哈工大-导航原理作业

哈工大-导航原理作业
哈工大-导航原理作业

Assignments of Inertial Navigation 《惯性导航》作业

Autumn 2017

Assignment 1: Coordinate transformation for 3D animation

figure 1.1 Interface for rotating animation control of missile

Attached is a group of MATLAB programs for 3D animation control of a missile. Initially, the body frame of the missile coincides with the local geographical frame, with its pitching axis X pointing to the east, rolling axis Y to the north, and heading axis Z to the sky, as shown in figure 1.1 which is the controlling in-terface produced by running the program main.m.

The three coordinates of each vertex of the 3D model occupies a row in the matrix VTX, The color property and surface information of the model are defined by matrices VTXcolor and faceM respectively. These matrices are loaded from the data file missiledata.mat.

Input an angle (in degree) in the "Rotation Angle" box, and click one of the rotation buttons ("Heading Ro-tation", "Pitching Rotation", or "Rolling Rotation"), then it is expected that the missile will rotate from its current attitude for the input angle around the chosen axis of its current body.

The animation is to be achieved by the program redraw.m which redraws the missile every once it rotates for one degree, using patch command. During each step of the animation, the current rotation angle of the missile relative to its pre-animation attitude has been generated and stored in one of the variables head, pitch and roll, with only one of them being nonzero. Before each redrawing, you need to re-calculate the coordinates of the missile in VTX resolved in the geographical frame, instead of keeping them the same as their values at the very beginning (VTX0). That is, in the program redraw.m, you need to replace the command line VTX=VTX0with your own codes for re-calculating VTX. Elsewhere, additional codes also might be required to make it work.

Please rewrite the program redraw.m, or others if necessary, so that successive rotating animations can be achieved, and explain the rationale behind your rewriting.

一、 任务分析

本作业需要实现的功能为实现火箭的连续旋转。老师已经为我们写了main 程序、restore 程序和火箭模型,我们需要补充redraw 程序,加入坐标变换矩阵,通过火箭模型各点的坐标变换实现火箭的旋转。

二、 坐标变换矩阵

设OEN ξ为定坐标系,有一转动坐标系000OX Y Z ,在起始时刻两坐标系重合,经过绕相应轴旋转之后,转到它的新位置OXYZ 。称绕三个轴的转动角度ψ、θ、?为欧拉角。按三次转动顺序列写方向余弦矩阵,以欧拉角的形式利用矩阵进行坐标变换,三个不同自由度上的角度转动分别对应一个变换矩阵,最终的坐标为初始坐标按顺序与变换矩阵相乘得到的结果。

可写出三个坐标变换矩阵分别为

可以得到坐标系OXYZ 和坐标系OEN ξ的变换关系为

cos 0sin 10

0cos sin 00100cos sin sin cos 0sin 0cos 0sin cos 0

1X E Y N Z ?

ψθθψψ

??θθζ-????????????????????=-?????

???????????????-??????????

再进行整理得

三、运行结果

Heading rotation 45°:

Patching rotation -45°:

Rolling rotation -45°:

四、程序代码

main.m:

clear;

fg=figure('position',[200 20 1100 600], ...

'color',[0.945 0.619 0.761]);

set(gca, 'position',[0.13 0.02 0.775 0.97], ...

'xlim', [-2.6 2.6], ...

'ylim', [-2.6 2.6], ...

'DataAspectRatio',[1 1 1], ...

'DataAspectRatioMode','Manual', ...

'CameraViewAngle',6, ...

'CameraViewAngleMode','Manual'); axis off

hold on

uicontrol('style','text','string','Rotation Angle:','unit','normal','pos',[0.01 0.9 0.09

0.04]);

rotah=uicontrol('style','edit','unit','normal', 'pos',[0.11 0.9 0.05 0.04]);

uicontrol('style','pushbutton','string','Heading Rotation', 'unit','normal','pos',[0.88 0.9 0.11 0.05],'call','rotsq=1; redraw;');

uicontrol('style','pushbutton','string','Pitching Rotation','unit','normal','pos',[0.88 0.8 0.11 0.05],'call','rotsq=2; redraw;');

uicontrol('style','pushbutton','string','Rolling Rotation', 'unit','normal','pos',[0.88 0.7 0.11 0.05],'call','rotsq=3; redraw;');

uicontrol('style','pushbutton','string','Reset', 'unit','normal', 'pos',[0.88 0.6 0.11 0.05],'call','restore;');

xx=[-2.2 0 0

2.2 0 0];

yy=[ 0 -2.2 0

0 2.2 0];

zz=[ 0 0 -2.2

0 0 2.2];

plot3(xx,yy,zz,'b'); % drawing axes

text(2.4, 0, 0, 'East', 'color','green'); % marking axes

text( 0, 2.4, 0, 'North','color','green');

text( 0, 0, 2.4, 'Sky', 'color','green');

view(3);

lhd =camlight(315,20);

lhd1=light('position',[90 90 -40]);

load missiledata; % containing VTX, faceM, VTXcolor

VTX0=VTX; % VTX0 store the initial coordinates of the missile model

% VTX will change as the missile rotates

Cb0_f_geo=eye(3); % DCM from geographical frame to body frame at the start of each rotation.

phd=patch('Vertices',VTX, ...

'Faces', faceM, ...

'FaceVertexCData', VTXcolor, ...

'FaceColor', 'flat', ...

'EdgeColor', 'flat', ...

'FaceLighting', 'Gouraud', ...

'EdgeLighting', 'Gouraud');

redraw.m:

rotangle=str2num( get(rotah,'string') );

head=0; pitch=0; roll=0;

astep=sign(rotangle);%判断角度正负

for i=0:astep:rotangle %实现连续转动效果

if rotsq==1, head =i; % if around heading axis

elseif rotsq==2, pitch=i; % if around pitching axis

elseif rotsq==3, roll =i; % if around rolling axis

end

%将角度转换为弧度

head = head/180*pi;

pitch = pitch/180*pi;

roll = roll/180*pi;

%矩阵变换

Cb0_f_geoH = [cos(head), -sin(head), 0; sin(head), cos(head), 0; 0, 0, 1];

Cb0_f_geoP = [1, 0, 0; 0, cos(pitch), -sin(pitch); 0, sin(pitch), cos(pitch)];

Cb0_f_geoR = [cos(roll), 0, sin(roll); 0, 1, 0; -sin(roll), 0, cos(roll)];

R = Cb0_f_geo * Cb0_f_geoH*Cb0_f_geoP*Cb0_f_geoR;

VTX=(VTX0 * R');%计算出旋转后的坐标

delete(phd);

phd=patch('Vertices',VTX, 'Faces', faceM, 'FaceVertexCData', VTXcolor, 'FaceColor', 'flat','Edgecolor','flat', ...

'FaceLighting','Gouraud','Edgelighting','Gouraud');%重新绘制火箭模型pause(0.02);

end

Cb0_f_geo = R;%记录上一次旋转矩阵以便进行下一次转动

哈工大卫星定位导航原理实验满分报告

卫星定位导航原理实验 班级:1105103班 学号:1110510304 姓名: 同组人: 2014年11月12日

实验一实时卫星位置解算及结果分析 一、实验原理 实时卫星位置解算在整个GPS接收机导航解算过程中占有重要的位置。卫星位置的解算是接收机导航解算(即解出本地接收机的纬度、经度、高度的三维位置)的基础。需要同时解算出至少四颗卫星的实时位置,才能最终确定接收机的三维位置。 对某一颗卫星进行实时位置的解算需要已知这颗卫星的星历和GPS时间。而星历和GPS 时间包含在速率为50比特/秒的导航电文中。导航电文与测距码(C/A码)共同调制L1载频后,由卫星发出。本地接收机相关接收到卫星发送的数据后,将导航电文解码得到导航数据。后续导航解算单元根据导航数据中提供的相应参数进行卫星位置解算、各种实时误差的消除、本地接收机位置解算以及定位精度因子(DOP)的计算等工作。关于各种实时误差的消除、本地接收机位置解算以及定位精度因子(DOP)的计算将在后续实验中陆续接触,这里不再赘述。 卫星的额定轨道周期是半个恒星日,或者说11小时58分钟2.05秒;各轨道接近于圆形,轨道半径(即从地球质心到卫星的额定距离)大约为26560km。由此可得卫星的平均角速度ω和平均的切向速度v s为: ω=2π/(11*3600+58*60+2.05)≈0.0001458rad/s (1.1) v s=rs*ω≈26560km*0.0001458≈3874m/s (1.2) 因此,卫星是在高速运动中的,根据GPS时间的不同以及卫星星历的不同(每颗卫星的星历两小时更新一次)可以解算出卫星的实时位置。本实验同时给出了根据当前星历推算出的卫星在11小时58分钟后的预测位置,以此来验证卫星的额定轨道周期。 本实验另一个重要的实验内容是对卫星进行相隔时间为1s的多点测量(本实验给出了三点),根据多个点的测量值,可以估计Doppler频移。 由于卫星与接收机有相对的径向运动,因此会产生Doppler效应,而出现频率偏移。Doppler频移的直接表现是接收机接收到的卫星信号不恰好在L1(1575.42MHz)频率点上,而是在L1频率上叠加了一个最大值为±5KHz左右的频率偏移,这就给前端相关器进行频域搜索,捕获卫星信号带来了困难。如果能够事先估计出大概的Doppler频偏,就会大大减小相关器捕获卫星信号的难度,缩短捕获卫星信号的时间,进而缩短接收机的启动时间。GPS 接收机的启动时间是衡量接收机性能好坏的重要参数之一,而卫星信号的快速捕获,缩短接收机的启动时间也是目前GNSS业界的热点问题。 本实验中Doppler频移的预测与后续《可视卫星位置预测》实验是紧密联系的,可视卫星位置预测中也包括对Doppler频移的预测。本实验将给出根据卫星位置和本地接收机的初始位置预测Doppler频移的方法。 有了卫星位置和本地接收机的初始位置,就可以根据空间两点间的距离公式,得出卫星距接收机的距离d。记录同一卫星在短时间t内经过的两点的空间坐标S1和S2,就可以分别得到这两点距接收机的距离d1和d2。只要相隔时间t取的较小(本实验取t=1s),|d1-d2|/t 就可以近似认为是卫星与接收机在t时间内的平均相对径向运动速度,再将此速度转换为频率的形式就可以得到大致的Doppler频移。 设本地接收机的初始位置为R(x r,y r,z r),记录的卫星两点空间坐标为S1(x1,y1,z1)、S2(x2,y2,z2),相隔时间为t,卫星与接收机平均相对径向运动速度为v d,光速为c,Doppler 频移为f d,则Doppler频移预测的具体公式如下所示: d1=[(x1-x r)2+(y1-yr)2+(z1-z r)2]1/2 (1.3) d2=[(x2-x r)2+(y2-y r)2+(z2-z r)2]1/2(1.4)

线性系统大作业1

研 究 生 课 程 论 文 (2014-2015学年第一学期) 线性系统的基本特性 研究生:

线性系统理论的研究对象为线性系统。线性系统是最为简单和最为基本的一类动态系统。线性系统理论是系统控制理论中研究最为充分、发展最为成熟和应用最为广泛的一个分支。线性系统理论中的很多概念和方法,对于研究系统控制理论的其他分支,如非线性系统理论、最优控制理论、自适应控制理论、鲁棒控制理论、随机控制理论等,同样也是不可缺少的基础。 线性系统的一个基本特征是其模型方程具有线性属性即满足叠加原理。叠加原理是指,若表系统的数学描述为L ,则对任意两个输入变量u 1和u 2以及任意两个非零有限常数c 1和c 2必成立关系式: 11221122()()()L c u c u c L u c L u +=+ 对于线性系统,通常还可进一步细分为线性时不变系统(linear time-invariant systems)和线性时变系统(linear time-varying systems)两类。 线性时不变系统也称为线性定常系统或线性常系数系统。其特点是,描述系统动态过程的线性微分方程或差分方程中,每个系数都是不随时间变化的函数。从实际的观点而言,线性时不变系统也是实际系统的一种理想化模型,实质上是对实际系统经过近似化和工程化处理后所导出的一类理想化系统。但是,由于线性时不变系统在研究上的简便性和基础性,并且为数很多的实际系统都可以在一定范围内足够精确地用线性时不变系统来代表,因此自然地成为线性系统理论中的主要研究对象。 线性时变系统也称为线性变系数系统。其特点是,表征系统动态过程的线性微分方程或差分方程中,至少包含一个卷数为随时间变化的函数。在视实世界中,由于系统外部和内部的原因,参数的变化是不可避免的,因此严格地说几乎所有系统都属于时变系统的范畴。但是,从研究的角度,只要参数随时间

哈工大导航原理大作业

《导航原理》作业 (惯性导航部分)

一、题目要求 A fighter equipped with SINS is initially at the position of ?35 NL ?122X G Y G Z G ,and three accelerometers, X A ,Y A ,Z A are installed along the axes b X ,b Y ,b Z of the body frame respectively. Case 1:stationary onboard test The body frame of the fighter initially coincides with the geographical frame, as shown in the figure, with its pitching axis b X pointing to the east,rolling axis b Y to the north, and azimuth axis b Z upward. Then the body of the fighter is made to rotate step by step relative to the geographical frame. (1) ?10around b X (2) ?30around b Y (3) ?50-around b Z After that, the body of the fighter stops rotating. You are required to compute the final output of the three accelerometers on the fighter, using both DCM and quaternion respectively,and ignoring the device errors. It is known that the magnitude of gravity acceleration is 2/8.9g s m =. Case 2:flight navigation Initially, the fighter is stationary on the motionless carrier with its board 25m above the sea level. Its pitching and rolling axes are both in the local horizon, and its rolling axis is ?45on the north by east, parallel with the runway onboard. Then the fighter accelerate along the runway and take off from the carrier. The output of the gyros and accelerometers are both pulse numbers,Each gyro pulse is an angular increment of sec arc 1.0-,and each accelerometer pulse is g 6e 1-,with 2/8.9g s m =.The gyro output frequency is 10 Hz,and

哈工大自动控制原理 大作业

自动控制原理 大作业 (设计任务书) 姓名: 院系: 班级: 学号: 5. 参考图5 所示的系统。试设计一个滞后-超前校正装置,使得稳态速度误差常数为20 秒-1,相位裕度为60

度,幅值裕度不小于8 分贝。利用MATLAB 画出 已校正系统的单位阶跃和单位斜坡响应曲线。 + 一.人工设计过程 1.计算数据确定校正装置传递函数 为满足设计要求,这里将超前滞后装置的形式选为 ) 1)(() 1)(1()(2 12 1T s T s T s T s K s G c c ββ++++= 于是,校正后系统的开环传递函数为)()(s G s G c 。这样就有 )5)(1()(lim )()(lim 00++==→→s s s K s sG s G s sG K c c s c s v 205 ==c K 所以 100=c K 这里我们令100=K ,1=c K ,则为校正系统开环传函) 5)(1(100 )(++= s s s s G

首先绘制未校正系统的Bode 图 由图1可知,增益已调整但尚校正的系统的相角裕度为? 23.6504-,这表明系统是不稳定的。超前滞后校正装置设计的下一步是选择一个新的增益穿越频率。由)(ωj G 的相角曲线可知,相角穿越频率为2rad/s ,将新的增益穿越频率仍选为2rad/s ,但要求2=ωrad/s 处的超前相角为? 60。单个超前滞后装置能够轻易提供这一超前角。 一旦选定增益频率为2rad/s ,就可以确定超前滞后校正装置中的相角滞后部分的转角频率。将转角频率2/1T =ω选得低于新的增益穿越频率1个十倍频程,即选择2.0=ωrad/s 。要获得另一个转角频率)/(12T βω=,需要知道β的数值, 对于超前校正,最大的超前相角m φ由下式确定 1 1 sin +-= ββφm 因此选)79.64(20 ==m φβ,那么,对应校正装置相角滞后部分的极点的转角频率为 )/(12T βω=就是01.0=ω,于是,超前滞后校正装置的相角滞后部分的传函为 1 1001 520 01.02.0++=++s s s s 相角超前部分:由图1知dB j G 10|)4.2(|=。因此,如果超前滞后校正装置在2=ωrad/s 处提供-10dB 的增益,新的增益穿越频率就是所期望的增益穿越频率。从这一要求出发,可 以画一条斜率为-20dB 且穿过(2rad/s ,-10dB )的直线。这条直线与0dB 和-26dB 线的交点就确定了转角频率。因此,超前部分的转角频率被确定为s rad s rad /10/5.021==ωω和。 因此,超前校正装置的超前部分传函为 )1 1.01 2(201105.0++=++s s s s 综合校正装置的超前与之后部分的传函,可以得到校正装置的传递函数)(S G c 。 即) 1100)(11.0() 15)(12(01.02.0105.0)(++++=++++= s s s s s s s s s G c 校正后系统的开环传递函数为

惯性导航作业

惯性导航作业

一、数据说明: 1:惯导系统为指北方位的捷连系统。初始经度为116.344695283度、纬度为39.975172度,高度h为30米。初速度 v0=[-9.993908270;0.000000000;0.348994967]。 2:jlfw中为600秒的数据,陀螺仪和加速度计采样周期分别为为1/100秒和1/100秒。 3:初始姿态角为[2 1 90](俯仰,横滚,航向,单位为度),jlfw.mat中保存的为比力信息f_INSc(单位m/s^2)、陀螺仪角速率信息wib_INSc(单位rad/s),排列顺序为一~三行分别为X、Y、Z向信息. 4: 航向角以逆时针为正。 5:地球椭球长半径re=6378245;地球自转角速度wie=7.292115147e-5;重力加速度g=g0*(1+gk1*c33^2)*(1-2*h/re)/sqrt(1-gk2*c33^2); g0=9.7803267714;gk1=0.00193185138639;gk2=0.00669437999013;c33=sin(lat纬度); 二、作业要求: 1:可使用MATLAB语言编程,用MATLAB编程时可使用如下形式的语句读取数据:load D:\...文件路径...\jlfw,便可得到比力信息和陀螺仪角速率信息。用角增量法。 2:(1) 以系统经度为横轴,纬度为纵轴(单位均要转换为:度)做出系统位置曲线图; (2) 做出系统东向速度和北向速度随时间变化曲线图(速度单位:m/s,时间单位:s); (3) 分别做出系统姿态角随时间变化曲线图(俯仰,横滚,航向,单位转换为:度,时间单位:s); 以上结果均要附在作业报告中。 3:在作业报告中要写出“程序流程图、现阶段学习小结”,写明联系方式。

导航原理实验报告

导航原理实验报告 院系: 班级: 学号: 姓名: 成绩: 指导教师签字: 批改日期:年月日 哈尔滨工业大学航天学院 控制科学实验室

实验1 二自由度陀螺仪基本特性验证实验 一、实验目的 1.了解机械陀螺仪的结构特点; 2.对比验证没有通电和通电后的二自由度陀螺仪基本特性表观; 3.深化课堂讲授的有关二自由度陀螺仪基本特性的内容。 二、思考与分析 1. 定轴性 (1) 设陀螺仪的动量矩为H ,作用在陀螺仪上的干扰力矩为M d ,陀螺仪漂移角 速度为ωd ,写出关系式说明动量矩H 越大,陀螺漂移越小,陀螺仪的定轴性(即稳定性)越高. 答案: d d H M ω=? /sin d d H M θω = 干扰力矩M d 一定时,动量矩H 越大,陀螺仪漂移角速度为ωd 越小,陀螺漂移越小, 陀螺仪的定轴性(即稳定性)越高. (2) 在陀螺仪原理及其机电结构方而简要蜕明如何提高H 的量值? 答案:H J =Ω 由公式2A J dm r = ???可知 提高H 的量值有四种途径: 1. 陀螺转子采用密度大的材料,其质量提高了,转动惯量也就提高了。 2. 改变质量分布特性。在质量相同的情况下,若质量分布的半径距质 心越远,H 越大。因此将陀螺转子的有效质量外移,如动力谐陀螺将转子设计成环状。即在陀螺电机定子环中,可做成质量集中分布在环外边缘的环形结构,切边缘部分材质密度大,可提高转动惯量。 3. 增大r,可有效提高转动惯量。 4. 另外可通过采用外转子电机来改变电机质量分布,增大r 。改变电机定转子结构:采用外转子,内定子结构的转子电机。

4. 增加陀螺转子的旋转速度。 2/602(1)/n s f p ωππ==- ,60(1)/n f s p =- 提高电压周波频率 f ↑——〉n ↑——H ↑ f=400Hz 适当减少极对数 ,如取p=1 适当减少转差率s ,可通过减少转子支承轴承摩擦来实现 2.进动性 (1) 在外框架施加一沿x 轴正方向作用力矩时,画出动量矩H 的进动方 向及矢量M ,ω,H 的关系坐标图。(设定H 沿Z 轴正方向)并在坐标中标出陀螺仪自转轴的旋转方向n 。 b) 在内框架施加一沿Y 轴正方向作用力矩时,画出动量矩H 的进动方向及 矢量M ,ω,H 的关系坐标图。(设定H 沿Z 轴正方向)并在坐标中标出陀螺仪自转轴的旋转方向n 。

哈工大 自动控制原理本科教学要求

自动控制原理本科教学要求 自动控制专业的自动控制原理课程包括自动控制原理Ⅰ和现代控制理论两部分,分两个学期讲授。 《自动控制原理I》教学大纲 课程编号:T1043010 课程中文名称:自动控制原理 课程英文名称: Automatic Control Theory 总学时: 100 讲课学时:88 实验学时:16 习题课学时:0 上机学时: 学分:6.0 授课对象:自动控制专业本科生 先修课程:电路原理、电子技术和电机方面的有关课程;复变函数和线性代数 教材:《自动控制原理》(第三版)李友善主编,国防工业出版社,2005年 参考书:《自动控制原理》(第四版)胡寿松主编,科学出版社,2001年 《Linear Control System Analysis and Design》(第四版)清华大学出版社,2000年 一、课程教学目的: 自动控制原理是控制类专业最重要的一门技术基础课。这门课主要讲解自动控制的基本理论、自动控制系统的分析方法与设计方法。 本课程的主要任务是培养学生掌握自动控制系统的构成、工作原理和各件的作用;掌握建立控制系统数学模型的方法。掌握分析与综合线性控制系统的三种方法:时域法、根轨迹法和频率法。掌握计算机控制系统的工作原理以及分析和综合的方法。了解非线性控制系统的分析和综合方法。建立起以系统的概念、数学模型的概念、动态过程的概念。 通过课程的学习使学生掌握分析、测试和设计自动控制系统的基本方法。结合各种实践环节,进行自动控制领域工程技术人员所需的基本工程实践能力的训练。从理论和实践两方面为学生进一步学习自动控制专业的其他专业课如:过程控制、数字控制、飞行器控制、智能控制、导航与制导、控制系统设计等打下必要的专业技术基础。自动控制原理课程是自动控制专业学生培养计划中承上启下的一个关键环节,因此该课程在自动控制专业的教学计划中占有重要的位置。 二、教学内容及基本要求 第一章控制系统的一般概念(2学时) 本课程的目的及讲授内容,自动控制的基本概念和自动控制系统,开环控制与闭环控制,控制系统的组成,控制系统的基本要求。 第二章控制系统的数学模型(12学时) 控制系统微分方程的建立,传递函数的基本概念和定义,传递函数的性质,基本环节及传递函数,控制系统方框图及其绘制,方框图的变换规则,典型系统的方框图与传递函数,方框图的化简,用梅森增益公式化简信号流图。 第三章线性系统的时域分析(14学时) 典型输入信号,一阶系统的瞬态响应,线性定常系统的重要性质,二阶系统的标准型及其特点,二阶系统的单位阶跃响应,二阶系统的性能指标,二阶系统的脉冲响应,二阶系统的单位速度响应,初始条件不为零时二阶系统的过渡过程。 闭环主导极点的概念,高阶系统性能指标的近似计算。稳定的基本概念和定义,线性系统的稳定条件,劳斯稳定判据。控制系统的稳态误差,稳态误差的计算:泰勒级数法和长除法,控制系统的无静差度,用终值定理计算稳态误差,减小稳态误差的方法 第四章根轨迹法(12学时) 控制系统的根轨迹,绘制根轨迹的基本规则,控制系统的根轨迹分析,参数根轨迹,闭环系统的零极点分布域性能指标 第五章线性系统的频域分析(14学时) 频率特性的概念,典型环节频率特性的极坐标图表示,典型环节频率特性的对数坐标图表示,开环系统的对数频率特性,最小相位系统。v=0、1、2时开环系统的极坐标图,Nyquist稳定判据,用开环系统的Bode图判定闭环系统的稳定性,控制系统的相对稳定性。控制系统的性能指标,二阶系统性能指标间的关系,高阶系统性能指标间的关系,开环对数频率特性和性能指标的关系。 第六章控制系统的综合与校正(14学时) 控制系统校正的基本方法,基本控制规律。相位超前校正网络,用频率特法确定相位超前校正参数,按根轨迹法确定相位超前校正参数。相位滞后网络,用频率特性法确定相位滞后校正参数,按根轨迹法确定相位滞后校正参数。相位滞后-超前校正网络,控制系统的期望频率特性,控制系统的固有频率特性,根据期望频率特性确定串联校正参数。

哈尔滨工业大学自动化专业本科生培养方案

自动化专业本科生培养方案 一、培养目标 本专业培养知识、能力、素质,德、智、体、美全面发展,在较宽的科技领域(包括控制理论与工程应用、系统分析设计与仿真、运动控制、过程控制、飞行器导航制导与控制以及系统工程技术、电子工程技术、计算机技术与应用等)掌握坚实的基础理论和系统的专业知识,并具备在高等院校、科研院所及工业企业等部门和行业从事与控制系统相关的分析、设计、开发、集成、管理及维护的高素质、复合类、创新型高级科技人才。 本专业注重宽基础、强适应性,注重基础理论及其与工程实际相结合,面向国家现代化建设,并具有紧密结合航天、宇航与国防工业现代化建设需求的人才培养特色。 二、培养要求 本专业学生主要学习自动化领域的基本理论和基本知识,接受自动化领域的基本方法及其解决实际工程问题等方面的基本训练,具有自动化工程设计与研究方面的基本能力。 (一)毕业生应在思想和情感方面具备以下主要素质: 1.政治品质。热爱祖国,关心国家大事、时事政治,有较强的法制法规观念; 2.思想品质。树立积极向上的人生观、正确的价值观和辩证唯物主义的世界观; 3.道德品质。具备良好的道德修养和文明的行为准则,具有敬业精神和职业道德。 (二)毕业生应获得以下主要方面的知识和技能: 1.掌握数理等基础理论的原理和方法; 2.具备较扎实的外语综合能力,能够顺利地阅读本专业外文文献; 3.掌握计算机、电气等关联学科的相关原理、方法及相应实验仪器的使用技能; 4.身心健康,具有较好的人文社会科学基础以及军事训练方面的基本知识; 5.掌握自动控制原理、控制系统分析和综合(设计)等专业知识和方法,具有较好的工程实践能力; 6.掌握科学计算、系统仿真、软硬件开发等实验方法和技术; 7.具有辩证的、逻辑的、形象的和创造的科学思维方式和对事物进行统计、分析、综合、归纳的技能,并具备基本的发现问题、分析问题和解决问题的能力。 (三)毕业生应在意识和意志方面具备以下主要素质: 1.协作意识。具备与同学同事协同工作、协调配合的能力; 2.创新竞争意识。崇尚科学,求真务实,具有较强的创新意识和竞争意识; 3.坚毅意志。具备勇于面对困难并善于克服困难的心理素质。 三、主干学科 控制科学与工程。 四、专业主干课程 电路I、模拟电子技术基础II、数字电子技术基础II、自动控制原理I、现代控制理论基础、自动控制元件及线路I、计算机控制、控制系统设计、导航原理、飞行器控制与制导、过程控制系统、运动控制系统。

哈工大导航原理大作业

哈工大导航原理大作业-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

《导航原理》作业 (惯性导航部分)

一、题目要求 A fighter equipped with SINS is initially at the position of ?35 NL and ?122 EL,stationary on a motionless carrier. Three gyros X G ,Y G ,Z G ,and three accelerometers, X A ,Y A ,Z A are installed along the axes b X ,b Y ,b Z of the body frame respectively. Case 1:stationary onboard test The body frame of the fighter initially coincides with the geographical frame, as shown in the figure, with its pitching axis b X pointing to the east,rolling axis b Y to the north, and azimuth axis b Z upward. Then the body of the fighter is made to rotate step by step relative to the geographical frame. (1) ?10around b X (2) ?30around b Y (3) ?50-around b Z After that, the body of the fighter stops rotating. You are required to compute the final output of the three accelerometers on the fighter, using both DCM and quaternion respectively,and ignoring the device errors. It is known that the magnitude of gravity acceleration is 2/8.9g s m =. Case 2:flight navigation Initially, the fighter is stationary on the motionless carrier with its board 25m above the sea level. Its pitching and rolling axes are both in the local horizon, and its rolling axis is ?45on the north by east, parallel with the runway onboard. Then the fighter accelerate along the runway and take off from the carrier. The output of the gyros and accelerometers are both pulse numbers,Each gyro pulse is an angular increment of sec arc 1.0-,and each accelerometer pulse is g 6e 1-,with 2/8.9g s m =.The gyro output frequency is 10 Hz,and the accelerometer ’s is 1Hz. The output of gyros and accelerometers within 5400s are stored in MATLAB data files named gout.mat and aout.mat, containing matrices gm of 35400? and am of 35400? respectively. The format of data as shown in the tables, with 10 rows of each matrix selected. Each row represents the out of the type of sensors at each sample time.

导航原理(pdf版)

导航原理(V0.1) 导航贯穿于飞行全过程。正确实施导航,是完成任务的先决条件。对于每一个想要在虚拟战线任务中顺利找到目标,完成任务并安全返航的飞友,熟练的掌握导航技术是必须的。 第一节导航仪表 与导航有关的仪表主要有罗盘和无线电导航仪,罗盘又分为磁罗盘和综合远读罗盘(也叫做转发罗盘),综合远读罗盘实际上是把远读罗盘和无线电导航仪合二为一,比如德机的罗盘中的小飞机就是无线电导航仪的指针,它指向无线电导航台或电台的方位,德机的罗盘外圈的刻度是活动的,跟随航向的变化而旋转,正12点的位置就是当前航向。美国海军飞机的罗盘中的双针就是无线电导航仪的指针,它指向电台方向,单针指示的是当前航向,而美国陆航的指针定义刚好相反,单针是无线电导航仪的指针,双针指示当前航向。苏机的无线电导航仪是单独的,它的使用我们以后再说。磁罗盘实际上跟指南针是一样的,只是它的刻度盘是做在磁体上的,跟磁体一起旋转,因此它只能在水平状态下使用。导航仪表中还包括航空时钟,它跟我们平时用的钟一样,这里就不讲了。 综合远读罗盘(德)综合远读罗盘(美)磁罗盘(美) 磁罗盘(苏)无线电导航仪(苏)

第二节判读航图和导航计算 航图的判读是导航的基础,游戏中的航图,跟我们常见的地图大体相同,所用的图标也很相似,但由于游戏本身的特点,以及我们在飞行中的实际需要,因此也有一些不同的地方。 图1 图例图2放大后的图1局部游戏中的航图图标大多与真实地图相同,如浅蓝色不规则线条表示河流,较大面积浅蓝色区域表示湖泊,黑色线条表示铁路,但公路却分为两种,红线表示泥土公路,黄色带棕色边的线表示沥青或水泥公路,大块的绿色区域表示森林,森林间的浅色区域表示草地,不规则的小块黄色区域表示城镇,城镇上面标有城镇名称。图中的蓝色菱形图标表示空军基地。 游戏中的航图跟真实地图一样是上北下南,左西右东,并且也采用 经度和纬度,图2是放大后的地图,可以看到地图边缘标有经度和纬度, 但游戏中的航图主要采用英文字母和数字来表示位置。图1是我们看航 图时最常用的一种比例,图中经线和纬线交叉将地图划分为一个个区 域,用英文字母代表纵列(经度),用数字代表横列(纬度),两条经线 和两条纬线之间的距离是10千米,因此地图上每一个区域的边长是10 千米。每一个区域可以用字母和数字来表示,如D5、E3等等。图3 区域分划但用这样的方法来表示位置不够精确,因此我们在此基础上将每一个区域分为9个小区,每个小区用一个数字来表示,以增加精度。如图3,将一个区域(图中为D3)均分为9个小区,用小键盘上的数字键位置进行编号,这样每一个小区就可以这样表示,如D3-1,D3-6。图1中的空军基地,如果用D3来表示,因为D3地区有10×10千米,因此精度很低,而如果用D3-5来表示,由于D3-5小区只有3.3×3.3千米,精度大为提高。 一般的航图显示比例分为两个档次,既每格10千米和每格1千米,而在太平洋地区的一些地

哈工大校内实习报告剖析

哈尔滨工业大学航天学院控制科学与工程系 生产实习报告 班级: 学号: 姓名: 实习地点: 实习时间: 带队教师: 2016年8月3日

一、实习情况概述 为了拓展学生自身的知识面,扩大与社会的接触面,增加个人在社会竞争中的经验,锻炼和提高我们的能力,以便在毕业以后能够真正适应国内外经济形势的变化,学院组织了一次生产实习。实习期间,每天上午各个实验室和课题组通过讲座的方式讲解其研究内容和方向,而下午则是带领我们参观具体的实验设备和研究成果。参观的单位包括仿真中心、惯导中心、控制中心、智控所、控制科学与工程系、相关课题组以及航天科技股份有限公司。 实习时间:2016年7月18日——2016年7月29日 实习地点:哈尔滨市 实习单位:7月18日,控制中心 7月19日,汽车电子联合实验室 7月20日,航天科技股份有限公司 7月21日,仿真中心(姚郁组) 7月22日,仿真中心(杨明组) 7月25日,惯导中心 7月26日,光刻机课题组 7月27日,智能控制系统研究所 7月28日,马广富课题组 7月29日,控制科学与工程系 二、实习内容 1.控制理论与制导技术研究中心 通过讲座和实地参观使我对控制中心的研究内容及方向有了很深刻的了解。该中心成立于2001年10月,位于哈尔滨工业大学科学园2F栋,使用面积2000多平方米,具有完备的学习、科研环境和齐全的硬件设施。 控制理论与制导技术研究中心的研究工作侧重于两大领域:鲁棒控制理论与应用、导航制导与控制技术。现为教育部“鲁棒控制理论及在航天控制中的应用”长江学者创新团队和国家自然科学基金委“航天飞行器的鲁棒控制理论与应用”创新研究群体的主要基地。 此外,上午的讲座还介绍了复杂系统控制与滤波,飞行器导航与控制,惯性

哈尔滨工业大学航天学院控制科学与工程系生产实习报告

哈尔滨工业大学航天学院 控制科学与工程系 生产实习报告 班级: 学号: 108041XXX 姓名: 实习地点:哈工大及航天科技 实习时间: 2011.7.4 —— 2011.7.15 带队教师:周乃馨林玉荣 2011年8 月4日

生产实习报告 在大三下学期期末我们航天学院四系组织了为期两周的生产实习,参观了哈工大的控制与仿真中心,控制理论与制导技术研究中心,惯导中心,汽车电子联合实验室以及航天科技风华股份有限公司,并听了各位专家的报告和系学科科研介绍。 第一周的实习主要在校内进行,上午听报告,下午参观,可以说每一天都过的很充实。前两天安排的是控制与仿真中心的实习,在这里我们了解了系统仿真的概念和分类,并对仿真的作用有了更直观的认识。专家们还对气浮台做了具体的介绍,并在中心里让我们近距离接触,给我们留下了深刻的印象。老师们还介绍了现在仿真中存在的问题和研究方向,比如功能拦截器的制导问题,BBT导弹的制导控制问题等。在最后给我们介绍了仿真中心的概况及研究方向,并且展示了部分研究成果,还对研究团队的成员做了大致的介绍。接下来,我们又参观了控制理论与制导技术研究中心,首先分别由黄显林教授,段广仁教授,宋申民副教授给我们介绍了中心的概况与团队简介,并着重介绍了中心的研究领域,如:复杂系统控制与滤波,飞行器导航与控制,惯性技术,计算机网络控制等。中心不仅在科研方面有着杰出贡献,对本科及硕士生教学也有着不小的功劳,主要体现在航天器飞行控制与GPS应用与原理方面。 在这周的最后两天,我们参观了学校的空间控制与惯性技术研究中心。中心创立于1990年,是“211”,“985”工程重点建设部门之一,曾获多个国家科技进步奖,并发表学术论文300多篇,科研队伍由主任王常虹率领,其中高会军教授使我们学校新一代科学技术人才。中心在国际上交流也颇多,并参加了不少重要国际学术会议。中心主要研究的是转台,在实习中专家对转台做了详细的介绍,并对转台研究的发展进行了阐述,当然我们现在的技术与美国还落后很多,所以需要我们更加努力地去学习。接着老师们又对转台系统的研究主要控制技术问题进行了剖析,如:角位置和角速度测量精度,带宽的扩展,低速性能问题,各框架间的动力学耦合,元件的死区、饱和非线性问题,系统的可能性和电测兼容性等。最后屈桢深老师又介绍了视觉技术,并对此技术给了一个很艺术的解释:从梦想到现实。这是一门新兴学科,主要应用于生产线自动检测与装配,空间探测,医学化验、检测与治疗,视觉信息压缩与传输,天文学,地理学等,应用广泛。目前我们学校实验室主要研究方向为:智能交通监控,为了解决改善路况和道路安全与事件监测问题。 第二周我们开始了为期两天的校外实习,实习地点在航天科技风华股份有限公公司。刚开始,先由王老师对公司进行了系统的介绍。公司总部迁于北京,主要法人股东是三院,总资产3.2亿元,净产2.37亿元。主营业务是汽车电子产品,精密加工产品。有员工744人,技术人员121人。主要产品:汽车电子式组合仪表,汽车行驶记录仪,汽车网络系统,汽车保护断路器,铝合金组件,叶轮等。 在研产品:电动汽车电机控制系统,汽车信息服务产业链,各种雷达座体等。 在经营业绩方面也有着不错的成绩,仪表供应方面是一汽汽车最大的客户。主要硬件资源为SMT生产线,组合仪表U形生产线,五轴五联动磨加工中心,实验设备为电波暗室。王老师还特意介绍了一下2010年经营情况介绍,收入22,820万元,并成为一汽集团首批核心供应商。 同时我们对风华公司汽车电子十二五发展规划有了了解,如:主要产品产量

惯性导航原理 习题

《惯性导航原理》课程习题 2012年 5月30日,授课老师:吴了泥 1.分类介绍当代导航系统? 2.平台式惯导的硬件组成,各个器件的作用? 3.自由转子陀螺的干扰力矩由哪些引起,高精度陀螺如何改进支撑方式,减小干扰力矩。 4.描述转子陀螺的定轴性、进动性、表观运动和章动。 5.用动量距定理说明转子陀螺进动方向和大小,说明转子陀螺的表观运动。 6.描述双自由度陀螺的技术方程。从技术方程出发,描述常值外力矩下陀螺的运动。 7.描述单自由度陀螺的技术方程,并解算单自由度陀螺的种类。 8.说明双自由度陀螺、单自由度陀螺如何测量角运动。 9.说明二自由度陀螺的单轴稳定平台如何实现稳定和跟踪。 10.简要描述动力调谐陀螺、激光陀螺、光纤陀螺和微机械陀螺的的机理和特点。 11.普通摆式加速度计的技术方程,说明测量机理。 12.挠性摆式加速度计的结构,简要描述其工作机理,并给出技术方程。 13.描述惯性坐标系,导航坐标系,地理坐标系,以及机体坐标系的定义。 14.说明比力的概念,写出比力方程,并描述比力方程的意义? 15.描述休拉调谐,及其物理意义?陀螺稳定平台如何实现休拉调谐? 16.说明惯导垂直通道为什么是不稳定的?说明垂直通道阻尼回路的作用。 17.平台式惯导的力学编排,及施矩指令。 18.平台式惯导有哪些误差源,并描述误差传播过程。 19.简要推导姿态误差方程、速度误差方程和位置误差方程。 20.惯导的基本误差特性是哪三种振荡运动合成的?说明三种振荡运动产生的原因。 21.简要说明平台式惯导水平对准和方位对准的基本原理。 22.捷联惯导和平台惯导的区别,捷联惯导的优缺点? 23.说明比力坐标变换的方法。 24.描述欧拉角的定义,用欧拉角法描述姿态矩阵,并写出微分方程。 25.描述四元数法的物理意义,用四元数法描述姿态矩阵,并写出微分方程。写出四元数和欧拉角间的转换关系。 26.什么叫转动的不可交换性误差?旋转等效矢量法是如何消除转动不可交换性误差?用旋转等效矢量法描述姿态矩阵,并写出微分方程。

哈工大自动控制原理大作业

自动控制原理大作业 1.题目 在通常情况下,自动导航小车(AGV )是一种用来搬运物品的自动化设备。大多数AGV 都需要有某种形式的导轨,但迄今为止,还没有完全解决导航系统的驾驶稳定性问题。因此,自动导航小车在行驶过程中有时会出现轻微的“蛇行”现象,这表明导航系统还不稳定。 大多数的AGV 在说明书中都声明其最大行驶速度可以达到1m/s ,但实际速度通常只有0.5m/s ,只有在干扰较小的实验室中,才能达到最高速度。随着速度的增加,要保证小车得稳定和平稳运行将变得越来越困难。 AGV 的导航系统框图如图9所示,其中12=40ms =21ms ττ, 。为使系统响应斜坡输入的稳态误差仅为1%,要求系统的稳态速度误差系数为100。试设计合适的滞后校正网络,试系统的相位裕度达到50o ,并估计校正后系统的超调量及峰值时间。 ()R s () Y s 2.分析与校正主要过程

2.1确定开环放大倍数K 100) 1021.0)(104.0(lim )(lim =++==s s s sK s sG K v (s →0) 解得K=100 ) 1021.0)(104.0(100++=s s s G s 2.2分析未校正系统的频域特性 根据Bode 图: 穿越频率s rad c /2.49=ω 相位裕度?---=?-?--=99.18)2.49021.0(arctan )2.4904.0(arctan 9018011γ 未校正系统频率特性曲线

由图可知实际穿越频率为s rad c /5.34=ω 2.3根据相角裕度的要求选择校正后的穿越频率1c ω 现在进行计算: ???--=+=---55550)021.0(arctan )04.0(arctan 901801111c c ωω 则取s rad c /101=ω可满足要求 2.4确定滞后校正网络的校正函数 由于1120 1~101c ωω)(= 因此取s rad c /1101 11== ωω)(,则由Bode 图可以列出

控制系统设计作业(DOC)

第一题:现控有哪些控制器结构,各有何特点,作用,用在什么场合? 答: (1)状态反馈: 特点:1、状态反馈将系统的每个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入;2、不增加系统的维数(状态反馈解耦时也不增加系统的维数);3、比不增加补偿器的输入反馈的效果要好;4、不增加新的状态变量;5、反馈增益阵是常矩阵,反馈为线性反馈;6、不改变受控系统的能控性,但不保证系统的能观性不变;7、对于完全能控的单输入系统能实现闭环极点的任意配置,而且不影响原系统零点的分布,但如果故意制造零极点对消,那么此时闭环系统将是不能观的;8、系统能镇定的充要条件是不能控子系统为渐近稳定。 作用:状态反馈增益阵K的引入不增加系统的维数,但可通过K的选择自由地改变闭环系统的特征值,从而是系统获得所要求的性能。 场合: (2)输出反馈: 特点:1、采用输出矢量y构成线性反馈律;2、在技术实现上的方便性;3、输入反馈的HC和状态反馈的K相当,由于m

哈工大自动控制原理 大作业

自动控制原理 大作业 (设计任务书) 姓名: 院系: 班级: 学号:

5、 参考图 5 所示的系统。试设计一个滞后-超前校正装置,使得稳态速度误差常数为20 秒-1,相位裕度为60度,幅值裕度不小于8 分贝。利用MATLAB 画出 已校正系统的单位阶跃与单位斜坡响应曲线。 + 一.人工设计过程 1、计算数据确定校正装置传递函数 为满足设计要求,这里将超前滞后装置的形式选为 ) 1)(()1)(1()(2 12 1T s T s T s T s K s G c c ββ++++ = 于就是,校正后系统的开环传递函数为)()(s G s G c 。这样就有 )5)(1()(lim )()(lim 00++==→→s s s K s sG s G s sG K c c s c s v 205 ==c K 所以 100=c K 这里我们令100=K ,1=c K ,则为校正系统开环传函) 5)(1(100 )(++=s s s s G 首先绘制未校正系统的Bode 图 由图1可知,增益已调整但尚校正的系统的相角裕度为? 23.6504-,这表明系统就是不稳定的。超前滞后校正装置设计的下一步就是选择一个新的增益穿越频率。由)(ωj G 的相角曲线可知,相角穿越频率为2rad/s,将新的增益穿越频率仍选为2rad/s,但要求2=ωrad/s 处的超前相角为? 60。单个超前滞后装置能够轻易提供这一超前角。 一旦选定增益频率为2rad/s,就可以确定超前滞后校正装置中的相角滞后部分的转角频率。将转角频率2/1T =ω选得低于新的增益穿越频率1个十倍频程,即选择2.0=ωrad/s 。要获得另一个转角频率)/(12T βω=,需要知道β的数值,

相关文档
最新文档