode

value

v a l u e

hanmingdecode

value

v a l u e

[ 1 1 0 1 1 0 0] 错误在第二位

输入信息元序列[1 0 1 0] 输出序列为:[ 1 0 10 0 1 0]

hanmingencode

value

v a l u e

hanmingdecode

value

v a l u e

【 10 0 0 01 0】 错误在第三位

输入信息元序列[1 0 1 1] 输出序列为:

[ 1 0 1 1 0 0 1]

hanmingencode

value

v a l u e

hanmingdecode

value

v a l u e

【 1 0 10 001】错误在第四位

六、总结

对于本次课程设计的结束,我真切感觉到自己知识能力的匮乏,很多东西都只是知道一些浅显的知识,真正搞懂会应用的东西很少。或许一个人的进步需要一个缓慢的过程。在过程中需要不断地借鉴,学习,汲取别人的东西。同别人的成果中攫取知识和营养,然后它变成自己的东西。通过这次课程设计。我学到了很多东西,首先,通过这次课程设计,我熟练地掌握了汉明码的纠错码的原理,了解的(7,4)汉明码的相关知识。其次,我觉得学习理论和实践是两个层次,理论指导实践,而实践验证理论,理论往往是在理想的条件下得出的,而实践是在现实生活中进行的,所以,实践得出的结论往往与理论的结论有一定的差别,这是很正常的。另外团结协作,互助共赢是时代的主流。在这次课设的制作中,交流合作的精神在我们体现的可谓是淋漓尽致。相互探讨,学习交流,优势互补,这样才最终处成了这课设。争论与交流是解决问题很好的方法,问题也总是在思想与意见

的碰撞中得到解决而这也是我们对理论理解的更为深刻。通过图书馆,搜索引擎查阅资料的能力也得到了相应的提升。总之,在这次课程设计的制作的过程中学到了很多东西,能力也有相应的提升。在此还要感谢指导老师的辛勤教导,感谢老师在此次课程设计中给以孜孜不倦的解惑。

七、参考文献

【1】李建新现代通信系统分析与仿真—MATLAB通信工具箱.西安:西安电子科技大学出版社,2000

【2】樊昌信通信原理.北京:国防工业出版社,2002

【3】刘敏 MATLAB通信仿真与应用国防工业出版社

【4】曹志刚等著现代通信原理北京:清华大学出版社,2001 5

【5】吴伟陵等著移动通信原理北京:电子工业出版社,2005

【6】韩利竹,王华 MATLAB电子仿真与应用北京:国防工业出版社,2003年. 【7】赵静基于MATLAB的通信系统仿真北京:北京航空航天大学出版社,2008年.

【8】葛哲学精通MATLAB 北京:电子工业出版社,2008年.

附录

一、(7,4)汉明码编码源程序

function f=hammingencod(a)

G=[1 0 0 0 1 1 1;0 1 0 0 1 1 0;0 0 1 0 1 0 1;0 0 0 1 0 1 1]; a=input('输入信息元序列:');

c=mod(a*G,2);

disp('编码后序列为:');

disp(c);

x=.01:.01:4;

[m,n]=size([a]'*ones(1,100));

y=reshape(([a]'*ones(1,100))',1,m*n);

plot(x,y)

axis([0 4 0 1.5]);

set(gca,'XTick',0:1:4);

set(gca,'YTick',0:0.5:1.5);

title('hanmingencode')

xlabel('value')

ylabel('value')

end

二、(7,4)汉明码译码源程序

function g=hammingdecod(B)

H=[1 1 1 0 1 0 0 ;1 1 0 1 0 1 0;1 0 1 1 0 0 1];

B=input('输入接收序列B=');

S=mod(B*H',2); %计算B的伴随式

if S==0

disp('接收到的码字无错误。');

E=dec2bin(0,7);

end

for i=1:1:7

if S==H(:,i)'

E=dec2bin(2^(7-i),7); %计算R的错误图样

fprintf('错误出现在第%1.0f位\n',i);

break;

end

end

a=mod(B-E,2); %计算原发送码序列

disp('原发送码字为:');

disp(a)

x=.01:.01:7;

[m,n]=size([a]'*ones(1,100));

y=reshape(([a]'*ones(1,100))',1,m*n);

[m,n]=size([B]'*ones(1,100));

z=reshape(([B]'*ones(1,100))',1,m*n); plot(x,y)

hold on;

plot(x,z,'--r')

axis([0 7 0 1.5]);

set(gca,'XTick',0:1:7);

set(gca,'YTick',0:0.5:2.5);

set(gca,'ZTick',0:0.5:2.5);

title('hanmingdecode')

xlabel('value')

ylabel('value')

zlabel('value')

end

matlab通信系统仿真

通信系统基于(15,11)汉明编码的matlab仿真 clear m=4; n=2^m-1; k=11; msg1=randint(1,6000*k,[0,1])%产生信息序列 code0=vec2mat(msg1,k); code1=encode(msg1,n,k,'hamming/binary');%进行汉明纠错编码 code2=reshape(code1,90,1000)'; code3=zeros(1000,90);%设置零矩阵,以便储存交织后的序列 for i=1:1000 temp=code2(i,:); temp1=reshape(temp,15,6);%按15*6交织 code3(i,:)=reshape(temp1',1,90); end [row,cloums]=size(code3); code4=code3'; [row1,cloums1]=size(code4); code5=reshape(code4,6,15000)'; %将交织后的序列转换为6行,15000列矩阵msg2=zeros(15000,6); for j=2:6, msg2(:,j)=xor(code5(:,j),code5(:,(j-1))); end msg2(:,1)=code5(:,1);%此时得到的msg2为gray映射后的信号序列 code8=msg2';%转置,便于比特符号转换 A=[32,16,8,4,2,1]; %为比特符合转换所设的序列 msg3=A*code8;%生成符号序列 msg4=qammod(msg3,64);%将符号序列进行64QAM调制 [row2,cloums2]=size(msg4); dB=0:1:20; for k=1:length(dB), snr=10.^(dB(k)./10); %信噪比 sgma=sqrt(63./(6*snr));%标准差 b1=real(msg4)+sgma*randn(row2,cloums2);%分路叠加噪声 b2=imag(msg4)+sgma*randn(row2,cloums2);%分路叠加噪声 rx=complex(b1,b2); %————————量化判决——————————% for m=1:row2, for n=1:cloums2, if ((b1(m,n)<-6)) b11(m,n)=-7;

基于MATLAB的(7_4)汉明码编译码设计与仿真结果分析

通信原理课程设计报告书 课题名称 基于MATLAB 的(7,4)汉明码编 译码设计与仿真结果分析 姓 名 学 号 学 院 通信与电子工程学院 专 业 通信工程 指导教师 ※※※※※※※※※ ※ ※ ※※ ※ ※ 2009级通信工程专业 通信原理课程设计

2011年 12月 23日 一、设计任务及要求: 设计任务: 利用MATLAB编程,实现汉明码编译码设计。理解(7,4)汉明码的构造原理,掌握(7,4)汉明码的编码和译码的原理和设计步骤。并对其性能进行分析。要求: 通过MATLAB编程,设计出(7,4)汉明码的编码程序,编码后加入噪声,然后译码,画出信噪比与误比特数和信噪比与误比特率的仿真图,然后对其结果进行分析 指导教师签名: 2011年12月23日 二、指导教师评语: 指导教师签名: 年月日 三、成绩 验收盖章 年月日

基于MATLAB 的(7,4)汉明码编译码设计 与仿真结果分析 1 设计目的 (1)熟悉掌握汉明码的重要公式和基本概念。 (2)利用MATLAB 编程,实现汉明码编译码设计。 (3)理解(7,4)汉明码的构造原理,掌握(7,4)汉明码的编码和译码的原理和设计步骤。 (4)对其仿真结果进行分析。 2 设计要求 (1)通过MATLAB 编程,设计出(7,4)汉明码的编码程序。 (2)编码后加入噪声,然后译码,画出信噪比与误比特数和信噪比与误比特率的仿真图。 (3)然后对其结果进行分析。 3 设计步骤 3.1 线性分组码的一般原理 线性分组码的构造 3.1.1 H 矩阵 根据(7, 4)汉明码可知一般有 现在将上面它改写为 上式中已经将“⊕”简写成“+”。 上式可以表示成如下矩阵形式: ??? ??=⊕⊕⊕=⊕⊕⊕=⊕⊕⊕0 000346 13562456a a a a a a a a a a a a ?? ? ?? =?+?+?+?+?+?+?=?+?+?+?+?+?+?=?+?+?+?+?+?+?010011010010101100010111012345601234560123456a a a a a a a a a a a a a a a a a a a a a (1) (2)

控制系统MATLAB仿真基础

系统仿真 § 4.1控制系统的数学模型 1、传递函数模型(tranfer function) 2、零极点增益模型(zero-pole-gain) 3、状态空间模型(state-space) 4、动态结构图(Simulink结构图) 一、传递函数模型(transfer fcn-----tf) 1、传递函数模型的形式 传函定义:在零初始条件下,系统输出量的拉氏变换C(S)与输入量的拉氏变换R(S)之比。 C(S) b1S m+b2S m-1+…+b m G(S)=----------- =- -------------------------------- R(S) a1S n + a2S n-1 +…+ a n num(S) = ------------ den(S) 2、在MATLAB命令中的输入形式 在MATLAB环境中,可直接用分子分母多项式系数构成的两个向量num、den表示系统: num = [b1, b2, ..., b m]; den = [a1, a2, ..., a n]; 注:1)将系统的分子分母多项式的系数按降幂的方式以向量的形式输入两个变量,中间缺项的用0补齐,不能遗漏。 2)num、den是任意两个变量名,用户可以用其他任意的变量名来输入系数向量。 3)当系统种含有几个传函时,输入MATLAB命令状态下可用n1,d1;n2,d2…….。 4)给变量num,den赋值时用的是方括号;方括号内每个系数分隔开用空格或逗号;num,den方括号间用的是分号。 3、函数命令tf( ) 在MATLAB中,用函数命令tf( )来建立控制系统的传函模型,或者将零极点增益模型、状态空间模型转换为传函模型。 tf( )函数命令的调用格式为: 圆括号中的逗号不能用空格来代替 sys = tf ( num, den ) [G= tf ( num, den )]

汉明码编译码

汉明码编译码 一设计思想 汉明码是一种常用的纠错码,具有纠一位错误的能力。本实验使用Matlab平台,分别用程序语言和simulink来实现汉明码的编译码。用程序语言实现就是从原理层面,通过产生生成矩阵,错误图样,伴随式等一步步进行编译码。用simulink实现是用封装好的汉明码编译码模块进行实例仿真,从而验证程序语言中的编译码和误码性能分析结果。此外,在结合之前信源编码的基础上,还可实现完整通信系统的搭建。 二实现流程 1.汉明码编译码 图 1 汉明码编译码框图 1)根据生成多项式,产生指定的生成矩阵G 2)产生随机的信息序列M 得到码字 3)由C MG 4)进入信道传输 S RH得到伴随式 5)计算=T 6)得到解码码流 7)得到解码信息序列 2.汉明码误码性能分析 误码率(SER)是指传输前后错误比特数占全部比特数的比值。 误帧率(FER)是指传输前后错误码字数占全部码字数的比值。 通过按位比较、按帧比较可以实现误码率和误帧率的统计。

3. 构建完整通信系统 图 2 完整通信系统框图 三 结论分析 1. 汉明码编译码 编写了GUI 界面方便呈现过程和结果。 图 3 汉明码编译码演示GUI 界面 以产生(7,4)汉明码为例说明过程的具体实现。 1) 根据生成多项式,产生指定的生成矩阵G 用[H,G,n,k] = hammgen(3,'D^3+D+1')函数得到系统码形式的校验矩阵H 、G 以及码字长度n 和信息位数k 100101101011100010111H ????=?????? 1 10100001101001 1100101 010001G ????? ?=?? ?? ?? 2) 产生随机的信息序列M 输入信息序列 Huffman 编码 Hamming 编码 信道Hamming 译码 Huffman 译码输出信息序列噪声

汉明码的编译码设计与仿真

****************** 实践教学 ******************* 兰州理工大学 计算机与通信学院 2014年春季学期 通信系统仿真训练 题目:汉明码的编译码设计与仿真 专业班级: 姓名: 学号: 指导教师: 成绩:

摘要 与其他的错误校验码类似,汉明码也利用了奇偶校验位的概念,通过在数据位后面增加一些比特,可以验证数据的有效性。利用一个以上的校验位,汉明码不仅可以验证数据是否有效,还能在数据出错的情况下指明错误位置。在接收端通过纠错译码自动纠正传输中的差错来实现码纠错功能,成为前向纠错FEC。在数据链路中存在大量噪音时,FEC可以增加数据吞吐量。通过传输码列中假如冗余位(也称纠错位)。可以实现前向纠错。但这种方法比简单重传协议的成本要高。汉明码利用奇偶块机制降低了前向纠错的成本。利用汉明码(Hamming Code)是一种能够自动检测并纠正一位错码的线性纠错码,即SEC(Single Error Correcting)码,用于信道编码与译码中,提高通信系统抗干扰的能力。本文主要利用MATLAB中通信系统仿真模型库进行汉明码建模仿真,并调用通信系统功能函数进行编程,绘制编译码图。在此基础上,对汉明码的性能进行分析,得出结论。 关键词:MATLAB 汉明码性能

目录 1.前言 (1) 2.汉明码的构造原理 (2) 2.1 汉明码的构造原理 (2) 2.2 监督矩阵H和生成矩阵G (3) 2.3 校正子(伴随式)S (4) 3.汉明码编码器的设计 (6) 3.1 汉明码编码方法 (6) 3.2 汉明码编码程序设计 (6) 3.3 汉明码编码程序的编译及仿真 (7) 4.汉明码的译码器的设计 (10) 4.1 汉明码译码方法 (10) 4.2 汉明码译码程序的设计 (11) 4.3 汉明码译码程序的编译及仿真 (13) 5.总结 (17) 6.参考文献 (18) 7.附录 (19)

MATLAB与系统仿真

学习中心/函授站_ 成都学习中心 姓名赵洪学号7020140122093 西安电子科技大学网络与继续教育学院 2015学年上学期 《MATLAB与系统仿真》期末考试试题 (综合大作业) 考试说明: 1、大作业于2015年4月3日公布,2015年5月9日前在线提交; 2、考试必须独立完成,如发现抄袭、雷同、拷贝均按零分计。 3、程序设计题(三(8,10))要求写出完整的程序代码,并在matlab软件环境调试并运行通过,连同运行结果一并附上。 一、填空题(1? ×25=25?) 1、Matlab的全称为矩阵实验室。 2、在Matlab编辑器中运行程序的快捷键是:F5 。 3、Matlab的工作界面主要由以下五个部分组成,它们分别是:菜单栏、 工具栏、当前工作目录窗口、工作空间管理窗口和命令窗口。 4、在Matlab中inf表示:无穷大;clc表示:清空命令窗口中的显示内容;more表示:在命令窗口中控制其后每页的显示内容行数;who表示:查阅Matlad内存变量名;whos表示:列出当前工作空间所有变量。 5、在Matlab命令窗口中运行命令Simulink 可以打开Simulink模块库浏览器窗口。 6、求矩阵行列式的函数:det ;求矩阵特征值和特征向量的函数eig 。 7、Matlab预定义变量ans表示:没有指定输出变量名;eps表示:系统精度 ;nargin表示:函数输入参数的个数。 8、Matlab提供了两种方法进行程序分析和优化,分别为:通过Profiler工具优化和通过tic和toc函数进行优化。 9、建立结构数组或转换结构数组的函数为:struct ; 实现Fourier变换在Matlab中的对应函数为:fourier() ;Laplace变换的函数:Laplace() 。

MATLAB实现通信系统仿真实例

补充内容:模拟调制系统的MATLAB 仿真 1.抽样定理 为了用实验的手段对连续信号分析,需要先对信号进行抽样(时间上的离散化),把连续数据转变为离散数据分析。抽样(时间离散化)是模拟信号数字化的第一步。 Nyquist 抽样定律:要无失真地恢复出抽样前的信号,要求抽样频率要大于等于两倍基带信号带宽。 抽样定理建立了模拟信号和离散信号之间的关系,在Matlab 中对模拟信号的实验仿真都是通过先抽样,转变成离散信号,然后用该离散信号近似替代原来的模拟信号进行分析的。 【例1】用图形表示DSB 调制波形)4cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%%一般选取的抽样频率要远大于基带信号频率,即抽样时间间隔要尽可能短。 ts=1/fs; %%根据抽样时间间隔进行抽样,并计算出信号和包络 t=(0:ts:pi/2)';%抽样时间间隔要足够小,要满足抽样定理。 envelop=cos(2*pi*t);%%DSB 信号包络 y=cos(2*pi*t).*cos(4*pi*t);%已调信号 %画出已调信号包络线 plot(t,envelop,'r:','LineWidth',3); hold on plot(t,-envelop,'r:','LineWidth',3); %画出已调信号波形 plot(t,y,'b','LineWidth',3); axis([0,pi/2,-1,1])% hold off% xlabel('t'); %写出图例 【例2】用图形表示DSB 调制波形)6cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%抽样时间间隔要足够小,要满足抽样定理。 ts=1/fs; %%根据抽样时间间隔进行抽样

基于matlab的汉明码4FSK通信仿真实验报告

河海大学计算机及信息工程学院(常 州) 课程设计报告 题目不同信道下汉明码4FSK系统仿真 专业通信工程 学号 0962310312 学生姓名程海粟 指导教师高远

目录 一、实验目的 (3) 二、实验器材 (3) 三、实验内容及原理 (3) (一)汉明码编解码原理 (3) (二)4FSK调制解调原理 (6) (三)三种信道模型简介 (9) (四)程序调用函数介绍……………………………………… 10 四、实验仿真效果图 (12) 五、心得体会 (15) 六、附录 (15) 七、参考文献 (18)

不同信道下汉明码的4FSK 系统仿真 一、实验目的 1、了解熟悉Matlab 仿真软件使用; 2、掌握4进制频移键控(4FSK )的调制与解调基本原理; 3、掌握Matlab 仿真软件仿真4FSK 的系统设计; 4、熟悉无线通信仿真过程及物理层仿真。 二、实验器材 Matlab 仿真软件。 三、实验内容及原理 (一)汉明码编解码原理 1、编码原理 一般来说,若汉明码长为n ,信息位数为k ,则监督位数r=n-k 。若希望用r 个监督位构造出r 个监督关系式来指示一位错码的n 种可能位置,则要求 21r n -≥或211r k r -≥++ (1) 下面以(7,4)汉明码为例说明原理: 设汉明码(n,k )中k=4,为了纠正一位错码,由式(1)可知,要求监督位数r ≥3。若取r=3,则n=k+r=7。我们用 6543210 a a a a a a a 来表示这7个码元,用 123 s s s 的值表示3个监督关系式中的校正子,则123 s s s 的值与错误码元位置的对应关系 可以规定如表1所列。 表1 校正子和错码位置的关系

matlab控制系统仿真课程设计

课程设计报告 题目PID控制器应用 课程名称控制系统仿真院部名称机电工程学院专业 班级 学生姓名 学号 课程设计地点 课程设计学时 指导教师 金陵科技学院教务处制成绩

一、课程设计应达到的目的 应用所学的自动控制基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 二、课程设计题目及要求 1.单回路控制系统的设计及仿真。 2.串级控制系统的设计及仿真。 3.反馈前馈控制系统的设计及仿真。 4.采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。 三、课程设计的内容与步骤 (1).单回路控制系统的设计及仿真。 (a)已知被控对象传函W(s) = 1 / (s2 +20s + 1)。 (b)画出单回路控制系统的方框图。 (c)用MatLab的Simulink画出该系统。 (d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应

曲线。注明所用PID调节器公式。PID调节器公式Wc(s)=50(5s+1)/(3s+1) 给定值为单位阶跃响应幅值为3。 有积分作用单回路控制系统 无积分作用单回路控制系统

大比例作用单回路控制系统 (e)修改调节器的参数,观察系统的稳定性或单位阶约响应曲线,理解控制器参数对系统的稳定性及控制性能的影响? 答:由上图分别可以看出无积分作用和大比例积分作用下的系数响应曲线,这两个PID调节的响应曲线均不如前面的理想。增大比例系数将加快系统的响应,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏;增大积分时间有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长,加入微分环节,有利于加快系统的响应速度,使系统超调量减小,稳定性增加。 (2).串级控制系统的设计及仿真。 (a)已知主被控对象传函W 01(s) = 1 / (100s + 1),副被控对象传函W 02 (s) = 1 / (10s + 1),副环干扰通道传函W d (s) = 1/(s2 +20s + 1)。 (b)画出串级控制系统方框图及相同控制对象下的单回路控制系统的方框图。(c)用MatLab的Simulink画出上述两系统。

汉明码编译码实验

汉明码编译码实验 一、实验目的 1、掌握汉明码编译码原理 2、掌握汉明码纠错检错原理 二、实验内容 1、汉明码编码实验。 2、汉明码译码实验。 3、汉明码纠错检错能力验证实验。 三、实验器材 LTE-TX-02E通信原理综合实验系统----------------------------------------------模块8 四、实验原理 在随机信道中,错码的出现是随机的,且错码之间是统计独立的。例如,由高斯白噪声引起的错码就具有这种性质。因此,当信道中加性干扰主要是这种噪声时,就称这种信道为随机信道。由于信息码元序列是一种随机序列,接收端是无法预知的,也无法识别其中有无错码。为了解决这个问题,可以由发送端的信道编码器在信息码元序列中增加一些监督码元。这些监督码元和信码之间有一定的关系,使接收端可以利用这种关系由信道译码器来发现或纠正可能存在的错码。在信息码元序列中加入监督码元就称为差错控制编码,有时也称为纠错编码。不同的编码方法有不同的检错或纠错能力。有的编码就只能检错不能纠错。 那么,为了纠正一位错码,在分组码中最少要加入多少监督位才行呢?编码效率能否提高呢?从这种思想出发进行研究,便导致汉明码的诞生。汉明码是一种能够纠正一位错码且编码效率较高的线性分组码。下面我们介绍汉明码的构造原理。 一般说来,若码长为n,信息位数为k,则监督位数r=n?k。如果希望用r个监督位构造出r个监督关系式来指示一位错码的n种可能位置,则要求 2r? 1 ≥n 或2r ≥k + r + 1 (14-1)下面我们通过一个例子来说明如何具体构造这些监督关系式。 设分组码(n,k)中k=4,为了纠正一位错码,由式(14-1)可知,要求监督位数r≥3。若取r=3,则n= k + r =7。我们用α6α5…α0表示这7个码元,用S1、S2、S3表示三个监督关系式中的校正子,则S1 S2 S3的值与错码位置的对应关系可以规定如表14-1所列。 表14-1

汉明码编译码教程文件

汉明码编译码

汉明码编译码 一设计思想 汉明码是一种常用的纠错码,具有纠一位错误的能力。本实验使用Matlab 平台,分别用程序语言和simulink来实现汉明码的编译码。用程序语言实现就是从原理层面,通过产生生成矩阵,错误图样,伴随式等一步步进行编译码。用simulink实现是用封装好的汉明码编译码模块进行实例仿真,从而验证程序语言中的编译码和误码性能分析结果。此外,在结合之前信源编码的基础上,还可实现完整通信系统的搭建。 二实现流程 1.汉明码编译码 图 1 汉明码编译码框图 1)根据生成多项式,产生指定的生成矩阵G 2)产生随机的信息序列M 3)由C MG 得到码字 4)进入信道传输 S RH得到伴随式 5)计算=T 6)得到解码码流

7) 得到解码信息序列 2. 汉明码误码性能分析 误码率(SER )是指传输前后错误比特数占全部比特数的比值。 误帧率(FER )是指传输前后错误码字数占全部码字数的比值。 通过按位比较、按帧比较可以实现误码率和误帧率的统计。 3. 构建完整通信系统 图 2 完整通信系统框图 三 结论分析 1. 汉明码编译码 编写了GUI 界面方便呈现过程和结果。 输入信息序列 Huffman 编码 Hamming 编码 信道Hamming 译码 Huffman 译码输出信息序列噪声

图 3 汉明码编译码演示GUI 界面 以产生(7,4)汉明码为例说明过程的具体实现。 1) 根据生成多项式,产生指定的生成矩阵G 用[H,G,n,k] = hammgen(3,'D^3+D+1')函数得到系统码形式的校验矩阵H 、G 以及码字长度n 和信息位数k 100101101011100010111H ????=?????? 1 1010000 1101001 1100101010001G ??????=?? ?? ?? 2) 产生随机的信息序列M 0010=01000111M ?? ???? ???? 3) 由C MG =得到码字 010001101101000010111C ?? ??=?? ???? 4) 进入信道传输 假设是BSC 信道,错误转移概率设定为0.1

自控-二阶系统Matlab仿真

自动控制原理 二阶系统性能分析Matlab 仿真大作业附题目+ 完整报告内容

设二阶控制系统如图1所示,其中开环传递函数 ) 1(10 )2()(2+=+=s s s s s G n n ξωω 图1 图2 图3 要求: 1、分别用如图2和图3所示的测速反馈控制和比例微分控制两种方式改善系统的性能,如果要求改善后系统的阻尼比ξ =0.707,则和 分别取多少? 解: 由)1(10 )2()(2 += +=s s s s s G n n ξωω得10 21,10,102===ξωωn t K d T

对于测速反馈控制,其开环传递函数为:) 2()s (2 2n t n n K s s G ωξωω++=; 闭环传递函数为:2 2 2)2 (2)(n n n t n s K s s ωωωξωφ+++= ; 所以当n t K ωξ2 1+=0.707时,347.02)707.0(t =÷?-=n K ωξ; 对于比例微分控制,其开环传递函数为:)2()1()(2 n n d s s s T s G ξωω++=; 闭环传递函数为:) )2 1(2)1()(2 22 n n n d n d s T s s T s ωωωξωφ++++=; 所以当n d T ωξ2 1 +=0.707时,347.02)707.0(=÷?-=n d T ωξ; 2、请用MATLAB 分别画出第1小题中的3个系统对单位阶跃输入的响应图; 解: ①图一的闭环传递函数为: 2 22 2)(n n n s s s ωξωωφ++=,10 21 ,10n ==ξω Matlab 代码如下: clc clear wn=sqrt(10); zeta=1/(2*sqrt(10)); t=0:0.1:12; Gs=tf(wn^2,[1,2*zeta*wn,wn^2]); step(Gs,t)

基于VHDL的(7,4)汉明码编解码器的设计

(7,4)汉明码编解码器的设计 序言 VHDL语言具有功能强大的语言结构,可用明确的代码描述复杂的控制逻辑设计,并且具有多层次的设计描述功能,支持设计库和可重复使用的元件的生成。近几十年来,EDA技术获得了飞速发展。它以计算机为平台,根据硬件描述语言VHDL,自动地完成逻辑编译、化简分割、综合及优化,布局布线,仿真直至对特定目标芯片的适配编译,逻辑映射和编程下载等工作。以自顶向下的设计方法,使硬件设计软件化,摆脱了传统手工设计的众多缺点。随着EDA技术的深入发展基于硬件描述语言的方法将有取代传统手工设计方法的趋势。 EDA ( Elect ronics Design Automation) 技术是随着集成电路和计算机技术飞速发展应运而生的一种高级、快速、有效的电子设计自动化工具。目前,VHDL语言已经成为EDA的关键技术之一,VHDL 是一种全方位的硬件描述语言,具有极强的描述能力,能支持系统行为级、寄存器传输级和逻辑门级三个不同层次的设计,支持结构、数据流、行为三种描述形式的混合描述,覆盖面广,抽象能力强,因此在实际应用中越来越广泛。 汉明码是在原编码的基础上附加一部分代码,使其满足纠错码的条件。它属于线性分组码,由于汉明码的抗干扰能力较强,至今仍是应用比较广泛的一类码。 本文用VHDL语言实现了(7,4)汉明码的编码和译码,并通过实例来说明利用VHDL语言实现数字系统的过程。在介绍(7,4)汉明码编码和译码原理的基础上,设计出了(7,4)汉明码的编码器和译码器,写出了基于VHDL实现的源程序,并通过QUARTUSⅡ软件进行仿真验证。 第1章QuartusⅡ与VHDL简介 1.1 QuartusⅡ软件简介 QuartusⅡ是Altera公司推出的CPLD/FPGA的开发工具,QuartusⅡ提供了完全集成且与电路结构无关的开发环境,具有数字逻辑设计的全部特性。 ?/P> Quartus Ⅱ设计软件提供完整的多平台设计环境,可以很轻松地满足特定设计的需要。

系统仿真的MATLAB实现.

第七章系统仿真的MATLAB实现 由于计算机技术的高速发展,我们可以借助计算机完成系统的数字仿真。综前所述,数字仿真实质上是根据被研究的真实系统的模型,利用计算机进行实验研究的一种方法。仿真的主要过程是:建立模型、仿真运行和分析研究仿真结果。仿真运行就是借助一定的算法,获得系统的有关信息。 MATLAB是一种面向科学与工程计算的高级语言,它集科学计算、自动控制、信号处理、神经网络和图像处理等学科的处理功能于一体,具有极高的编程效率。MATLAB是一个高度集成的系统,MATLAB提供的Simulink是一个用来对动态系统进行建模、仿真和分析的软件包,它支持线性和非线性系统,能够在连续时间域、离散时间域或者两者的混合时间域里进行建模,它同样支持具有多种采样速率的系统。在过去几年里,Simulink已经成为数学和工业应用中对动态系统进行建模时使用得最为广泛的软件包。 MATLAB仿真有两种途径:(1)MATLAB可以在SIMULINK窗口上进行面向系统结构方框图的系统仿真;(2)用户可以在MATLAB的COMMAND窗口下,用运行m文件,调用指令和各种用于系统仿真的函数,进行系统仿真。这两种方式可解决任意复杂系统的动态仿真问题,前者编辑灵活,而后者直观性强,实现可视化编辑。 下面介绍在MATLAB上实现几类基本仿真。 7.1 计算机仿真的步骤 在学习计算机仿真以前,让我们先总结一下计算机仿真的步骤。 计算机仿真,概括地说是一个“建模—实验—分析”的过程,即仿真不单纯是对模型的实验,还包括从建模到实验再到分析的全过程。因此进行一次完整的计算机仿真应包括以下步骤:

(1)列举并列项目 每一项研究都应从说明问题开始,问题由决策者提供或由熟悉问题的分析者提供。 (2)设置目标及完整的项目计划 目标表示仿真要回答的问题、系统方案的说明。项目计划包括人数、研究费用以及每一阶段工作所需时间。 (3)建立模型和收集数据 模型和实际系统没有必要一一对应,模型只需描述实际系统的本质或者描述系统中所研究部分的本质。因此,最好从简单的模型开始,然后进一步建立更复杂的模型。 (4)编制程序和验证 利用数学公式、逻辑公式和算法等来表示实际系统的内部状态和输入/输出的关系。建模者必须决定是采用通用语言如MATLAB、FORTRAN、C还是专用仿真语言来编制程序。在本教材中,我们选择的是MATLAB和其动态仿真工具Simulink。 (5)确认 确认指确定模型是否精确地代表实际系统。它不是一次完成,而是比较模型和实际系统特性的差异,不断对模型进行校正的迭代过程。 (6)实验设计 确定仿真的方案、初始化周期的长度、仿真运行的长度以及每次运行的重复次数。 (7)生产性运行和分析 通常用于估计被仿真系统设计的性能量度。利用理论定性分析、经验定性分析或系统历史数据定量分析来检验模型的正确性,利用灵敏度分析等手段来检验模型的稳定性。 (8)文件清单和报表结果 (9)实现

MATLAB实现汉明码编码译码

MATLAB实现汉明码编码译码 汉明码的编码就是如何根据信息位数k,求出纠正一个错误的监督矩阵H,然后根据H求出信息位所对应的码字。 1、根据已知的信息位数k,从汉明不等式中求出校验位数m=n-k; 2、在每个码字C: 3)用二进制数字表示2m-1列,得到2m-1列和m行监督矩阵H;4)用3步的H形成HCT =0,从而得出m个监督方程; 5)将已知的信息代入方程组,然后求出满足上述方程组的监督位c (i=0,1,?,m一1)。 例如,用以上方法,很容易求出[7,4,3]汉明码的监督矩阵: 11100 H 11010 clear 及编码所对应的码字为C=011001。 m=3; %给定m=3的汉明码 [h,g,n,k]=hammgen(m); msg=[0 0 0 1;0 0 0 1;0 0 0 1;0 0 1 1;0 0 1 1;0 1 0 1;0 1 1 0;0 1 1 1;1 0 0 0;1 0 0 1;1 0 1 0;1 0 1 1;1 1 0 0;1 1 0 1;1 1 1 0;1 1 1 1];code=encode(msg,n,k,'hamming/binary') %编码 C=mod(code*h',2) %对伴随式除2取余数 newmsg=decode(code,n,k,'hamming/binary') %解码 d_min=min(sum((code(2:2^k,:

))')) %最小码距运行结果: >> hangming code = 10001 10001 10001 11001 00111 11000 00110 10011 01110 1111 C = newmsg =111100 00 00 00 00 00

MATLABsimulink系统仿真分析仿真报告

仿真报告 课程名称:自动化技术导论 报告题目:MATLAB/simulink系统仿真分析 班级 姓名 学号 xxxxxx自动化学院 2016年4月 软件版本:MATLAB R2010b MATLAB强处理能力 MATLAB是一个包含大量计算算法的集合。其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。函数中所使用的算法都是科研和工程计算中的最新研究成果,而且经过了各种优化和容错处理。在通常情况下,可以用它来代替底层编程语言,如C和C++ 。在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。MATLAB的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。 MATLAB图形处理 MATLAB自产生之日起就具有方便的数据可视化功能,以将向量和矩阵用图形表现出来,并且可以对图形进行标注和打印。高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。可用于科学计算和工程绘图。新版本的MATLAB对整个图形处理功能作了很大的改进和完善,使它不仅在一般数据可视化软件都具有的功能(例如二维曲线和三维曲面的绘制和处理等)方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB同样表现了出色的处理能力。同时对一些特殊的可视化要求,例如图形对话等,MATLAB也有相应的功能函数,保证了用户不同层次的要求。另外新版本的MATLAB还着重在图形用户界面(GUI)的制作上作了很大的改善,对这方面有特殊要求的用户也可以得到满足。 MATLAB对许多专门的领域都开发了功能强大的模块集和工具箱。一般来说,它们都是由特定领域的专家开发的,用户可以直接使用工具箱学习、应用和评估不同的方法而不需要自己编写代码。领域,诸如数据采集、数据库接口、概率统计、样条拟合、优化算法、偏微分方程求解、神经网络、小波分析、信号处理、图像处理、系统辨识、控制系统设计、LMI控制、鲁棒控制、模型预测、模糊逻辑、金融分析、地图工具、非线性控制设计、实时快速原型及半物理仿真、嵌入式系统开发、定点仿真、DSP与通讯、电力系统仿真等,都在工具箱(Toolbox)家族中有了自己的一席之地。MATLAB程序接口

(7,4)汉明码编译码系统设计.doc

南华大学电气工程学院 《通信原理课程设计》任务书 设计题目:(7, 4)汉明码编译码系统设计 专业:通信工程 学生姓名: 马勇学号:20114400236 起迄日期:2013 年12月20日~2014年1月3日指导教师:宁志刚副教授 系主任:王彦教授

《通信原理课程设计》任务书

《通信原理课程设计》设计说明书格式 一、纸张和页面要求 A4纸打印;页边距要求如下:页边距上下各为2.5 厘米,左右边距各为2.5厘米;行间距取固定值(设置值为20磅);字符间距为默认值(缩放100%,间距:标准)。 二、说明书装订页码顺序 (1)任务书 (2)论文正文 (3)参考文献,(4)附录 三、课程设计说明书撰写格式 见范例 引言(黑体四号) ☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆(首行缩进两个字,宋体小四号) 1☆☆☆☆(黑体四号) 正文……(首行缩进两个字,宋体小四号) 1.1(空一格)☆☆☆☆☆☆(黑体小四号) 正文……(首行缩进两个字,宋体小四号) 1.2 ☆☆☆☆☆☆、☆☆☆ 正文……(首行缩进两个字,宋体小四号) 2 ☆☆☆☆☆☆ (黑体四号) 正文……(首行缩进两个字,宋体小四号) 2.1 ☆☆☆☆、☆☆☆☆☆☆,☆☆☆(黑体小四号) 正文……(首行缩进两个字,宋体小四号) 2.1.1☆☆☆,☆☆☆☆☆,☆☆☆☆(楷体小四号) 正文……(首行缩进两个字,宋体小四号) (1)……

图1. 工作波形示意图(图题,居中,宋体五号) ………… 5结论(黑体四号) ☆☆☆☆☆☆(首行缩进两个字,宋体小四号) 参考文献(黑体四号、顶格) 参考文献要另起一页,一律放在正文后,不得放在各章之后。只列出作者直接阅读过或在正文中被引用过的文献资料,作者只写到第三位,余者写“等”,英文作者超过3人写“et al”。 几种主要参考文献著录表的格式为: ⑴专(译)著:[序号]著者.书名(译者)[M].出版地:出版者,出版年:起~止页码. ⑵期刊:[序号]著者.篇名[J].刊名,年,卷号(期号):起~止页码. ⑶论文集:[序号]著者.篇名[A]编者.论文集名[C] .出版地:出版者,出版者. 出版年:起~止页码. ⑷学位论文:[序号]著者.题名[D] .保存地:保存单位,授予年. ⑸专利文献:专利所有者.专利题名[P] .专利国别:专利号,出版日期. ⑹标准文献:[序号]标准代号标准顺序号—发布年,标准名称[S] . ⑺报纸:责任者.文献题名[N].报纸名,年—月—日(版次). 附录(居中,黑体四号)

电机与拖动基础及MATLAB仿真习题答案(第四章)

4-14 一台直流电动机技术数据如下:额定功率PN=40kW ,额定电压UN=220V ,额定转速nN=1500r/min ,额定效率η=87.5%,求电动机的额定电流和额定负载时的输入功率? 解: (1)额定电流 (2)输入功率 4-15 一台直流发电机技术数据如下:额定功率PN=82kW ,额定电压UN=230V ,额定转速nN=970r/min ,额定效率η=90%,求发电机的额定电流和额定负载时的输入功率? 解: (1)额定电流 (2)输入功率 4-16 已知一台直流电机极对数p=2,槽数Z 和换向片数K 均等于22,采用单叠绕组。试求:(1)绕组各节距;(2)并联支路数。 解:(1)第一节距54 24222y 1=-=±=εp z ,为短距绕组。 单叠绕组的合成节距及换向器节距均为1,即1y ==k y 第二节距415y 12=-=-=y y (2)并联支路数等于磁极数,为4。 4-17 已知直流电机极数2p=6,电枢绕组总导体数N=400,电枢电流Ia=10A ,气隙每极磁通Φ=2.1×10-2Wb ,试求:(1)采用单叠绕组时电枢所受电磁转矩;(2)绕组改为单波保持支路电流ia 不变时的电磁转矩。 解: 电枢绕组为单叠绕组时,并联支路对数a=p=3, 电磁转矩 m N I a pN T a ?=?????=Φ=38.1310021.03 14.3240032π 如果把电枢绕组改为单波绕组, 保持支路电流a i 的数值不变,则电磁转矩也不变,仍为 13.369m N ?,因为无论是叠绕组还是波绕组,所有导体产生的电磁转矩的方向是一致 的, 保持支路电流a i 不变,就保持了导体电流不变,也就保持了电磁转矩不变。 也可以用计算的方法: 单叠绕组时并联支路数为6, 支路电流 A I i a a 6106== 改为单波绕组, 保持支路电流a i 的数值不变,仍为 A 610,而并联支路数为2 (a=1), 电枢电流A i I a a 3 102== 电磁转矩 m N T ?=?????=38.133 10021.0114.324003。 A U P I N N N N 79.207875.022010403 =??==ηkW I U P N N 71.4579.2072201=?=?=A U P I N N N 5.35623010823 =?==KW P P N 11.911==η

汉明码仿真

摘要 汉明码(Hamming Code)是一种能够自动检测并纠正一位错码的线性纠错码,即SEC(Single Error Correcting)码,用于信道编码与译码中,提高通信系统抗干扰的能力。本文主要利用MATLAB中SIMULINK通信系统仿真模型库进行汉明码建模仿真,并调用通信系统功能函数进行编程,对汉明码的性能进行分析。 关键词:MATLAB 汉明码 SIMULINK 性能 I

目录 1 课程设计目的 (1) 2 课程设计要求 (1) 3 相关知识 (1) 4 课程设计分析 (8) 5 仿真 (11) 6结果分析 (13) 7 参考文献 (13) II

汉明码仿真程序设计 1.课程设计目的 (1)加深汉明码(Hamming Code)基本理论知识的理解。 (2)培养独立开展科研的能力和编程能力。 (3)掌握用MATLAB实现信号的PM调制。 (4)掌握MATLAB软件的使用。 2.课程设计要求 (1)掌握汉明码(Hamming Code)的相关知识、概念清晰。 (2)掌握MATLAB使用方法,利用软件绘制图像。 (3)程序设计合理、能够正确运行。 3.相关知识 3.1 MATLAB简介 MATLAB(Matrix Laboratory,矩阵实验室)是Mathwork公司推出的一套高效率的数值计算和可视化软件。其中,MATLAB通信工具箱是一套用于在通信领域进行理论研究、系统开发、分析设计和仿真的专业化工具软件包。MATIAB通信工具箱由两大部分组成:通信系统功能函数库和SIMULINK通信系统仿真模型库。 MATLAB通信系统功能函数库由七十多个函数组成,每个函数有多种选择参数、函数功能覆盖了现代通信系统的各个方面。这些函数包括:信号源产生函数、信源编码/解码函数、纠错控制编码/解码函数、调制/解调函数(基带和通带)、滤波器函数、传输信道模型函数(基带和通带)、TDMA、FDMA、CDMA函数、同步函数、工具函数等。以纠错控制编解码函数为例:函数库提供了线性分组码、 1

二阶系统matlab仿真

simulink仿真 -1<ξ<0 >> step(tf(4^2,[1,2*(-0.5)*4,4^2])) ξ<-1 >> step(tf(4^2,[1,2*(-1.5)*4,4^2])) ξ=0 >> step(tf(4^2,[1,2*0*4,4^2])) 0<ξ<1 >> figure >> step(tf(4^2,[1,2*0.1*4,4^2])) >> step(tf(4^2,[1,2*0.2*4,4^2])) >> step(tf(4^2,[1,2*0.3*4,4^2])) >> step(tf(4^2,[1,2*0.4*4,4^2])) >> step(tf(4^2,[1,2*0.5*4,4^2])) >> step(tf(4^2,[1,2*0.6*4,4^2])) >> step(tf(4^2,[1,2*0.7*4,4^2])) >> step(tf(4^2,[1,2*0.8*4,4^2])) >> step(tf(4^2,[1,2*0.9*4,4^2])) ωn不变,ζ减小

ξ=1 >> figure >> step(tf(4^2,[1,2*1*4,4^2])) ξ>1 >> hold on >> step(tf(4^2,[1,2*2.0*4,4^2])) >> step(tf(4^2,[1,2*4.0*4,4^2])) >> step(tf(4^2,[1,2*8.0*4,4^2])) ωn不变,ζ减小 ξ=0.5,改变ωn时的情况: >> figure >> step(tf(1^2,[1,2*0.5*1,1^2])) (ωn=1)

>> hold on >> step(tf(2^2,[1,2*0.5*2,2^2])) (ωn=2)>> step(tf(4^2,[1,2*0.5*4,4^2])) (ωn=4)>> step(tf(8^2,[1,2*0.5*8,8^2])) (ωn=8) ζ不变,ωn增大 曲线拟合程序 >> figure >> x=[0,0.2,0.4,0.6,0.8,1.0,1.2]; >> y=[1.135,1.135,1.216,1.351,1.534,1.737,2.0,]; >> plot(x,y,'.') >> hold on >> x1=[0:0.1:1.2]; >> y1=1+0.6*x1+0.2*x1.^2; >> plot(x1,y1) >> y1=1+0.7*x1; >> plot(x1,y1)

相关文档
最新文档