第四章 圆与方程 章末复习课

第四章 圆与方程 章末复习课
第四章 圆与方程 章末复习课

学习目标 1.整合知识结构,梳理知识网络,进一步巩固、深化所学知识.2.培养综合运用知识解决问题的能力,能灵活、熟练运用待定系数法求解圆的方程,能解决直线与圆的综合问题,并学会运用数形结合的数学思想.

1.圆的方程

(1)圆的标准方程:(x-a)2+(y-b)2=r2.

(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).

2.点和圆的位置关系

设点P(x0,y0)及圆的方程(x-a)2+(y-b)2=r2.

(1)(x0-a)2+(y0-b)2>r2?点P在圆外.

(2)(x0-a)2+(y0-b)2

(3)(x0-a)2+(y0-b)2=r2?点P在圆上.

3.直线与圆的位置关系

设直线l与圆C的圆心之间的距离为d,圆的半径为r,则d>r→相离;d=r→相切;d

4.圆与圆的位置关系

设C1与C2的圆心距为d,半径分别为r1与r2,则

5.求圆的方程时常用的四个几何性质

6.与圆有关的最值问题的常见类型

(1)形如μ=y -b

x -a 形式的最值问题,可转化为动直线斜率的最值问题.

(2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题.

(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点距离的平方的最值问题. 7.计算直线被圆截得的弦长的常用方法 (1)几何方法

运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算. (2)代数方法

运用根与系数的关系及弦长公式 |AB |=1+k 2|x A -x B | =(1+k 2)[(x A +x B )2-4x A x B ].

注:圆的弦长、弦心距的计算常用几何方法. 8.空间中两点的距离公式

空间中点P 1(x 1,y 1,z 1),点P 2(x 2,y 2,z 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2+(z 2-z 1)2.

类型一 求圆的方程

例1 根据条件求下列圆的方程.

(1)求经过A (6,5),B (0,1)两点,并且圆心在直线3x +10y +9=0上的圆的方程;

(2)求半径为10,圆心在直线y =2x 上,被直线x -y =0截得的弦长为42的圆的方程. 解 (1)由题意知,线段AB 的垂直平分线方程为 3x +2y -15=0,

∴由?????

3x +2y -15=0,3x +10y +9=0,

解得?

????

x =7,y =-3,

∴圆心C (7,-3),半径为r =|AC |=65. ∴所求圆的方程为(x -7)2+(y +3)2=65. (2)方法一 设圆的方程为(x -a )2+(y -b )2=r 2, 则圆心坐标为(a ,b ),半径为r =10, 圆心(a ,b )到直线x -y =0的距离为d =|a -b |

2.

由半弦长,弦心距,半径组成直角三角形,得 d 2+(422

)2=r 2

即(a -b )22+8=10,∴(a -b )2=4.

又∵b =2a ,

∴a =2,b =4或a =-2,b =-4, ∴所求圆的方程为(x -2)2+(y -4)2=10 或(x +2)2+(y +4)2=10.

方法二 设圆的方程为(x -a )2+(y -b )2=10, ∵圆心C (a ,b )在直线y =2x 上,∴b =2a . 由圆被直线x -y =0截得的弦长为42, 将y =x 代入(x -a )2+(y -b )2=10, 得2x 2-2(a +b )x +a 2+b 2-10=0.

设直线y =x 交圆C 于点A (x 1,y 1),B (x 2,y 2), 则|AB |=(x 1-x 2)2+(y 1-y 2)2

2[(x 1+x 2)2-4x 1x 2]=42,

∴(x 1+x 2)2-4x 1x 2=16.

∵x 1+x 2=a +b ,x 1x 2=a 2+b 2-10

2,

∴(a +b )2-2(a 2+b 2-10)=16,即a -b =±2.

又∵b =2a ,∴????? a =2,b =4或?????

a =-2,

b =-4.

∴所求圆的方程为(x -2)2+(y -4)2=10 或(x +2)2+(y +4)2=10.

反思与感悟 求圆的方程主要是根据圆的标准方程和一般方程,利用待定系数法求解,采用待定系数法求圆的方程的一般步骤为: 第一步:选择圆的方程的某一形式.

第二步:由题意得a ,b ,r (或D ,E ,F )的方程(组). 第三步:解出a ,b ,r (或D ,E ,F ). 第四步:代入圆的方程.

注:解题时充分利用圆的几何性质可获得解题途径,减少运算量,例如:圆的切线垂直于经过切点的半径;圆心与弦的中点连线垂直于弦;当两圆相交时,连心线垂直平分两圆的公共弦;当两圆相切时,连心线过切点等.

跟踪训练1 如图所示,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2,则圆C 的标准方程为________.

答案 (x -1)2+(y -2)2=2

解析 取AB 的中点D ,连接CD ,AC ,则CD ⊥AB . 由题意知,|AD |=|CD |=1,故|AC |=

|CD |2+|AD |2=2,即圆C 的半径为 2.又因为圆C 与

x 轴相切于点T (1,0),所以圆心C (1,2),故圆的标准方程为(x -1)2+(y -2)2=2. 类型二 直线与圆的位置关系

例2 已知点M (3,1),直线ax -y +4=0及圆(x -1)2+(y -2)2=4. (1)求过M 点的圆的切线方程;

(2)若直线ax -y +4=0与圆相切,求a 的值;

(3)若直线ax -y +4=0与圆相交于A ,B 两点,且弦AB 的长为23,求a 的值.

解 (1)圆心C (1,2),半径为r =2. ①当直线的斜率不存在时,方程为x =3.

由圆心C (1,2)到直线x =3的距离为d =3-1=2=r 知,此时直线与圆相切. ②当直线的斜率存在时,设方程为y -1=k (x -3), 即kx -y +1-3k =0.

由题意知,|k -2+1-3k |k 2+1=2,解得k =3

4

.

∴方程为y -1=3

4(x -3),即3x -4y -5=0.

故过M 点的圆的切线方程为x =3或3x -4y -5=0. (2)由题意有|a -2+4|a 2+1=2,解得a =0或a =4

3

.

(3)∵圆心到直线ax -y +4=0的距离为

|a +2|

a 2

+1

, ∴? ??

???

|a +2|a 2+12+???

?2322=4,解得a =-34. 反思与感悟 当直线与圆相交时,常涉及到弦长问题,弦长的计算有以下两种思路 (1)代数方法:将直线和圆的方程联立得方程组,消元后得到一个一元二次方程,在判别式Δ>0的前提下,可利用根与系数的关系求弦长.

(2)几何方法:若弦心距为d ,圆半径为r ,则弦长为l =2

r 2-d 2.

解决直线与圆相交问题时,常利用几何方法,即构造直角三角形,利用勾股定理,当直线与圆相切时,圆心到直线的距离等于半径,圆心和切点的连线垂直于切线. 跟踪训练2 已知点P (0,5)及圆C :x 2+y 2+4x -12y +24=0. (1)若直线l 过点P ,且被圆C 截得的线段长为43,求l 的方程; (2)求过P 点的圆C 弦的中点的轨迹方程.

解 (1)如图所示,|AB |=43,设D 是线段AB 的中点,则CD ⊥AB ,

∴|AD |=23,|AC |=4. 在Rt △ACD 中,可得|CD |=2.

设所求直线l 的斜率为k ,则直线l 的方程为y -5=kx ,即kx -y +5=0. 由点C 到直线AB 的距离为|-2k -6+5|k 2+1=2,得k =3

4

此时直线l 的方程为3x -4y +20=0.

又∵当直线l 的斜率不存在时,也满足题意,此时方程为x =0, ∴所求直线l 的方程为x =0或3x -4y +20=0. (2)设过P 点的圆C 弦的中点为D (x ,y ), 则CD ⊥PD ,所以k CD ·k PD =-1, 即y -6x +2·y -5x

=-1, 化简得所求轨迹方程为x 2+y 2+2x -11y +30=0. 类型三 圆与圆的位置关系

例3 已知一个圆的圆心坐标为A (2,1),且与圆x 2+y 2-3x =0相交于P 1、P 2两点,若点A 到直线P 1P 2的距离为5,求这个圆的方程. 解 设圆的方程为(x -2)2+(y -1)2=r 2, 即x 2+y 2-4x -2y +5-r 2=0,

所以直线P 1P 2的方程为x +2y -5+r 2=0. 由已知得|2+2×1+r 2-5|

5=5,

解得r 2=6.

故所求圆的方程是(x -2)2+(y -1)2=6.

反思与感悟 (1)当两圆相交时,公共弦所在的直线方程的求法

若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在的直线方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. (2)公共弦长的求法

①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长.

②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.

跟踪训练3 已知两圆(x +1)2+(y -1)2=r 2和(x -2)2+(y +2)2=R 2相交于P ,Q 两点,若点P 的坐标为(1,2),则点Q 的坐标为________. 答案 (-2,-1)

解析 两圆的圆心坐标分别为O 1(-1,1)和O 2(2,-2), 由平面几何知,直线O 1O 2垂直平分线段PQ , 则12·PQ O O k k =k PQ ·1-(-2)

-1-2=-1,∴k PQ =1.

∴直线PQ 的方程为y -2=x -1,即y =x +1. 由点P (1,2)在圆(x +1)2+(y -1)2=r 2上, 可得r =5,

联立?

???? (x +1)2+(y -1)2

=5,y =x +1,

解得?????

x =1,y =2或?????

x =-2,y =-1.

∴Q (-2,-1).

类型四 数形结合思想的应用

例4 曲线y =1+4-x 2与直线y =k (x -2)+4有两个交点,则实数k 的取值范围是( ) A .(0,512)

B .(5

12,+∞)

C .(13,34]

D .(512,34

]

答案 D

解析 首先明确曲线y =1+

4-x 2表示半圆,

由数形结合可得512<k ≤3

4

.

反思与感悟 数形结合思想在解析几何中的应用极其广泛,利用数形结合的思想解题,能把抽象的数量关系与直观的几何图形建立起关系,从而使问题在解答过程中更加形象化、直观化,而本章的相关知识整体体现了这种思想,即把几何问题代数化,同时利用代数(方程)的思想反映几何问题.

跟踪训练4 已知实数x 、y 满足方程x 2+y 2-4x +1=0,则y

x 的最大值为________,最小值为

________. 答案

3 - 3

解析 如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.

设y

x

=k ,即y =kx , 则当圆心(2,0)到直线y =kx 的距离为半径时直线与圆相切,斜率取得最大、最小值. 由|2k -0|

k 2+1

=3,解得k 2=3, ∴k max =3,k min =- 3.

(也可由平面几何知识,得OC =2,CP =3,∠POC =60°,直线OP 的倾斜角为60°,直线OP ′的倾斜角为120°)

1.若方程x 2+y 2+ax +2ay +5

4

a 2+a -1=0表示圆,则a 的取值范围是( )

A .a <-2或a >2

3

B .-2

3<a <2

C .a >1

D .a <1

答案 D

解析 由题意知a 2+4a 2-4(5

4a 2+a -1)>0,

解得a <1.

2.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( ) A .(x -3)2+(y +4)2=16 B .(x +3)2+(y -4)2=16 C .(x -3)2+(y +4)2=9 D .(x +3)2+(y -4)2=9 答案 B

3.过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角α的取值范围是( ) A .0°<α≤30° B .0°<α≤60° C .0°≤α≤30° D .0°≤α≤60°

答案 D

解析 设l :y +1=k (x +3),即kx -y +3k -1=0, 圆心(0,0)到直线l 的距离为d =|3k -1|k 2

+1≤1,

解得0≤k ≤3,

即0≤tan α≤3,∴0°≤α≤60°.

4.两圆x 2+y 2-6x +16y -48=0与x 2+y 2+4x -8y -44=0的公切线的条数为( ) A .4 B .3 C .2 D .1 答案 C

解析 两圆的标准方程分别为(x -3)2+(y +8)2=121; (x +2)2+(y -4)2=64,则两圆的圆心与半径分别为 C 1(3,-8),r 1=11;C 2(-2,4),r 2=8. 圆心距为|C 1C 2|=

(3+2)2+(-8-4)2=13.

∵r 1-r 2<|C 1C 2|<r 1+r 2, ∴两圆相交,则公切线共2条.

5.已知直线x -my +3=0和圆x 2+y 2-6x +5=0. (1)当直线与圆相切时,求实数m 的值;

(2)当直线与圆相交,且所得弦长为210

5

时,求实数m 的值.

解 (1)因为圆x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,所以圆心坐标为(3,0). 因为直线x -my +3=0与圆相切,所以

|3+3|1+m

2

=2,

解得m =±2 2.

(2)圆心(3,0)到直线x -my +3=0的距离为d =

|3+3|1+m

2

.

由24-(

|3+3|

1+m 2

)2=

210

5

, 得2+2m 2=20m 2-160,即m 2=9. 故m =±3.

圆是非常特殊的几何图形,它既是中心对称图形又是轴对称图形,它的许多几何性质在解决圆的问题时往往起到事半功倍的作用,所以在实际解题中常用几何法,充分结合圆的平面几何性质.那么,经常使用的几何性质有

(1)圆的切线的性质:圆心到切线的距离等于半径;切点与圆心的连线垂直于切线;切线在切点处的垂线一定经过圆心;圆心、圆外一点及该点所引切线的切点构成直角三角形的三个顶点等等.

(2)直线与圆相交的弦的有关性质:相交弦的中点与圆心的连线垂直于弦所在直线;弦的垂直平分线(中垂线)一定经过圆心;弦心距、半径、弦长的一半构成直角三角形的三边,满足勾股定理.

(3)与直径有关的几何性质:直径是圆的最长的弦;圆的对称轴一定经过圆心;直径所对的圆周角是直角.

课时作业

一、选择题

1.已知圆C与直线x-y=0和x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为()

A.(x+1)2+(y-1)2=2

B.(x-1)2+(y+1)2=2

C.(x-1)2+(y-1)2=2

D.(x+1)2+(y+1)2=2

答案 B

解析由圆心在x+y=0上,可排除C,D.再结合图象,或者验证选项A,B中,圆心到两直线的距离是否等于半径2即可.

2.若直线ax+by=1与圆x2+y2=1有公共点,则()

A.a2+b2≤1 B.a2+b2≥1

C.1

a2+1

b2≤1 D.

1

a2+

1

b2≥1

答案 B

解析若直线ax+by=1与圆x2+y2=1有公共点,则

1

a2+b2

≤1,即a2+b2≥1.

3.已知圆O1的方程为x2+y2=4,圆O2的方程为(x-a)2+y2=1,如果这两个圆有且只有一个公共点,那么a的所有取值构成的集合是()

A.{1,-1}

B.{3,-3}

C.{1,-1,3,-3}

D.{5,-5,3,-3}

答案 C

解析∵两个圆有且只有一个公共点,∴两个圆内切或外切,

当两圆内切时,|a|=1,当两圆外切时,|a|=3,

∴实数a的取值集合是{1,-1,3,-3},故选C.

4.在空间直角坐标系中,以A(m,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰三角形,其中m∈Z,则m的值为()

A.4 B.-4

C .-6或4

D .6或4

答案 A

解析 如果由顶点A (m,1,9),B (10,-1,6),C (2,4,3)构成的△ABC 是以AB 为底边的等腰三角形,

则|AC |=|BC |, ∴

(m -2)2+(1-4)2+(9-3)2=

(10-2)2+(-1-4)2+(6-3)2,

∴53=(m -2)2,∵m ∈Z ,∴方程无解.

如果由顶点A (m,1,9),B (10,-1,6),C (2,4,3)构成的△ABC 是以AC 为底边的等腰三角形, 则|AB |=|BC |, ∴

(m -10)2+(1+1)2+(9-6)2=

(10-2)2+(-1-4)2+(6-3)2,

∴(m -10)2=85,∵m ∈Z ,∴方程无解.

如果由顶点A (m,1,9),B (10,-1,6),C (2,4,3)构成的△ABC 是以BC 为底边的等腰三角形, 则|AB |=|AC |, ∴

(m -10)2+(1+1)2+(9-6)2=

(m -2)2+(1-4)2+(9-3)2,

∴(m -10)2=32+(m -2)2,解得m =4,故选A.

5.已知圆心为(2,0)的圆C 与直线y =x 相切,则切点到原点的距离为( ) A .1 B. 2 C .2 D. 3 答案 B

解析 如图,设圆心为C ,切点为A ,

圆的半径为r =|2-0|

2=2,|OC |=2,

∴切点到原点的距离为

22-(2)2= 2.故选B.

6.直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角为( ) A .30° B .45° C .60° D .90° 答案 C

解析 过O 作OC ⊥AB ,垂足为点C ,

由圆的方程x 2+y 2=4,得圆心O 的坐标为(0,0),半径为r =2. ∵圆心到直线3x +y -23=0的距离为d =|OC |=23

2

=3, ∴直线被圆截得的弦长为|AB |=2

r 2-d 2=2,

∴△AOB 为等边三角形,即∠AOB =60°,

∴直线被圆截的劣弧AB 所对的圆心角为60°,故选C.

7.已知直线l :kx +y -2=0(k ∈R )是圆C :x 2+y 2-6x +2y +9=0的对称轴,过点A (0,k )作圆C 的一条切线,切点为B ,则线段AB 的长为( ) A .2 B .2 2 C .3 D .2 3

答案 D

解析 由圆C :x 2+y 2-6x +2y +9=0,得(x -3)2+(y +1)2=1, 表示以C (3,-1)为圆心,1为半径的圆.

由题意可得直线l :kx +y -2=0经过圆C 的圆心(3,-1), 故有3k -1-2=0,得k =1,则点A (0,1), 即|AC |=(0-3)2+(1+1)2=13, 则|AB |=

|AC |2-r 2=

(13)2-1=23,故选D.

二、填空题

8.以正方体ABCD -A 1B 1C 1D 1的棱AB ,AD ,AA 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,且正方体的棱长为1,则棱CC 1的中点的坐标为________. 答案 (1,1,12

)

解析 画出图形(图略)即知CC 1的中点的坐标为(1,1,1

2

).

9.若两圆x 2+(y +1)2=1和(x +1)2+y 2=r 2相交,则正数r 的取值范围是________.

答案 (2-1,2+1)

解析 ∵两圆x 2+(y +1)2=1和(x +1)2+y 2=r 2相交, 圆x 2+(y +1)2=1的半径和圆心分别是1,(0,-1), 圆(x +1)2+y 2=r 2的半径和圆心分别是r ,(-1,0),

∴两个圆的圆心的距离大于两个圆的半径之差的绝对值,小于两个圆的半径之和, 即|r -1|<

(0+1)2+(-1-0)2<r +1,

∴r -1<2<r +1, ∴r ∈(2-1,2+1),

即正数r 的取值范围是(2-1,2+1).

10.已知在平面直角坐标系xOy 中,过点(1,0)的直线l 与直线x -y +1=0垂直,且l 与圆C :x 2+y 2=-2y +3交于A ,B 两点,则△OAB 的面积为________. 答案 1

解析 ∵直线l 的方程为y =-(x -1), 即x +y -1=0.

又由圆C :x 2+y 2=-2y +3,得x 2+(y +1)2=4, 圆心C (0,-1)到l 的距离为d =|-2|

2=2,

∴|AB |=2

r 2-d 2=2

4-2=22,

又原点O 到l 的距离为|-1|2=2

2,

∴S △OAB =12×2

2

×22=1.

11.设圆C 同时满足三个条件:①过原点;②圆心在直线y =x 上;③截y 轴所得的弦长为4,则圆C 的方程是______________.

答案 (x +2)2+(y +2)2=8或(x -2)2+(y -2)2=8 解析 由题意可设圆心C (a ,a ),如图,

得22+22=2a 2, 解得a =±2,r 2=8.

所以圆C 的方程是(x +2)2+(y +2)2=8或(x -2)2+(y -2)2=8. 三、解答题

12.已知圆心坐标为(3,4)的圆N 被直线x =1截得的弦长为2 5. (1)求圆N 的方程;

(2)若过点D (3,6)的直线l 被圆N 截得的弦长为42,求直线l 的斜率. 解 (1)由题意知,圆心到直线的距离为3-1=2, ∵圆N 被直线x =1截得的弦长为25, ∴圆的半径为r =

5+4=3,

∴圆N 的方程为(x -3)2+(y -4)2=9. (2)设直线l 的方程为y -6=k (x -3), 即kx -y -3k +6=0,

∵圆心(3,4)到直线l 的距离为d =

21+k

2

,r =3,弦长为42,

∴42=2

9-d 2,化简得1+k 2=4,

解得k =±3.

13.已知圆C 1:x 2+y 2+2x +2y -8=0与圆C 2:x 2+y 2-2x +10y -24=0相交于A 、B 两点. (1)求公共弦AB 所在的直线方程;

(2)求圆心在直线y =-x 上,且经过A 、B 两点的圆的方程; (3)求经过A 、B 两点且面积最小的圆的方程.

解 (1)由?

????

x 2+y 2

+2x +2y -8=0,

x 2+y 2

-2x +10y -24=0?x -2y +4=0.

∴圆C 1:x 2+y 2+2x +2y -8=0与圆C 2:x 2+y 2-2x +10y -24=0的公共弦AB 所在的直线方程为x -2y +4=0.

(2)由(1)得x =2y -4,代入x 2+y 2+2x +2y -8=0中,得y 2-2y =0,

∴????? x =-4,y =0或?????

x =0,

y =2,

即A (-4,0),B (0,2).

又圆心在直线y =-x 上,设圆心为M (x ,-x ), 则|MA |=|MB |,|MA |2=|MB |2, 即(x +4)2+(-x )2=x 2+(-x -2)2, 解得x =-3.

∴圆心M (-3,3),半径|MA |=10.

∴圆心在直线y =-x 上,且经过A 、B 两点的圆的方程为(x +3)2+(y -3)2=10. (3)由A (-4,0),B (0,2), 得AB 的中点坐标为(-2,1), 12|AB |=12

(-4-0)2+(0-2)2= 5.

∴经过A 、B 两点且面积最小的圆的方程为(x +2)2+(y -1)2=5. 四、探究与拓展

14.当曲线y =1+4-x 2与直线kx -y -2k +4=0有两个相异的交点时,实数k 的取值范围是( ) A .(0,512)

B .(13,34]

C .(512,34]

D .(5

12

,+∞)

答案 C 解析 y =1+

4-x 2可化为x 2+(y -1)2=4(y ≥1).

直线kx -y -2k +4=0过定点A (2,4)且斜率为k ,

故设直线与半圆的切线为AD ,半圆的左端点为B (-2,1),

当直线的斜率k 大于直线AD 的斜率且小于或等于直线AB 的斜率时,直线与半圆有两个相异的交点.

当直线与半圆相切时,有|-1-2k +4|

1+k 2=2,

解得k =512,即k AD =5

12

.

又∵直线AB 的斜率k AB =4-12+2=3

4,

∴直线的斜率k 的取值范围为(512,3

4

].

15.已知圆C :(x -2)2+(y -3)2=4,直线l :(m +2)x +(2m +1)y =7m +8. (1)求证:直线l 与圆C 恒相交;

(2)当m =1时,过圆C 上点(0,3)作圆的切线l 1交直线l 于点P ,Q 为圆C 上的动点,求|PQ |的取值范围.

(1)证明 直线l 的方程可化为m (x +2y -7)+2x +y -8=0,故l 恒过点A (3,2). ∵(3-2)2+(2-3)2=2<4, 即点A 在圆C 内, ∴直线l 与圆C 恒相交.

(2)解 由题易知直线l 1的方程为x =0. 又当m =1时,l :x +y =5,

∴联立?

????

x =0,x +y =5,得交点P (0,5),

∴|PC |=22,

∴|PQ |∈[22-2,22+2].

第四章 圆与方程知识点总结及习题答案

第四章 圆与方程 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的 半径。 2、圆的方程 (1)标准方程()()22 2 r b y a x =-+-,圆心 ()b a ,,半径为r ; 点00(,)M x y 与圆222()()x a y b r -+-=的位置关系: 当2200()()x a y b -+->2 r ,点在圆外 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内 (2)一般方程022=++++F Ey Dx y x 当042 2 >-+F E D 时,方程表示圆,此时圆心为? ? ? ? ? --2,2 E D ,半径为 F E D r 42 122-+= 当0422 =-+F E D 时,表示一个点; 当042 2<-+F E D 时,方程不表示任何图形。 (3)求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况: (1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离 为2 2B A C Bb Aa d +++= ,则有相离与C l r d ?>; 相切与C l r d ?=;相交与C l r d ?< (2)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,求解k ,得到方程【一定两解】 (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。 设圆()()221211:r b y a x C =-+-,()()222222:R b y a x C =-+- 两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。 当r R d +>时两圆外离,此时有公切线四条; 当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当r R d r R +<<-时两圆相交,连心线垂直平分公共弦,有两条外公切线;

圆的方程经典题目带答案

圆的方程经典题目 1.求满足下列条件的圆的方程 (1)过点A(5,2)和B(3,-2),且圆心在直线32-=x y 上;(2)圆心在835=-y x 上,且与两坐标轴相切;(3)过ABC ?的三个顶点)5,5()2,2()5,1(C B A 、、---;(4)与y 轴相切,圆心在直线03=-y x 上,且直线 x y =截圆所得弦长为72;(5)过原点,与直线1:=x l 相切,与圆1)2()1(:2 2 =-+-y x C 相外切;(6)以C(1,1)为圆心,截直线2-=x y 所得弦长为22;(7)过直线042:=++y x l 和圆0142:2 2 =+-++y x y x C 的交点,且面积最小的圆的方程. (8)已知圆满足①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为1:3③圆心到直线02:=-y x l 的距离为52.0,求该圆的方程. (9)求经过)3,1()2,4(-B A 两点且在两坐标轴上的四个截距之和是2的圆的方程 2、已知方程0916)41(2)3(24222=++-++-+m y m x m y x 表示一个圆(1)求实数m 的取值范围 (2)求该圆半径r 的取值范围(3)求面积最大的圆的方程(4)求圆心的轨迹方程 1. 已知圆252 2 =+y x , 求下列相应值

(1)过)4,3(-的切线方程(2)过)7,5(的切线方程、切线长;切点弦方程、切点弦长 (3)以)2,1(为中点的弦的方程 (4)过)2,1(的弦的中点轨迹方程 (5)斜率为3的弦的中点的轨迹方程 2. 已知圆 062 2 =+-++m y x y x 与直线032=-+y x 相交于Q P 、两点,O 为坐标原点,若OQ OP ⊥,求实数m 的值. 3、已知直线b x y l +=:与曲线21:x y C -=有两个公共点,求b 的取值范围 4、一束光线通过点)18,25(M 射到x 轴上,被反射到圆25)7(:2 2 =-+y x C 上.求: (1)通过圆心的反射线方程,(2)在x 轴上反射点A 的活动范围. 5、圆03422 2 =-+++y x y x 上到直线0=++m y x 的距离为2的点的个数情况 已知两圆01010:2 2 1=--+y x y x O 和04026:2 2 2=--++y x y x O (1)判断两圆的位置关系 (2)求它们的公共弦所在的方程 (3)求公共弦长 (4)求公共弦为直径的圆的方程. 题型五、最值问题 思路1:几何意义 思路2:参数方程 思路3、换元法 思路4、函数思想 1. 实数y x ,满足012462 2 =+--+y x y x (1)求 x y 的最小值 (2)求2 2y x ++32-y 的最值;(3)求y x 2-的最值(4)|143|-+y x 的最值 2. 圆25)2()1(:2 2=-+-y x C 与)(047)1()12(:R m m y m x m l ∈=--+++.(1)证明:不论m 取什么实数直线l 与圆C 恒相交(2)求直线l 被圆C 截得最短弦长及此时的直线方程 3、平面上有A (1,0),B (-1,0)两点,已知圆的方程为()()2 2 2342x y -+-=.⑴在圆上求一点1P 使△AB 1P 面积最大并求出此面积;⑵求使2 2 AP BP +取得最小值时的点P 的坐标. 4、已知P 是0843:=++y x l 上的动点,PB PA ,是圆01222 2 =+--+y x y x 的两条切线,A 、B 是切点, C 是圆心,那么四边形PACB 的面积的最小值为 5、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为_________ 6、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的互相垂直的弦分别为AC 和BD ,则四边形ABCD 的面积为_________

高一数学圆的方程、直线与圆位置关系典型例题

高一数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为 222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .

人教版数学-高中数学竞赛标准教材10第十章 直线与圆的方程讲义.

第十章 直线与圆的方程 一、基础知识 1.解析几何的研究对象是曲线与方程。解析法的实质是用代数的方法研究几何.首先是通过映射建立曲线与方程的关系,即如果一条曲线上的点构成的集合与一个方程的解集之间存在一一映射,则方程叫做这条曲线的方程,这条曲线叫做方程的曲线。如x 2+y 2=1是以原点为圆心的单位圆的方程。 2.求曲线方程的一般步骤:(1)建立适当的直角坐标系;(2)写出满足条件的点的集合;(3)用坐标表示条件,列出方程;(4)化简方程并确定未知数的取值范围;(5)证明适合方程的解的对应点都在曲线上,且曲线上对应点都满足方程(实际应用常省略这一步)。 3.直线的倾斜角和斜率:直线向上的方向与x 轴正方向所成的小于1800的正角,叫做它的倾斜角。规定平行于x 轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。根据直线上一点及斜率可求直线方程。 4.直线方程的几种形式:(1)一般式:Ax+By+C=0;(2)点斜式:y-y 0=k(x-x 0);(3)斜截式:y=kx+b ;(4)截距式: 1=+b y a x ;(5)两点式:1 21121y y y y x x x x --= --;(6)法线式方程:xcos θ+ysin θ=p (其中θ为法线倾斜角,|p|为原点到直线的距离);(7)参数式:?????+=+=θ θ sin cos 00t y y t x x (其中θ为该直线 倾斜角),t 的几何意义是定点P 0(x 0, y 0)到动点P (x, y )的有向线段的数量(线段的长度前添加正负号,若P 0P 方向向上则取正,否则取负)。 5.到角与夹角:若直线l 1, l 2的斜率分别为k 1, k 2,将l 1绕它们的交点逆时针旋转到与l 2重合所转过的最小正角叫l 1到l 2的角;l 1与l 2所成的角中不超过900的正角叫两者的夹角。若记到角为θ,夹角为α,则tan θ= 2 11 21k k k k +-,tan α= 2 1121k k k k +-. 6.平行与垂直:若直线l 1与l 2的斜率分别为k 1, k 2。且两者不重合,则l 1//l 2的充要条件是k 1=k 2;l 1⊥l 2的充要条件是k 1k 2=-1。 7.两点P 1(x 1, y 1)与P 2(x 2, y 2)间的距离公式:|P 1P 2|= 2 21221)()(y y x x -+-。 8.点P(x 0, y 0)到直线l: Ax+By+C=0的距离公式:2 2 00| |B A C By Ax d +++= 。 9.直线系的方程:若已知两直线的方程是l 1:A 1x+B 1y+C 1=0与l 2:A 2x+B 2y+C 2=0,则过l 1, l 2交点的直线方程为A 1x+B 1y+C 1+λ(A 2x+B 2y+C 2=0;由l 1与l 2组成的二次曲线方程为(A 1x+B 1y+C 1)(A 2x+B 2y+C 2)=0;与l 2平行的直线方程为A 1x+B 1y+C=0(1 C C ≠). 10.二元一次不等式表示的平面区域,若直线l 方程为Ax+By+C=0. 若B>0,则Ax+By+C>0表示的区域为l 上方的部分,Ax+By+C<0表示的区域为l 下方的部分。 11.解决简单的线性规划问题的一般步骤:(1)确定各变量,并以x 和y 表示;(2)写出线性约束条件和线性目标函数;(3)画出满足约束条件的可行域;(4)求出最优解。 12.圆的标准方程:圆心是点(a, b),半径为r 的圆的标准方程为(x-a)2+(y-b)2=r 2,其参数方程为 ?? ?+=+=θ θsin cos r b y r a x (θ为参数)。

人教版数学必修二第四章 圆与方程 知识点总结

第四章 圆与方程 4.1 圆的方程 4.1.1 圆的标准方程 1.以(3,-1)为圆心,4为半径的圆的方程为( ) A .(x +3)2+(y -1)2=4 B .(x -3)2+(y +1)2=4 C .(x -3)2+(y +1)2=16 D .(x +3)2+(y -1)2=16 2.一圆的标准方程为x 2+(y +1)2=8,则此圆的圆心与半径分别为( ) A .(1,0),4 B .(-1,0),2 2 C .(0,1),4 D .(0,-1),2 2 3.圆(x +2)2+(y -2)2=m 2的圆心为________,半径为________. 4.若点P (-3,4)在圆x 2+y 2=a 2上,则a 的值是________. 5.以点(-2,1)为圆心且与直线x +y =1相切的圆的方程是____________________. 6.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=1 7.一个圆经过点A (5,0)与B (-2,1),圆心在直线x -3y -10=0上,求此圆的方程. 8.点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是( ) A .|a |<1 B .a <1 13 C .|a |<1 5 D .|a |<1 13 9.圆(x -1)2+y 2=25上的点到点A (5,5)的最大距离是__________. 10.设直线ax -y +3=0与圆(x -1)2 +(y -2)2 =4相交于A ,B 两点,且弦AB 的长为

圆与方程基础练习题.

直线与圆的方程练习题 1.圆的方程是(x -1)(x+2)+(y -2)(y+4)=0,则圆心的坐标是( ) A 、(1,-1) B 、(21,-1) C 、(-1,2) D 、(-2 1,-1) 2.过点A(1,-1)与B(-1,1)且圆心在直线x+y -2=0上的圆的方程为( ) A .(x -3)2+(y+1)2=4 B .(x -1)2+(y -1)2=4 C .(x+3)2+(y -1)2=4 D .(x+1)2+(y+1)2=4 3.方程()22()0x a y b +++=表示的图形是( ) A 、以(a,b)为圆心的圆 B 、点(a,b) C 、(-a,-b)为圆心的圆 D 、点(-a,-b) 4.两圆x2+y2-4x+6y=0和x2+y2-6x=0的连心线方程为( ) A .x+y+3=0 B .2x -y -5=0 C .3x -y -9=0 D .4x -3y+7=0 5.方程 052422=+-++m y mx y x 表示圆的充要条件是( ) A .141<m 6.圆x 2+y 2+x -y -32 =0的半径是( )A .1 B . 2 C .2 D .2 2 7.圆O 1:x 2+y 2-2x =0与圆O 2:x 2+y 2 -4y =0的位置关系是( )A .外离 B .相交C .外切 D .内切 8.圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( )A .4 B .3 C .2 D .1 9.设直线过点(a,0),其斜率为-1,且与圆x 2+y 2=2相切,则a 的值为( )A .± 2 B .±2C.±2 2 D .±4 10.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( ) A .x 2+y 2-2x +4y =0 B .x 2+y 2+2x +4y =0 C .x 2+y 2+2x -4y =0 D .x 2+y 2-2x -4y =0 11.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ|的最小值为( ) A .6 B .4 C .3 D .2 12.已知三点A(1,0),B(0,3),C(2,3),则△ABC 外接圆的圆心到原点的距离为( )A .53 B .213C .253 D .43 13.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0 D .4x +y -3=0 14.圆22220x y x y +-+=的周长是( )A . B .2π C D .4π 15.若直线ax+by+c=0在第一、二、四象限,则有( ) A 、ac>0,bc>0 B 、ac>0,bc<0 C 、ac<0,bc>0 D 、ac<0,bc<0 16.点(1,2-a a )在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是( ) A .-1

圆与方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1).设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2).给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x . (1) 当0422>-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2E D C ,半径2 422F E D r -+=. (2) 当0422=-+F E D 时,方程表示一个点??? ??--2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形.

注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离22B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0r r d ; ② 条公切线外切321??+=r r d ; ③ 条公切线相交22121??+<<-r r d r r ; ④ 条公切线内切121??-=r r d ; ⑤ 无公切线内含??-<<210r r d ;

人教版必修二数学圆与方程知专题讲义

人教版必修二圆与方程专题讲义 一、标准方程 ()()2 2 2x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 二、一般方程 ( )222 2040x y D x E y F D E F ++++=+- > 1.220Ax By Cxy Dx Ey F +++++=表示圆方程,则 2222 0004040A B A B C C D E AF D E F A A A ? ? =≠=≠????=?=????+->??????+-?> ? ?????? ? 2.求圆的一般方程方法 ①待定系数:往往已知圆上三点坐标 ②利用平面几何性质

涉及点与圆的位置关系:圆上两点的中垂线一定过圆心 涉及直线与圆的位置关系:相切时,利用到圆心与切点的连线垂直直线;相交时,利用到点到直线的距离公式及垂径定理 3.2240D E F +->常可用来求有关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ (2)圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3.以1122(,),(,)A x y B x y 两点为直径的圆方程为 1212()()()()0x x x x y y y y --+--= 四、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?0d r ? (2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?< 2.直线与圆相切 (1)知识要点 ①基本图形

必修2第四章圆与方程

必修2 第四章 圆与方程 176.(P 122例5)线段AB ,(4,3)B ,A 在圆22 :(1)4C x y ++=上运动,求AB 中点M 的 轨迹方程(用两种方法). 177.(P 124A 组5)直径的两端点为1122(,),(,)A x y B x y ,求证: 此圆方程为:1212()()()()0x x x x y y y y --+--=,(此结论的应用:例133页B 组5). 178.(P 124B 组1)等腰ABC ?顶点(42)A , ,底边一端点(35)B ,,求顶点C 的轨迹方程. 179.(P 132 练习 4)如图,等边ABC ?,,D E 为其三等分点 1||||3BD BC =,1 ||||3 CE CA =, AD BE P =.求证:AP CP ⊥. 180.(P 132A 组4)求圆心在直线:40l x y --=上,并且经过圆221:640 C x y x ++-=与圆22 2:6280C x y x ++-=的交点的圆的方程. A B C E P

181.(P 132A 组6)求圆心在直线130l x y -=; 上,与x 轴相切,且被直线2:0l x y -=截得 的弦长为. 182.(P 133A 组7)求与圆22 120C x y x y +-+=:关于:10l x y -+=对称的圆的方程. 183.(P 133A 组10)求经过点(2,2)M 以及圆221:60C x y x +-=与圆222:4C x y +=交点的圆的方程. 184.(P 133A 组11)求经过(3,1)M -且与圆22 :2650C x y x y ++-+=相切于(1,2)N 的圆的方程. 185.(P 133B 组2)已知(2,2),(2,6),(4,2)A B C ----,点P 在圆22 4x y +=上运动, 求222 ||||||PA PB PC ++的最大值和最小值. 186.(P 133B 组3)已知圆224x y +=,直线:l y x b =+,当b 为何值时,圆22 4x y +=上

圆的切点弦方程的九种求法

圆的切点弦方程的解法探究 在理解概念熟记公式的基础上,如何正确地多角度观察、分析问题,再运用所学知识解决问题,是解题的关键所在。本文仅通过一个例题,圆的部分的基本题型之一,分别从不同角度进行观察,用不同的知识点和九种不同的解法,以达到介绍如何观察、分析、解决关于圆的切点弦的问题。 一、预备知识: 1、在标准方程 2 22)()r b y a x =-+-(下过圆上一点),00y x P (的切线方程为: 200))(())r b y b y a x a x =--+--(( ; 在一般方程02 2 =++++F Ey Dx y x (042 2>-+F E D ) 下过圆上 一点),00y x P (的切线方程为: 02 20 000=++++++F y y E x x D yy xx 。 2、两相交圆01112 2=++++F y E x D y x (0412 12 1>-+F E D )与 022222=++++F y E x D y x (0422 22 2>-+F E D ) 的公共弦所在的直线方程为:0)()()(212121=-+-+-F F y E E x D D 。 3、过圆02 2 =++++F Ey Dx y x (042 2>-+F E D )外一点 ),11y x P (作圆的切线,其切线长公式为:F Ey Dx y x PA ++++=112121||。 4、过圆02 2 =++++F Ey Dx y x (042 2>-+F E D )外一点 ),11y x P (作圆的切线,切点弦AB 所在直线的方程为:211))(())r b y b y a x a x =--+--(((在圆的标准方程下的形式); 0221 111=++++++F y y E x x D yy xx (在圆的一般方程下的形式) 。 二、题目 已知圆04422 2=---+y x y x 外一点P (-4,-1),过点P 作圆 的切线PA 、PB ,求过切点A 、B 的直线方程。 三、解法 解法一:用判别式法求切线的斜率 如图示1,设要求的切线的斜率为k (当切线的斜率存在时),那么过点P (-4,-1)的切线方程为:)]4([)1(--=--x k y 即 014=-+-k y kx 由 ???=---+=-+-0 4420 142 2y x y x k y kx 消去y 并整 理得 0)12416()268()1(2222=+-+--++k k x k k x k ① 令 0)12416)(1(4)268(2 2 2 2 =+-+---=?k k k k k ② 解②得 0=k 或8 15= k

高一数学圆的方程经典例题

典型例题一 例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点. 设所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 343322 1=+-?+?=d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解:

设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?=d . ∴圆1O 到01143=-+y x 距离为1的点有两个. 显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1. 到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断. 典型例题三 例3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 124-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为: 23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

人教版数学必修二第四章 圆与方程 知识点总结

第四章圆与方程 4.1 圆得方程 4.1、1 圆得标准方程 1.以(3,-1)为圆心,4为半径得圆得方程为() A.(x+3)2+(y-1)2=4 B.(x-3)2+(y+1)2=4 C.(x-3)2+(y+1)2=16 D.(x+3)2+(y-1)2=16 2.一圆得标准方程为x2+(y+1)2=8,则此圆得圆心与半径分别为() A.(1,0),4 B.(-1,0),2 2 C.(0,1),4 D.(0,-1),2 2 3.圆(x+2)2+(y-2)2=m2得圆心为________,半径为________. 4.若点P(-3,4)在圆x2+y2=a2上,则a得值就是________. 5.以点(-2,1)为圆心且与直线x+y=1相切得圆得方程就是____________________. 6.圆心在y轴上,半径为1,且过点(1,2)得圆得方程为() A.x2+(y-2)2=1 B.x2+(y+2)2=1 C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1 7.一个圆经过点A(5,0)与B(-2,1),圆心在直线x-3y-10=0上,求此圆得方程. 8.点P(5a+1,12a)在圆(x-1)2+y2=1得内部,则a得取值范围就是() A.|a|<1 B.a<1 13 C.|a|<1 5 D.|a|<1 13 9.圆(x-1)2+y2=25上得点到点A(5,5)得最大距离就是__________. 10.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A,B两点,且弦AB得长为 2 3,求a得值. 4、1、2 圆得一般方程 1.圆x2+y2-6x=0得圆心坐标就是________. 2.若方程x2+y2+Dx+Ey+F=0表示以(2,-4)为圆心,以4为半径得圆,则F=________、 3.若方程x2+y2-4x+2y+5k=0表示圆,则k得取值范围就是() A.k>1 B.k<1 C.k≥1 D.k≤1 4.已知圆得方程就是x2+y2-2x+4y+3=0,则下列直线中通过圆心得就是() A.3x+2y+1=0 B.3x+2y=0 C.3x-2y=0 D.3x-2y+1=0 5.圆x2+y2-6x+4y=0得周长就是________. 6.点(2a,2)在圆x2+y2-2y-4=0得内部,则a得取值范围就是()

必修二圆的方程

圆的方程 ()() 2 2 2x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r ①待定系数:往往已知圆上三点坐标,例如教材119P 例2 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件 方程形式 圆心在原点 ()222 0x y r r +=≠ 过原点 ()()()2 2 2 2 2 20x a y b a b a b -+-=++≠ 圆心在x 轴上 ()()2 2 2 0x a y r r -+=≠ 圆心在y 轴上 ()()2 2 2 0x y b r r +-=≠ 圆心在x 轴上且过原点 ()()2 2 2 0x a y a a -+=≠ 圆心在y 轴上且过原点 ()()2 2 2 0x y b b b +-=≠ 与x 轴相切 ()()()2 2 2 0x a y b b b -+-=≠ 与y 轴相切 ()()()2 2 2 0x a y b a a -+-=≠ 与两坐标轴都相切 ()()()2 2 2 0x a y b a a b -+-==≠ 二、一般方程 ()2222040x y Dx Ey F D E F ++++=+-> 1.求圆的一般方程一般可采用待定系数法:如教材122P 例r 4 2.2 2 40D E F +->常可用来求相关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值

高中数学-必修二-圆与方程-经典例题

习题精选精讲圆标准方程 已知圆心),(b a C 和半径r ,即得圆的标准方程222 )() (r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆心 ),(b a C 和半径r ,进而可解得与圆有关的任何问题. 一、求圆的方程 例1 (06重庆卷文) 以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( ) (A)3)1()2(22=++-y x (B)3)1()2(2 2=-++y x (C)9)1() 2(22 =++-y x (D)9)1()2(22=-++y x 解 已知圆心为)1,2(-,且由题意知线心距等于圆半径,即2 243546+++= d r ==3,∴所求的圆方程为9)1()2(22=++-y x , 故选(C). 点评:一般先求得圆心和半径,再代入圆的标准方程222 )()(r b y a x =-+-即得圆的方程. 二、位置关系问题 例2 (06安徽卷文) 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( ) (A))12,0(- (B ))12,12( +- (C))12,12(+-- (D))12, 0(+ 解 化为标准方程222 )(a a y x =-+,即得圆心),0(a C 和半径a r =. ∵直线 1=+y x 与已知圆没有公共点,∴线心距a r a d =>-= 2 1,平方去分母得 2 2212a a a >+-,解得 1212-<<--a ,注意到0>a ,∴120-<r d 线圆相离;?=r d 线圆相切;?

新人教A版必修二第四章《圆与方程》word练习题

第四章综合检测题 时间120分钟,满分150分。 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.下面表示空间直角坐标系的直观图中,正确的个数为() B. 2个 D. 4个 x + y+ m= 0表示圆,则实数 ) 1 A. mv 厂 1 C. m> 3. 已知空间两点 P1(— 1,3,5), P2(2,4,— 3),则IPRI等于( ) A. 74 B. 3. 10 C. 14 D. 53 4.圆x2 + y2 + 2x— 4y= 0的圆心坐标和半径分别是_( ) A . (1,— 2), 5 B . (1,— 2), 5 C . (— 1,2),5 D . (— 1,2), 5 5.圆心为(1 , — 1),半径为2的圆的方程是() A . (x— 1)2 + (y+ 1)2= 2 B . (x+ 1)2 + (y — 1)2= 4 C . (x+ 1)2 + (y —1)2= 2 D . (x— 1)2 + (y+ 1)2 = 4 6.直线I: x — y= 1与圆C: x2 + y2— 4x= 0的位置关系是( ) A .相离 B.相切 A. 1个 C. 3个 2 .若方程x2+y2m的取值范围为 B. mv 0 D. m< 1

C .相交 D.无法确定 7.当点P在圆x2+ y2 = 1上变动时,它与定点 Q(3,0)连线段PQ 中点的轨迹方程是() A . (x+ 3)2 + y2=4 B . (x— 3)2 + y2= 1 C. (2x— 3)2 + 4y2 = 1 D. (2x + 3)2 + 电=1 8.(2011?2012北京东城区高三期末检测)直线I过点(—4,0),且与圆(x+ 1)2 + (y — 2)2 = 25交于A, B两点,如果|AB| = 8,那么直线I 的方程为() A . 5x+ 12y + 20= 0 B . 5x— 12y + 20= 0 或 x+ 4 = 0 C. 5x— 12y+ 20= 0 D . 5x+ 12y+ 20= 0 或 x+ 4 = 0 9 .一束光线从点A(— 1,1)发出,并经过x轴反射,至U达圆(x— 2)2 + (y— 3)2= 1上一点的最短路程是( ) A . 4 B. 5 C. 3 2 — 1 D. 2 6 10. (2012 ?东卷)在平面直角坐标系xOy中,直线3x+ 4y— 5= 0 与圆x2 + y2 = 4相交于A, B两点,则弦AB的长等于() A . 3 3 B . 2 3 C. 3 D . 1 11.方程-.:4— x2= lg x的根的个数是() A . 0 B . 1 C . 2 D.无法确定 12.过点M(1,2)的直线I与圆C: (x— 2)2 + y2= 9交于A、B两点, C为圆心,当/ ACB最小时,直线I的方程为() A . x= 1 B . y = 1 C . x— y+ 1 = 0 D . x — 2y + 3= 0 二、填空题(本大题共4个小题,每小题5分,共20分,把正确 答案填在题中横线上) 13.点P(3,4,5)关于原点的对称点是_______ . 14.已知△ ABC 的三个顶点为 A(1,— 2,5), B(— 1,0,1), C(3, —4,5),则边BC上的中线长为__________ . 15.已知圆 C: (x— 1)2 + (y+ 2)2=4,点 P(0,5),则过 P 作圆 C 的切线有且只有 _______ 条. 16.与直线 x+ y — 2= 0 和曲线 x2+ y2— 12x— 12y + 54= 0 都相切 的半径最小的圆的标准方程是 ________ . 三、解答题(本大题共6个大题,共70分,解答应写出文字说明,

圆的方程总结

梗概: 1、关于圆与直线的三种位置关系的判定,分代数法和几何法。三种情况分别各有研究重点。相交时,研究弦长,中点弦,最长最短弦;相切时,研究切线方程,切线段长,切点所在直线方程;相离时,研究圆上动点到直线距离的最值(其它两种位置关系也可研究);直线和圆系方程及圆系方程。 2、圆与圆位置关系的判定,连心线性质(平分公共弦),公切线条数判断(实质及两圆位置关系判断),公共弦所在直线方程及公共弦长,两圆上动点距离的最值,圆系方程。 注:关注各种利用几何意义求最值 求圆的方程 一、已知圆上三点,求圆的方程 例1 、(1,0),1,1),(3,2). A B C -- 解法一:待定系数法,设出圆的标准方程或一般方程,求出a,b,r,或者D,E,F 解法二:垂直平方线的焦点为圆心,两点间距离求半 径。 二、已知两点和圆心所在直线 解法一:待定系数法,设出标准或一般方程。 解法二:垂直平分线与圆心所在直线的交点求圆心,两 点间距离求半径。 三、已知弦长求圆的方程 (2,4)Q3-1 P- 例2、过及(,)两点,且在x轴上 截得的弦长为6的圆的方程。 例3、圆心在直线30 x y -=上,与 x轴相切,且 被直线0 x y -=截得的弦长为,求圆的方程。(课 本132A6) 例4、求与x轴切于(5,0),并在y轴上截得 的弦长为10的圆的方程。 例5、已知圆C过点(1,0),且圆心在x轴的 正半轴上,直线被圆C所截得的弦长为 求过圆心且与直线l垂直的直线方程。 四、已知切点,求圆的方程 例6、直线43350 x y +-=与圆心在原点的圆C相 切,求圆的方程。 例7、圆心在y轴上,半径为5,且与直线6 y= 相切的圆的方程。(课本132A2(2)) 例8、圆心在直线2 y x =-上,且过点A(2,-1), 与直线1 x y +=相切的圆的方程。 五、过直线和圆的交点 直线与圆系方程 六、过两圆交点的圆的方程 圆系方程 例11、圆心在直线40 x y --=上,并且经过圆 22640 x y x ++-=与226280 x y y ++-=的交点的圆的 方程。 例12、经过点M(3,-1),且与圆C: 222650 x y x y ++-+=相切于N(1,2)的圆的方程。 例13、求过两圆222880 x y x y +++-=和 224420 x y x y +---=的交点且面积最小的圆的 方程。 解法一:解出两个交点 解法二 :连心线过圆心且圆心在某直线上,由此得出圆 心,然后设出一般方程,再利用三圆有公共 弦,直线重合求出m 解法三、圆系方程 七、最值问题 (1)点和圆

相关文档
最新文档