二氧化钛光催化剂研究进展

二氧化钛光催化剂研究进展
二氧化钛光催化剂研究进展

二氧化钛光催化剂研究进展

工业催化张春明

摘要:催化是工业生产中追求高效率、高纯度、低耗能的有效手段。纳米TIO2以光催化凭着可以利用可见光进行催化反应而受到催化领域的亲昧,就纳米TIO2光催化剂目前的研究状况展开论述,并列举了TIO2光催化剂应用领域和目前的制备方法。讨论了光催化剂的发展前景,揭示了目前光催化技术对当代化工事业的影响,并对未来的发展发表了预期的倡想。

关键词:二氧化钛光催化剂纳米材料研究进展

前言

通俗意义上讲触媒就是催化剂的意思,光触媒顾名思义就是光催化剂。催化剂是加速化学反应的化学物质,其本身并不参与反应。光催化剂就是在光子的激发下能够起到催化作用的化学物质的统称。

光催化技术是在20世纪70年代诞生的基础纳米技术,在中国大陆我们会用光触媒这个通俗词来称呼光催化剂。典型的天然光催化剂就是我们常见的叶绿素,在植物的光合作用中促进空气中的二氧化碳和水合成为氧气和碳水化合物。总的来说纳米光触媒技术是一种纳米仿生技术,用于环境净化,自清洁材料,先进新能源,癌症医疗,高效率抗菌等多个前沿领域。

目前光催化反应已经在废水处理这一领域逐渐成效。光催化氧化具有很强的氧化能力,在环境污染治

理等方面显示出了巨大的应用潜力,是近年来国内外的一个热点研究领域。由于TiO2半导体光催化具有生物降解所无可比拟的速度快、无选择性、降解完全等优点,又在价廉、无毒、可以长期使用等方面明显优于

传统的化学氧化方法,在环境污染治理方面具有广阔的应用前景。另外最新研究成果显示将TIO2

光催化分子负于磁性,可有效的进行分离回收和再生循环使用。因此,可磁分离的技术的研究成果更为TIO 2 光催剂的应用进展画上了光辉的一笔。

作为高新技术纳米材料。纳米TiO2的制备方法主要分为气相法和液相法,前者包括氢氧火焰水解法、气相氧化法、钛酸盐气相水解法和气相分解法等,后者则包括溶胶一凝胶法、微乳法、水解法、水热合成法

和一步合成法等。尽管气相法制备的TiO2粉体粒度小、纯度高、分散性好,但工艺复杂、成本高且对设备和原料的要求较高。相比而言,液相法制备TiO2的工艺简单、成本低廉、设备投资小,已成为国内研究纳米Ti O2常用的方法。现主要列举有关制备TiO2 光催化剂的研究进展。

1.光催化剂

光催化是在光的辐照下使催化剂周围的氧和水转化成极具活性的氧自由基,氧化能力极强,几乎可分解所有对人体或环境有害的有机物质。可用作光催化剂化合物,大多是具有半导体性质的,如Ti02、ZnO、WO3以及CdS、ZnS等。TiO2是最常用的光催化剂,因为他的光化学稳定性好,无毒且与人体相容性好[1]。

1.1.光催化反应的发现

1972年Fujishima等[7]报道了在可持续发生水的氧化还原反应,并产生氢气,这个特性引起了环保领域科研工作者的极大兴趣,从此开创了半导体光催化技术的新纪元。TiOz因光催化活性高、氧化能力强、无毒、化学稳定性好、价廉等优点而最受重视。在提高半导体催化活性方面,金属或金属氧化物与半导体复合组成的光催化剂发展得非常迅速,制备和开发纳米二氧化钛成为国内外科技界研究的热点。

1.2.Ti02光催化剂作用原理

当Ti02吸收光子能量后,其价带上的一个电子跃迁到导带;原价带保留一个空缺,称为空穴,带正电荷。跃迁电子和电空穴都及不稳定,可供给周围介质,使其还原或氧化。因为Ti02的带隙宽约为3.2eV,必须是紫外线的能量(波长380nm)才能激发。产生的电子-空穴对迁移至Ti02表面,分别进行还原(电子)、氧化(空穴)反应.

2.Ti02纳米光催化剂的应用领域

2.1. Ti02纳米光催化剂薄膜对人工品状体表面修饰作用

复杂性白内障,如葡萄膜炎性、糖尿病性、外伤性及先天性白内障,因术后炎症反应明显,可导致晶状体前膜、瞳孔后粘连及后发性白内障等并发症的发生。因此减轻炎症反应、减少人工晶状体前膜及后发性白内障的形成成为人工晶状体修饰方面的研究目标。光催化是近20年来最活跃的化学研究领域之一,纳米TiO:光催化剂具有化学性质稳定、生物相容性良好及受光激发后产生氧化还原反应等特点,可以有效的杀伤病毒、细菌、肿瘤细胞等有机物。本实验模拟人工晶状体表面修饰的方法对玻璃薄片表面进行TiO:修饰,

在实验条件下观察纳米TiO:光催化剂薄膜受光激发后对牛晶状体上皮细胞(Lens epithelium

cells,LEC)的杀伤作用,为寻求一种具有动态、持续、安全抑制LEC、炎症细胞增生,又具备杀伤细菌功能的人工晶状体表面修饰材料提供理论依据[1]。

2.2.含氯酚废水的处理

目前含氯漂白技术在我国依然是一种重要的纸浆漂白技术,由于漂白废水携带大量有机氯化物等毒性物质(如氯酚等),对水体产生了严重污染。因此,针对如何去除此类毒性物质的研究越来越受到广大科学工作者的关注,光催化降解就是其中的方法之一.大多数研究者将重点放在催化剂的改性及配伍方面,也有部分研究者开始考虑利用其他能场的协同效应来强化光催化降解(如利用微波辅助光催化降解氯酚,利用放射性物质6 0Co-r源辐照降解4-

氯酚等)。超声波作为一种重要的能场,其协同光催化降解氯酚物质的研究并不多,因此需进一步探索和研究超声波协同光催化降解氯酚废水的过程[2-3]。

2.3.纳米TiO2增强MQ硅树脂硅橡胶性能

硅橡胶具有优异的耐高低温、耐候、耐臭氧、抗电弧、电气绝缘性、耐化学品、高透气性及生理惰性等优点,因而在航空、宇航、电气电子、化工仪表、汽车、机械等工业以及医疗卫生、日常生活的各个领域得到了广泛的应用川。其中加成型硅橡胶由于硫化过程不产生副产物,收缩率极小且强度高,在高温下的密封性及抗返还性比缩合型好,而越来越得到人们的重视。

未增强的硅橡胶力学性能很差,因此龙江省石油化学研究院;东北林业大学的宁志强、徐晓沐、郊明伟等人通过试验得到如下结论:

1)

MQ硅树脂增强的硅橡胶中,加人少量纳米二氧化钦改性后,能够改善硅橡胶的力学性能

,其硬度和断裂伸长变化不大,而拉伸强度和抗撕强度提高;

2)

MQ硅树脂增强的硅橡胶中,加人少量纳米二氧化钦改性后,硅橡胶耐热性提高;

3)

MQ硅树脂增强的硅橡胶中,加人少量纳米二氧化钦改性后,硅橡胶的溶胀比降低,凝胶质量分数和交联密度增加[4]。

2.4.杀菌方面的应用

随着生活水平的提高,人们对工作和生活环境的卫生日益重视。一般杀虫剂能使细胞失去活性,但细菌被杀死后,可释放出致热和有毒的组分如内毒素,因此各种环保型的抗菌功能材料应运而生,并获得了迅速发展。利用纳米Ti02光催化产生的光生电子与光生空穴与催化剂表面吸附的H2O或OH形成具有强氧化性的活性经基或超氧离子,与细菌细胞或细菌内组分进行生化反应,彻底杀死细

菌,同时还能降解由细菌释放出的有毒复合物,防止内毒素引起二次污染。利用纳米Ti0

相继制成

2

了抗菌陶瓷、抗菌塑料、抗菌涂料、抗菌自洁玻璃、抗菌不锈钢和抗菌纤维等制品。另外,纳米

Ti02在中央空调的杀菌、杀菌涂料等方面,都能实现抗菌、抗霉和净化空气等功能[11]o C.Hu等人通过对AgI/Ti02复合的光催化剂的杀菌性能进行了研究,在可见光照射下,该催化剂可高效杀死大肠杆菌和葡萄球菌,而且检测表明,细菌完全分解为C的氧化物或小分子有机物。

3.纳米TiO2 光催化剂的制备现状

2.1.液相法

Ti02由于具有光催化、电学、热稳定和化学稳定等方面的优良性能,在太阳能转化、紫外光吸收、污水处理和颜料等领域具有广阔的应用前景,已经成为重要的无机功能材料。纳米Ti02的研究进一步扩大了Ti02的应用范围,纳米级Ti02的备方法已经成为材料研究的焦点之一。纳米Ti02的制备方法主要分为气相法和液相法,前者包括氢氧火焰水解法、气相氧化法、钛酸盐气相水解法和气相分解法等,后者则包括溶胶一凝胶法、微乳法、水解法、水热合成法和一步合成法等。尽管气相法制备的Ti02粉体粒度小、纯度高、分散性好,但工艺复杂、成本高且对设备和原料的要求较高。相比而言,液相法制备Ti02的工艺简单、成本低廉、设备投资小,已成为国内研究纳米Ti02常用的方法[5]。

2.2.气相法

气相法主要包括化学气相沉积法、溅射法、钛醇盐气相分解法、蒸发一凝聚法等,20 06年8月广东吉必时科技实业有限公司公布的一气相法纳米二氧化钛的制备工艺[10],其细节是:一种气相法纳米二氧化钛的制备工艺,该工艺将四氯化钛经过汽化后与反应气体混合,充分混合的四氯化

钛和反应气体通过燃烧喷嘴输入反应室,在反应室中利用反应气体燃烧生成的高温和水分进行高温水解缩合反应。燃烧喷嘴采用双层通道结构,外层为燃烧气体通道,内层为四氯化钛和反应气体通道,这种设计结构可以防止燃烧喷嘴的火焰回流以及为反应提供充分的热量,同时防止粒子在反应室内壁的沉积。反应生成的二氧化钛粒子经过聚集、分离、脱酸和浮选等工序最后获得纳米二氧化钛粉体。这种工业有工艺连续化程度高,非常适宜工业化生产,生产的纳米二氧化钛粒子具有活性高、分散性好、粒径分布均匀等优点。

另外还有很多的其他方法。目前制备纳米TiO2的方法非常多,而且各有其优缺点,现有的制备方法大多存在原料价格高、工艺设备复杂、生产成本居高不下、活性较低,以及在液相体系应用过程中难于回收等一系列问题。由此可推知纳米二氧化钛制备的发展趋势:(1)光催化材料正在从零维纳米材料向一维纤维、二维薄膜,以及以各种材料为载体的方向发展;(2)材料成分由单一的二氧化钛向多组分的复合材料方向发展;(3)从利用紫外灯等人工光源向利用太阳CI光自然光源方向发展。因此,随着纳米材料体系和各种超结构体系研究的开展和深入,纳米Ti02超细粒子的制备技术将会得到日益改进。4.Ti02光催化剂反应器的研究

4.1 光源的选择

4.1.1纯下几的催化光源

由下飞光催化机理可知,光催化的进行首先需要能量等于或大于半导体禁带宽度的光线照射,这样才能激发价带上的电子跃迁至导带,在价带上产生相应的空穴。用作光催化的主要有2种晶型:锐钦矿型和金红石型,其中锐钦矿型的催化活性较高。锐钦矿型的带隙为3.Zev,光催化所需人射光最大波长为387.srun,所以用纯纳米下伍为光催化剂,需要外加紫外光源照射。一般使用的光源是紫外灯,包括黑光灯(主波长为365nln),普通低压汞灯(主波长为254nlu),杀菌灯(主波长为254run,属于低压汞灯的1种)等。杨庆等人用纯下仇降解甲醛时,对比了杀菌灯与黑光灯的降解情况,发现主波长为254lun的杀菌灯降解率明显高于主波长是365zun

的黑光灯,约提高了19.0%。因为紫外光波长越短,其产生的光子能量越高,则激发催化剂的光量子效率也越高,从而有利于光生电子一空穴对产率的提高,推动了光催化降解反应。由此可知,在进行纯叭q降解时,选择波长较短的紫外灯源如杀菌灯,节q催化活性

会更佳。.

4.1.2 改性下仇的催化光源

为了充分利用太阳能,改变传统紫外照射催化的状况,各国学者通过对纳米下q改性,扩大吸收波长范围,使催化反应在可见光下就能有效进行。因此,使用的光源开始有所改变,如高压汞灯(主波长为619nln左右),氮灯(主波长为姗

nln左右)等。目鹏飞圈等人使用掺铁下仇进行光催化降解时,在氮灯照射下,掺杂对催化剂降解率的提高作用比汞灯更明显,这是因为氮灯滤去了大部分紫外光,主要波长是大于闷田nm

的可见光,渗铁之后催化剂的光响应范围拓展到可见光区,所以掺Fe的下几催化剂在可见光区有较高的催化活性。李晓红〔l’]等人作下q/51飞纳米粒子气相光催化降解甲苯的研究实验时,选用的是高压汞灯作催化光源。可见,当涉及改性下仇的催化降解研究时,

应选用氨灯等主波长位于可见光区的光源。而各种掺杂物质有其特定的最佳光响应区间,故应选择主波长相对应的光源为宜。

4.2 反应装置的设计

研制高效的光催化反应器,充分利用光催化剂的催化活性,提高光催化降解效率,对于下场催化降解气相污染物的研究具有重要意义。在光催化反应器的设计中[ls],必须解决的问题是气固的良好接触(传质)与降低气阻间的矛盾,并尽可能提高光能利用率。设计光催化反应器,首先要确定反应器内部的光化学反应、传质、传热等过程。光化学反应器模型与传统反应器模型间的差别在于需进行辐射能量衡算以确定反应器内辐射能量分布,影响反应器内辐射能量分布的主要因素包括:①反应器几何形状;②反应器光学厚度;③光源与反应器间的相互位置;④辐射波长;⑤反应体系中多相存在的影响;⑥反应器的混合特征。众多专家学者在实验室模拟反应器的研究中,设计的反应装置在光催化降解实验中取得令人满意的效果,为光催化反应器的深人化研究有重大指导作用。

4.2.1普通箱式间歇式光催化反应系统

杨庆等人利用下几多孔性薄膜光催化降解低浓度甲醛,该系统主要由密闭箱、光催化反应模件和分析检测系统3部分组成,如图1所示。密闭箱的材质是铝合金,总容积1矽,光催化反应模件的截面是矩形,横截面积为汉刀。矛,模件的中央安装有紫外灯(主波长乃4nm

的nw杀菌灯),紫外灯两侧等距离处设有可固定催化剂载体的支撑槽(每个支撑槽内均装填1张印目镀膜4次的丝网),紫外灯的中轴线到丝网表面的垂直距离是3.scm,在光催化反应模件出口处装有轴向引流风扇,引导反应气体通过催化剂的表面。分析检测系统为甲醛检测仪,用于测定反应系统内的甲醛浓度。该系统结构较简单,操作性较好,催化剂能充分发挥其活性,甲醛降解率可达86.8%,但其材质铝合金的吸附性较强,会对甲醛降

解率的检测带来一定误差,再者缺少配气系统,对系统的温度湿度等参数缺乏监控,其

间歇式系统无法实现连续性气体循环的状态,因此实际应用价值不高,需进一步完

善。

1一密闭箱;2一光催化反应模件;

3一不锈钢丝网负载的光催化剂;

4一轴向引流风扇;

5一紫外灯;6一辅助风扇;

7一支架;8一进样口;9一甲醛检测仪

图间歇式循环光催化系统

4.2.2 配气控温湿的光催化反应系统

张彭义等人采用的气相光催化实验装置由配气系统、光催化反应器和检测分析系统3部分组成,如图2所示。配气系统(自制)用于提供恒定流速的甲苯气体,通过针形阀和

调节恒温槽的温度来控制甲苯的浓度和湿度。光催化反应器为圆柱状不锈钢管,内壁经过抛光处理,总长530二,内径麟nun,壁厚3nun

,有效体积1.料L,外有冷却水套筒,光源(巧W,低压汞灯或黑光灯;使用主波长为254run 的低压汞灯)置于反应器中央。炭黑改性下q光催化剂负载在铝片或不锈钢网上,载体长宽为闷40二 x201nnn

,采用溶胶一凝胶法经过6次涂覆与高温热处理制备,卷绕后置于反应器的内壁(如不特别说明,所用催化剂均负载在铝片上)。检测分析系统主要由气相色谱仪(扭巧8如D/月。)、六通阀、湿度计等组成,用于测定反应器人口和出口甲苯的浓度以及湿度等。此反应系统整体配置相对周全,配气的提供与温度、湿度等参数的测控都纳人系统之内,能更

全面地分析光催化反应的各影响因素,数据的准确性和稳定性较佳。

1一空气发生装置;

2一水;3一甲苯;

4一恒温槽

5一混合管;

6一光催化反应器;7--皂膜流量计

图气相光催化装置

4.2.3 套管是栅式的光催化反应系统

梁世强的反应器内套管安装紫外光管,内、外套管中间是栅式多层的毛伍/ACF催化剂,每层催化剂由不锈钢丝网承载隔开,每层之间有一定的间隔空间,保证催化剂与紫外光充分接触。气体通过气流分布器轴向穿透催化剂层。反应器外套内衬锡箔。以加强光反射和隔绝催化剂与有机材料的接触。反应器内径为125mm,长220

Inln,紫外光管乃4。,20w。此反应系统形状构造特别,轴式的光源和栅式多层的催化剂设计,能充分利用紫外光,极大地增大了催化剂与紫外光接触面积,进一步提高催化反应的效率。但此反应器缺少配气系统,对温度湿度等参数也缺乏监控,对催化反应的影响分析不够全面。

1一玻璃管;

2一萦外灯管;

3一锡箱;4一光分布层;

5一气流分布器;

6一钢丝网;7一催化剂层图光反应器结构4.2.4 模拟房间的全回风自循环光催化反应系统

姜坪等人的下伍光催化材料降解模拟空调房间甲醛气体的实验装置如图4所示,空调房间的尺寸为0.gmxlmx2,璐m,下乌光催化滤网的迎风速度为1.6口“8,为全回风循环系统,通风量为。.1%矽/s。将肠飞光催化材料置于风道中的空气过滤器上,同时将紫外

灯也放人风道内。紫外灯每开305后关闭,测试模拟房间内的甲醛浓度,重复测试9次。此系统有别于前面所介绍的密闭间歇系统,采用的全回风自循环的模拟房间使反应条件更接近实际,能更真实地反映催化反应在实际应用的间题,使实验的数据更具有应用价值。

1一萦外灯管;

2一纳米叭飞玻璃纤维;

3一表冷器;

4一风机图

模拟空调房间实验装置

以上催化反应系统各具特色,也各有利弊。今后的反应器研究应在现阶段的探求成果上进一步完善,力求设计出充分利用光源和提高催化剂与气体、光线的接触面积,参数监控完备,更具有实际应用价值的高效反应器。

5.光催化剂性能的提高

3.1.减少Ti02的晶体尺寸

Ti02晶粒尺寸大小对光生载流子的复合率有很大影响,当半导体纳米颗粒为1~10n m时,存在着显著的量子尺寸效应。孙凤玉等[6]研究了纳米Ti02的制备条件与其晶粒尺寸和相构的关系,探讨了Ti02纳米尺寸效应对其光催化活性的影响,发现当晶粒尺寸小于1 6nm时,二氧化钛半导体具有明显的尺寸量子效应,尺寸量子效应对提高Ti02光催化降解苯化活性起到了极为重要的作用。

3.2.掺杂过渡离子和金属离子

由于过渡金属元素存在多化合价,在Ti02中掺杂少量的过渡金属离子,可在催化剂晶格中引入缺陷位置或改变晶体结晶度,从而影响光生电子与空穴的复合时间,提高Ti 02的光催化活性;其次由于多种过渡金属离子具有比Ti02更宽的吸收范围,可更有效地利用太阳能。Choi等[7],

以氧化CHCl3和CCI4为反应模型,研究了21种溶解金属离子对量子化Ti02的掺杂效果,结

果表明在0.5%金属离子掺杂的Ti02中以Fe3+效果最佳:过低,光生电子一空穴不能有效分离(浅势阱数量不足);过高,增大电子与空穴的复合几率,有可能使掺杂离子在Ti02中达到饱和而产生新相,减少Ti02的有效表面积,从而低光催化的效率。

3.3.掺杂非金属离子

掺杂非金属离子如氮掺杂[7]是近年来研究的热点,吴遵义等用氮、铂共掺杂制备二氧化钛,用溶胶一凝胶法制备了氮掺杂纳米Ti02,并用光分解沉淀法在N-

Ti02表面负载上金属Pt,形成了铂氮共掺杂纳米Ti02,通过X射线衍射、光电子谱、紫外一可见吸收、扫描电镜和光电流测试对其进行了表征,结果表明:Pt和N共掺杂对Ti02形貌的影响不大,但其吸收边带较纳米Ti02红移20nm,电极在可见光区的光电流为纳米Ti0

电极的4倍。Dambar B列的实验中,在二氧化钛中掺杂了Ag、C和S,

2

使Ti02在太阳光下效果也不错,金属离子和非金属离子起了协同作用,另外半导体的复合可提高系统电荷分离的效果,延长光生载流子的寿命,扩展其光谱响应的范围,从而提高光催化效率[7]。

3.4.表面光敏化

表面光敏化是通过化学或物理吸附把具有光活性的化合物(多为有机光敏材料)吸附到催化剂表面。这些物质在可见光的照射下,电子被激发后注入到半导体的导带上,从而加宽了Ti02的吸收波长(可长达600nm的近红外区),有效扩展了Ti02光催化剂在可见光区的光谱响应。已见报道的敏化剂包括一些贵金属化复合化合物,如Ru及Pd、Pt、Rh 、Au的氯化物,及各种有机染料包括叶绿酸、联吡啶钌、曙红、酞菁、紫菜碱、玫瑰红等[8]。光敏化使利用太阳光降解污染物成为可能,同时提高了光催化效率,敏化染料分子的性质是电子生成和注入的关键因素。作为光敏剂的染料一般应具备以下条件:(1)对太阳要有较强的吸收能力;(2)能有效地被Ti02捕获并牢固吸附在半导体上,以实现可见光激发;(3)激发态能级与Ti02导带能级的催相匹配且激发态能级应高于Ti02导带能级,以保证电子的注入;(4)敏化材料本身要有一定的稳定性。

6.前景展望

TiO2以其无可比拟的光催化性能,引起了国内外材料、环境、化学、物理等学科科学家的广泛关注,Ti02光催化剂的可见光化研究,将为人类充分利用太阳能,改善人类生活环境迈出重要的一步。经过世界各国科学家的共同努力,T i02可见光化研究虽然已经取得了一定的进展,对TiO2的各种改性方法Ti02、或多或少都提高了太阳能的利用率。但从目前的研凝究成果看,可见光催化或能量转换效率还普遍偏低,实现完因此可见光Ti02光催化剂的研制仍将是今后的研究热点。我国钛资源储量众多,居世界之首,如果能够利用丰富的钛资源,生产出可见光催化剂,不仅对我国的经济发展有促进作用,而且可以改善我们的生存环境。

现在纳米TiO2光催化剂的制备方法普遍存在成本高、过程难以控制、所得产品为颗粒状不利于使用及回收等缺点,很难满足人们对高质量TiO2光催化剂的实际应用的要求。因此,迫切需要研究新的制备纳米TiO:光催化剂的制备方法,使之既可与基体附着牢固,又不影响其催化活性。今后的研究还应在催化剂的固定化、提高催化剂活性、抑制催化剂失活、新的制备方法等方面进行。

[参考文献]

[1].黄仲涛耿建铭,工业催化 —第二版P137[M].北京:化学工业出版社,2006.8

[2]. 单玫翁景宁.Ti02纳米光催化剂薄膜对人工品状体表面修饰作用及其意义.万方数据. [J]2008-6-28

[2]. 胡俊手建龙程荣…… 1-辐照-03氧化联合作用下4一氯酚的降解[J].巾国科学:B辑,2005.35(6)520[3].王萍王芳……超声波协同光催化处理含氯酚废水[J].中国造纸学报.2008-2-23

[4]. 宁志强徐晓沐邸明伟.纳米二氧化钛对MQ硅树脂增强硅橡胶性能的影响[J].中国化学报.2008-2-30

[5]. 向芸,杨世源,梁晓峰,等.液相合成纳米TiQ的进[J]硅酸盐通报,2006,25(3):96

[6]. 孙奉玉,吴呜,李文钊,等.二氧化钛的尺寸与光活性的关系 [J].催化学报,1998,19(3):229

[7]. 于艳辉,哈日巴拉,徐传友,等.纳米二氧化钛光催化剂研究进展 [J].材料导报,2008-5:第22卷

[8]. 杨华明,史蓉蓉,张科.纳米二氧化钛光催化剂改性研究进展[J].化工新型材料,2005,33(6):57

[9]. 孙晓君,蔡伟民,井立强,等.二氧化钛半导体光催化技术研究进展[J].哈尔滨工业大学学报,2001,33(4)[10].曹沛森,许璞,王玉宝,等.纳米Ti02光催化剂的改性及应用研究进展[J] .微纳电子技术报,200803

啪啪啪https://www.360docs.net/doc/ba4884421.html,/ Jz5dSLAn59d3

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

二氧化钛光催化剂的制备研究

实验题目:二氧化钛光催化剂的制备研究 实验仪器及药品:钛酸正四丁脂(分析纯),无水乙醇(分析纯),冰醋酸(分 析纯),盐酸(分析纯),蒸馏水。恒温磁力搅拌器,搅拌子,烧杯(100 mL),恒压漏斗(50 mL),量筒(10 mL, 50 mL)。恒温箱,马啡炉。1g/l亚甲基蓝标准溶液、蒸馏水、烧杯(100ml)、紫外光分度仪、紫外灯 实验原理:溶胶(Sol)是具有液体特征的胶体体系,分散的粒~1000nm之间。凝 胶(Gel)是具有固体特征的胶体体系,被分散的物质形成连续的网状骨架,骨架空子是固体或者大分子,分散的粒子大小在1隙中充有液体或气体,凝胶中分散相的含量很低,一般在1%~3%之间。简单的讲,溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。 溶剂化:M(H2O)nz+=M(H2O)n-1(OH)(z-1)+H+ 水解反应:M(OR)n+xH2O=M(OH)x(OR)n-x+xROH------M(OH)n 缩聚反应: 失水缩聚:-M-O H+HO-M-=-M-O-M-+H2O 失醇缩聚:-M-OR+HO-M-=-M-O-M-+ROH 钛酸四丁脂在酸性条件下,水解产物为含钛离子溶胶 含钛离子溶液中钛离子通常与其它离子相互作用形成复杂的网状基团,最后形成稳定凝胶实验步骤:(一)、二氧化钛的制备 1、室温下量取22ml无水乙醇,加入到洗净吹干的烧杯中,放入转子后用保鲜膜密封。室温下量取17mL钛酸丁酯,打开自理搅拌器。将酞酸丁酯缓慢滴入到22mL无水乙醇中,边加入边搅拌。滴加完毕后用保鲜膜密封,用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A。 2、将0.3 mL冰醋酸,到另35mL无水乙醇中,滴入浓硝酸约3-4d,调节pH值,使pH=2-3,得到溶液B。 3、室温水浴下,在剧烈搅拌下将已移入恒压漏斗中的溶液B缓慢滴入溶液A中,滴加速度控制在大约2d/s.滴加完毕后得浅黄色溶液,继续搅拌大约半小时后,缓慢逐滴滴加去离子水,控制1d/min左右。逐滴滴加直至出现凝胶。 4、静置凝胶2h以上,将凝胶放入恒温箱在160℃下烘干4h,得到细小颗粒物后研磨至白色粉末。将白色粉末在500℃下煅烧2-3h得到白色TiO2粉体3.8048g。 (二)、二氧化钛产物的检测

二氧化钛后处理及设备

二氧化钛后处理及设备 (一)二氧化钛的制浆、分散、湿磨和分级 氯化法氧化工序的半成品粒度已经很细,不需要进行前粉碎。硫酸法经回转窑煅烧后的产品首先要经过磨细才能充分发挥湿磨机的作用。国内几家大的硫酸法钛白粉厂前粉碎基本上都是采用雷蒙磨来实现的(见表1)。 表1 雷蒙磨的具体设备情况 公司名称型号来源 核工业部华原公司雷蒙磨R5M 从德国进口 攀渝钛业雷蒙磨R5M — 裕兴钛白粉厂雷蒙磨R5M — 河南漯河4R、5R雷蒙磨国产 国产的雷蒙磨在质量和使用寿命上远远赶不上进口雷蒙磨,其使用10年以上仍然完好。配备有自动控制的DCS控制系统,以提高研磨效率。 磨细的物料通常由螺旋计量器加到制浆罐中。制浆用脱盐水作稀释剂,进行充分搅拌,固相浓度(质量)25%-30%。制浆的同时加人分散剂,调整pH值至9-12可达到最佳分散效果。此时要求体积电阻率不低于20000Ω·cm,若有可能可用黏度计检测,到黏度最低时为最好,以便湿磨效果充分发挥。 分散剂的种类很多,通常分为有机分散剂、无机分散剂。 有机分散剂主要是烷醇胺类和多元醇(即常用的有三乙醇胺)、二异丙醇胺、山梨糖醇、甘露糖醇等;无机分散剂主要是六偏磷酸钠、焦磷酸钠、碳酸钠、碳酸二氢铵、偏硅酸钠等。通常使用六偏磷酸钠和偏硅酸钠最多。六偏磷酸钠对微细分散体中的固体粒子有很强的分散作用,因为它是一种直链的多磷酸盐玻璃体,其中n为20-100能与分散介质中钙、镁、亚铁等金属离子生成可溶性的配位化合物,起到遮蔽多价阳离子,防止这些带正电荷的离子与带负电荷的二氧化钛产生电中和而凝聚在一起,其分子结构式如下。 氯化法钛白浆料pH值为2. 3左右,呈酸性。大多数工厂都采用偏硅酸钠作分散剂调整pH值达到9-11,以达到最佳分散效果。作分散剂的偏硅酸钠又是包硅膜的一部分,在定量加人后,尚未达到最佳pH值时,可以加人离子膜碱液协助调整pH值到达终点。 近几年,国内金红石型钛白粉产品的产量和产能扩大,进入市场后的信息反馈使生产厂家逐渐认识到,分散单元在后处理中是非常重要的工序,分散的好坏直接影响到湿磨后浆料分级的效果,特别是影响包膜的质量。分散不好,再好的包膜配方也不能生产出满足用户要求和使用性能优良的产品,所以分散的作用应该引起人们充分重视。 分散操作要非常重视以下几种影响分散的因素:①前工序产出的二氧化钛粒度和形态;②制浆的水质要好,选用去离子水,体积电阻率不低于20000Ω·cm;③浆液的pH值是控制分散好坏的重要条件,根据后处理的情况,可以通过小型试验确定最佳pH值(通常为9-11);④分散剂的选择和用量,也可以通过工业实践确认,通常用量不超过粉料量的1%;⑤浆液的浓度要合适,通常浆液中固体物料为600-1200g/L;⑥分散罐的力学性能如机械搅拌的强度等。 湿磨是后处理中一道重要的工序,不仅硫酸法需要,氯化法也同样需要,国外大型氯化法工厂湿磨的环节往往是一点不能忽视的。湿磨与水选法比较,为获得粒度细而均匀的浆料,在相同的条件下湿磨生产能力是水选法的1. 5-2. 0倍。 湿磨的作用就是进一步磨碎在上道工序产生的聚集粒子、附聚粒子和絮凝粒子。因其粒子间的结合力非常弱,很容易通过机械研磨的方式把它们打开,在分散剂的作用下,可防止它们再聚凝在一块。这样可使一些较粗大的粒子经研磨达到具有应用性能的粒度范围(一)。 湿磨设备主要包括球磨机、振动磨、砂磨机。由于前道工序的进步,金红石型产品的湿磨设备主要选用砂磨机。它是用途较广泛的亚微米级的湿磨设备,就研磨细度而论仅次于胶体磨。

偶联剂改性对纳米二氧化钛光催化活性的影响杨平霍瑞亭

卿胜兰等:高三阶光学非线性CdS–SiO2复合薄膜的电化学溶胶–凝胶制备及表征? 409 ?第41卷第3期 DOI:10.7521/j.issn.0454–5648.2013.03.23 偶联剂改性对纳米二氧化钛光催化活性的影响 杨平,霍瑞亭 (天津工业大学纺织学院,天津 300387) 摘要:为了提高纳米TiO2颗粒分散性和光催化活性,用醇解法在纳米TiO2颗粒表面接枝硅烷偶联剂和钛酸酯偶联剂。通过Fourier变换红外光谱表征样品表面的官能团,同时测定接枝改性样品表面的羟基数、亲油化度和在有机介质中的分散性能及光催化活性。结果表明:部分偶联剂分子以化学键的形式接枝在纳米TiO2颗粒表面。改性后的纳米TiO2颗粒呈亲油性,表面羟基数急剧减少,亲油化度显著提高。改性纳米TiO2颗粒在有机介质中团聚现象减小,分散稳定性提高,分散后的平均粒径最小可达50nm。改性纳米TiO2颗粒在有机介质中的光催化活性得到显著提高。 关键词:纳米二氧化钛;偶联剂;光催化活性 中图分类号:O643;X7 文献标志码:A 文章编号:0454–5648(2013)03–0409–07 Influence of Coupling Agents Modification on Photocatalysis Activity of Nano-TiO2 YANG Ping,HUO Ruiting (School of Textile, Tianjin Polyester University, Tianjin 300387, China) Abstract: In order to improve the dispersion stability and photocatalysis activity of TiO2 nano-particles, silane coupling agent and titanium coupling agent groups were grafted on the surface of TiO2 nano-particles by an alcolholysis method. The surface bonding property of the TiO2 nano-particles was characterized by Fourier transform infrared spectroscopy. The hydrophobic, content of surface hydroxyl, dispersion stability in the organic solvent and photocatalysis activity of the nano-particles were determined. The results indicate that the molecular of coupling agent are bonded on the surface of TiO2 nano-particles by chemical bonds. The TiO2 nano-particles were lipophilic, the content of surface hydroxyl decreased and the lipophilic degree improved. Also, the aggregation of the modified TiO2 nano-particles with the average size of 50nm was reduced and the dispersion stability was improved, leading to the enhancement of the photocatalysis activity. Key words: nano-titanium dioxide; coupling agent; photocatalysis activity 自Fujishima等[1]发现了锐钛矿型TiO2在光照条件下,可诱导水分子电离出氢氧自由基(?OH)以来,TiO2在光催化方面的研究与应用受到广泛的关注。纳米TiO2因其具有良好的抗紫外、抗菌除臭、催化降解等性能,并且TiO2无毒,具有较好的化学稳定性且廉价易得,因此广泛应用于建筑涂料、功能纺织品、防晒化妆品、污水处理等领域[2–5]。然而,纳米TiO2颗粒比表面积大、表面能高,在液相介质中受粒子间van der Waals力的作用而发生团聚;此外,纳米TiO2具有超亲水性,其在有机相溶液中不易分散,并且分散稳定性差,这成为纳米TiO2使用过程中亟待解决的问题。 提高纳米粉体在有机相介质中的分散性的常用方法是有机表面改性法,主要有聚合物包覆法[6–7]、表面活性剂法[8–9]和偶联剂法[10–11]等,其中,使用偶联剂对粉体进行改性的方法较为普遍。偶联剂是一种由亲水的极性基团和亲油的非极性基团两部分组成的双亲化合物,其分子中的亲水基团与纳米粉体表面的羟基反应,使纳米颗粒表面亲水性转变成亲油性,从而达到改善纳米粉体与有机相液体的相容 收稿日期:2012–10–21。修订日期:2012–11–22。第一作者:杨平(1986—),男,硕士研究生。 通信作者:霍瑞亭(1964—),男,博士,教授。Received date:2012–10–21. Revised date: 2012–11–22. First author: YANG Ping (1986–), male, Master candidate. E-mail: yahoo-xp@https://www.360docs.net/doc/ba4884421.html, Correspondent author: HUO Ruiting (1964–), male, Ph.D., Professor. E-mail: huort@https://www.360docs.net/doc/ba4884421.html, 第41卷第3期2013年3月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 41,No. 3 March,2013

负载型纳米二氧化钛光催化剂的研究进展

负载型纳米二氧化钛光催化剂的研究进展 占长林,雷绍民 武汉理工大学资源与环境工程学院,湖北武汉(430070) E-mail: chl_zhan@https://www.360docs.net/doc/ba4884421.html, 摘要:TiO2光催化氧化技术是当前最有应用潜力的一种环保新技术,在废水处理、空气净化、抗菌除臭、自清洁等领域具有广阔的应用前景。负载型TiO2光催化剂的制备是实现光催化氧化技术工业化应用的关键技术之一。本文对负载型TiO2光催化剂的制备方法及负载所选用的载体类型进行了综述。 关键词:TiO2;光催化;制备;载体 1. 引言 半导体光催化氧化技术是近年来研究发展起来的一种新的污染治理技术。研究发现,利用半导体光催化法能够有效地降解甚至矿化水和空气中的各种有机污染物,例如卤代烃、硝基芳烃、酚类、有机颜料、杀虫剂、表面活性剂等;能够有效地将无机污染物转化成无毒的物质,例如可以去除废水中的有毒重金属离子,如C r6+、Ag+、Hg2+、Pb2+等[1],也可以将氰化物[2]、亚硝酸盐、硫氰酸盐[3]等转化成无毒的形式;还可以应用于抗菌、除臭、空气净化、自洁净材料以及杀死癌细胞等[4, 5]。目前,已经研究开发的半导体光催化剂有TiO2、ZnO、WO3、CdS、ZnS、SnO2、Fe3O4等。其中,TiO2具有化学稳定性好、耐腐蚀、高活性、廉价、无毒等优点,因此被广泛地用作光催化剂。 目前,TiO2光催化剂在水处理的应用中,大多是采用悬浮体系。粉末状悬浮态的TiO2颗粒在液相中与污染物接触面积大,传质效果好,因此催化效率高。但是目前的商品TiO2颗粒细小而且比重较小,在流体中不仅分离困难,难以回收,而且易发生凝聚降低活性,极大地限制了其实际应用。将TiO2固定在某种载体上,可以克服悬浮相TiO2光催化剂的缺点,解决催化剂分离回收难的问题,而且可以根据光催化反应器结构的不同来选择不同载体和固定化工艺。 2. TiO2光催化剂的固定化工艺 TiO2的负载大体上包括两种方式:一种方式是将TiO2负载到光滑平整的载体上,形成均一连续的薄膜;另一种方式是将TiO2紧紧固定到某种载体上。实际上,这两种方式在制备方法上是大同小异,只是所选择的载体有所不同。一般而言制膜技术可用于固定化的负载,但固定化的负载技术不一定适合于制膜,光催化剂的制备方法主要有以下几种。 2.1 溶胶-凝胶法(Sol-gel) 溶胶-凝胶法是以钛的无机盐类(如TiC14、Ti(SO4)2等)或钛酸酯类(如钛酸丁酯、、钛酸四异丙酯等)为原料,将其溶于低碳醇中(如乙醇、异丙醇等),然后在室温下加入到强度酸性的水溶液中(如HNO3、HCl),强烈搅拌下水解制得TiO2溶胶。然后再根据不同的载体采用不同的工艺进行涂膜,如载体为片状,用浸渍提拉法、旋涂法、喷涂等方法将TiO2溶胶涂布其上,使其在100℃或自然状态下凝固,再在一定温度下(300~700℃)烧结一定时间即得到负载型TiO2光催化剂。 张新荣等[6]以四异丙醇钛、硅酸乙酯为原料,空心玻璃微球为载体,采用溶胶—凝胶法制备可漂浮附载型复合光催化剂TiO2·SiO2/beads,该负载型复合光催化剂活性显著增强,而

二氧化钛光催化剂

Ti O2纳米颗粒的制备及表征 在关于有关Ti O2纳米颗粒的研究中,制备方法的研究是很多的,同时,采用溶胶-凝胶法合成纳米Ti O2的文献报道比较多,通常采用溶胶-凝胶法合成的前驱物为无定形结构的,经过进一步的热处理后或者水热晶化才能得到晶型产物[49]。烧结过程能促使晶型转变,但是往往引起颗粒之间的团聚和颗粒的生长[50]。一般情况下,在大于300℃温度烧结处理得 到锐钛矿型Ti O2、大于600℃的温度烧结处理得到金红石型Ti O2。Ti O2的很多种性质取决于颗粒尺寸和晶化度。优化制备条件,得到分散性良好,催化性能好的光催化剂是很有研究意义的。 实验原理 溶胶-凝胶法是从材料制备的湿化学法中发展起来的一种新方法,是以金属醇盐或无机 盐为原料,其反应过程是将金属醇盐或无机盐在有机介质中进行水解、缩聚反应,使溶液形成溶胶,继而形成凝胶。凝胶经陈化、干燥、煅烧、研磨得到粉体产品。其中由于较多研究者以醇盐为原料,故也将其称为醇盐水解法。在溶胶-凝胶法中,溶胶通常是指固体分散在 液体中形成胶体溶液,凝胶是在溶胶聚沉过程中的特定条件下,形成的一种介于固态和液态间的冻状物质,是由胶粒组成的三维空间网状结构,网络了全部或部分介质,是一种相当稠厚的物质。 本文中,钛酸四丁酯(Ti(OC4H9)4)在水中水解,并发生缩聚反应,生成含有氢氧化钛(Ti(OH)4)粒子的溶胶溶液,反应继续进行变成凝胶,反应方程式如下: 水解Ti(OC4H9)4+4 H2O →Ti (OH)4+ 4HO C4H9 (2-1) 缩聚2Ti (OH)4→[Ti (OH)3]2O+H2O (2-2) 总反应式表示为: Ti(OC4H9)4+ 2H2O→Ti O2 + 4 C4H10O (2-3) 上式表示反应物全部参加反应的情况,实际上,水解和缩聚的方式随反应条 件的变化而变化。反应过程为: (1) 水解反应:可能包含对金属离子的配位,水分子的氢可能与OR 基的氧通过氢键引起 水解。 (2) 缩聚反应:在溶液中,原钛酸和负一价的原钛酸反应,生成钛酸二聚体,此二聚体进 一步作用生成三聚体、四聚体等多钛酸。在形成多钛酸时Ti-O-Ti 键也可以在链的中部形成,这样可得到支链多钛酸,多钛酸进一步聚合形成胶态Ti O2,这就是通常所说的 Ti O2溶胶的胶凝过程[53]。 本论文选用价格较低、使用较为普遍的钛酸四丁酯(Ti(OC4H9)4)作为钛源,选用乙醇为 溶剂,乙醇在钛酸四丁酯的水解反应过程中并不直接参与水解和缩聚反应,但它作为溶剂对体系起着稀释作用,它在Ti(OC4H9)4分子与水分子周围均形成由乙醇分子组成的包覆层, 阻碍反应物分子的碰撞,并在溶胶粒子周围形成“溶剂笼”,从而阻碍了溶胶粒子的生长以及溶胶团簇间的键合,使得干燥后的干凝胶能保持疏松多孔的状态,经焙烧后所得粒子比表面积较大。此外,在制备溶胶的过程中还要加入适量的冰乙酸,冰乙酸在反应过程中可能有两种作用:一是抑制水解,二是使胶体粒子带有正电荷,阻止胶粒凝聚,从而避免干凝胶粒尺寸过大。根据上述机理分析和本实验室前人研究的基础上,确定制备Ti O2溶胶的各物料组分摩尔比为Ti(OC4H9)4:HAc:H2O:Et OH:(NH4)2CO3 =1:2:15:18:X,其中X值变化的范围是0~4,加入碳酸铵的目的是使反应过程中产生气体和微小的固体载体,但又不会对生成的Ti O2造成掺杂等影响,使颗粒分散更均匀,细小。

第二节 二氧化钛光催化影响因素

第二节TiO2光催化影响因素 目前主要针对TiO 2 进行增加表面缺陷结构、减小颗粒大小增大比表面、贵金 属表面沉积、过渡金属离子掺杂、半导体复合、表面光敏化、以及改变TiO 2 形貌和晶型等方法来提高其量子效率以及扩展其光谱响应范围。研制具有高量子产率,能被太阳光谱中的可见光激发的高效半导体光催化剂,探索适合的光催化剂负载技术,是当前解决光催化技术中难题的重点和热点。 表面缺陷结构 通过俘获载流子可以明显压制光生电子与空穴的再结合。在制备胶体和多晶光催化是和制备化学催化剂一样,一般很难制得理想的半导体晶格。在制备过程中,无论是半导体表面还是体内都会出现一些不规则结构,这种不规结构和表面电子态密切相关,可是后者在能量上不同于半导体主体能带上的。这样的电子态就会起到俘获载流子的阱的作用,从而有助于压制电子和空穴的再结合[7]。 颗粒大小与比表面积 研究表明,溶液中催化剂粒子颗粒越小,单位质量的粒子数就越多,体系的比表面积大,越有利于光催化反应在表面进行,因而反应速率和效率也越高。催化剂粒径的尺寸和比表面积的一一对应直接影响着二氧化钛光催化活性的高低。粒径越小,单位质量的粒子数目越多,比表面积也就越大。比表面积的大小是决定反应物的吸附量和活性点多少的重要因素。比表面积越大,吸附反应物的能力就越强,单位面积上的活性点也就越多,发生反应的几率也随之增大,从而提高其光催化活性。当粒子大小与第一激子的德布罗意半径大小相当,即在1-10 nm 时,量子尺寸效应就会变得明显,成为量子化粒子,导带和价带变成分立的能级,能隙变宽,生成光生电子和空穴能量更高,具有更高的氧化、还原能力,而粒径减小,可以减小电子和空穴的复合几率,提到光产率。再者,粒径尺寸的量子化使得光生电子和空穴获得更大的迁移速率,并伴随着比表面积的加大,也有利于提高光催化反应效率。 贵金属沉积的影响 电中性的并相互分开的贵金属的Fermi能级小于TiO 2 的费米(Fermi)能级, 即贵金属内部与TiO 2相应的能级上,电子密度小于TiO 2 导带的电子密度,因此 当两种材料连接在一起时,载流子重新分布,电子就会不断地从TiO 2 向贵金属

二氧化钛作为光催化剂的研究

二氧化钛光催化剂的研究进展1972 年,A.Fujishima 等首次发现在光电池中受辐射的TiO2,表面能持续发生水的氧化还原反应,这一发现揭开了光催化材料研究和应用的序幕。1976 年J.H.Carey 等报道了TiO2水浊液在近紫外光的照射下可使多氯联苯脱氯。S.N.Frank 等也于1977 年用TiO2粉末光催化降解了含CN-的溶液。由此,开始了TiO2光催化技术在环保领域的应用研究,继而引起了污水治理方面的技术革命。近十几年来,随着社会的发展和人们对环境保护的觉醒,纳米级半导体光催化材料的研究引起了国内外物理、化学、材料和环境等领域科学家的广泛关注,成为最活跃的研究领域之一。 TiO2 是一种重要的无机材料,其具有较高的折光系数和稳定的物理化学性能。以TiO2 做光催化剂的非均相光催化氧化有机物技术越来越受到人们的关注,被广泛地用来光解水、杀菌和制备太阳能敏化电池等。特别是在环境保护方面,TiO2 作为 光催化剂更是展现了广阔的应用前景。但TiO2 的禁带宽度是3.2eV,需要能量大于3.2eV 的紫外光(波长小于380nm)才能使其激发产生光生电子-空穴对,因此对可见光的响应低,导致太阳能利用率低(只利用约3~5%的紫外光部分)。同时光生电子和光生空穴的快速复合大大降低了TiO2 光催化的量子效率,直接影响到TiO2 光催化剂的催化活性。因此,提高光催化剂的量子效率和光催化活性成为光催化研究的核心内容。通过科学工

作者对二氧化钛的物质结构、制备方法、催化性能、催化机理等方面的深入系统的研究,这种快速高效、性能稳定、无毒无害的新型光催化材料在废水处理、有害气体净化、卫生保健、建筑物材料、纺织品、涂料、军事、太阳能贮存与转换以及光化学合成等领域得到了广泛应用。 1 TiO2光催化作用机理 “光催化”从字面意思看,似乎是指反应中光作为催化剂参加反应,然而事实并非如此。光子本身是一种反应物质,在反应过程中被消耗掉了,真正扮演催化剂角色的却是TiO2。因此,“光催化”反应的内涵是指在有光参与的条件下,发生在光催化剂及其表面吸附物(如H2O分子和被分解物等)之间的一种光化学反应和氧化还原过程。其具体的作用机理如下。 从结构上看,TiO2之所以在光照条件下能够进行氧化还原反应,是由于其电子结构为一个满的价带和一个空的导带。当光子能量(hν)达到或超过其带隙能时,电子就可从价带激发到导带,同时在价带产生相应的空穴,即生成电子(e-)、空穴(h+)对。通常情况下,激活态的导带电子和价带空穴会重新复合为中性体(N),产生能量,以光能(hν′)或热能的形式散失掉。 TiO2+hν→e-+h+ (1) e-+h+→N+energy(hν′

常见的钛白粉的生产工艺流程

常见的钛白粉的生产工艺流程 硫酸法锐钛型钛白粉的工艺简述: 硫酸法生产钛白粉步骤1、钛矿粉碎 将购进的钛矿砂用雷蒙机或者风扫磨等粉碎成符合工艺要求的钛矿粉,并送到储存和计量钛矿粉的料仓。 硫酸法生产钛白粉步骤2、酸解 用浓硫酸分解钛矿,制取可溶性的钛的硫酸盐。钛铁矿的主要成分为偏钛酸铁(FeTiO3),是一种弱酸弱碱盐,可以用强酸把它分解。用过量的酸就能使反应进行到底。由于这个反应是一个放热反应,最高温度可以达到250℃,因此必须采用高沸点的酸--硫酸才能适应这一反应。在酸分解的过程当中,矿粉当中的各种杂质大部分也被分解,生成相应的可溶性硫酸盐,并在浸取的时候与钛的可溶性盐一起进入溶液当中,形成黑钛液。为了除铁,用金属铁把钛液中的高价铁还原成亚铁,同时,为了避免亚铁的再一次氧化,还必须用过量的金属铁把定量的四价钛还原成三价钛。 硫酸法生产钛白粉步骤3、沉降 酸解浸取、还原以后的体系是一个复杂的体系,含有可溶性杂质和不溶性的杂质。铁、钒、铬、锰等金属的硫酸盐为可溶性的杂质,在结晶或水解、水洗的过程中除去。不溶性杂质中的大多数,如未分解的钛矿、沙粒等靠重力的作用可以自然沉降除掉。不溶性杂质中的另一部分是硅和铝的胶体化合物,以及一些早期水解了的钛,虽然数量并不大,但具有很高的动力稳定性,需要另外加沉降剂,强化沉降澄清过程。 硫酸法生产钛白粉步骤4、洗渣 经过净化沉降后的泥渣中还含有大量的可溶性与不可溶性的钛,为保证收率,要通过用板框压滤机压滤的办法回收其中的大部分可以溶解的钛元素,不溶性钛和其他的未溶解杂质作为废渣排掉。 硫酸法生产钛白粉步骤5、结晶 结晶有两种方式:冷冻结晶和真空结晶。FeSO4溶解度受溶液的温度影响很大。因此,在组成一定的钛液中,FeSO4的溶解度随温度的降低而降低,本工序的主要目的就是使钛液的温度降低。 5.1 冷冻结晶是利用制冷介质(液氨或者氟利昂或者溴化锂等)的蒸发带走热量,使冷冻盐水温度降低,通过盘管换热,从而使钛液的温度降低下来,造成FeSO4 处于过饱和状态,过饱和的部分便以含七个结晶水的FeSO4?7H2O的形式结晶析出,同时带出部分结晶水,然后将其分离除去。 5.2 根据溶液绝热蒸发的原理,利用闪蒸的方式使钛液中的水分快速绝热蒸发,吸收钛液的热

TiO2光催化剂的制备与研究概况

TiO2光催化剂的制备与研究概况 昆明理工大学 摘要:TiO2是目前最受关注的光催化剂之一,本文综述了TiO2光催化原理,制备方法及其作为光催化剂在污水处理、空气净化和抗菌等方面的应用。 关键词:TiO2催化剂制备应用 Preparation and research of TiO2 as photocatalyst Hui fumei (Kunming University of Science and Technology) Abstract:Ti02 is one of the most promising photocatalysts at present.The mechanism and the synthesis of the photocatalytsts,and its application in water treatment,air purification and anti—bacteria were reviewed. Keywords :TiO2 photocatalysts preparation application 引言TiO2是一种非常优秀的催化剂,以其活性高、热稳定性好、持续时间长、价格便宜所以倍受人们重视。广泛应用在传感器[1]、太阳能电池[2]、锂离子电池[3]、催化剂[4]、颜料[5]、化妆品、过滤陶瓷二氧化钛纳滤膜[6]、吸附等领域。尤其在自然环境日趋恶化、污染十分严重,水资源不断减少的今天,TiO2光催化剂的应用研究具有非常重要的意义。虽然TiO2光催化剂在光催化反应的应用已取得不少成绩。在研究和应用中却依然存在很多问题需要解决。二氧化钛光催化剂的催化活性受到各方面因素的影响:首先TiO2是宽禁带材料,仅能吸收太阳光谱的紫外光部分,通常需要用紫外光源来激发,太阳能利用效率低,这限制了其实际的应用:其次在制备和回收过程中,超细纳米粒子的过滤极为困难;第三纳米粉体在存放过程中容易团聚。都在一定程度上限制TTiO2光催化剂的广泛应用。 1 TiO2光催化原理 锐钛型TiO2,的禁带宽度为3.2 eV,在波长小于400 nm的光照射下,价带电子被激发到导带形成空穴电子对。在电场的作用下,电子与空穴发生分离,迁移到粒子表面的不同位置。热力学理论表明,分布在表面的空穴h可以将吸附在TiO2表面的H2O分子氧化成OH·自由基。OH·自由基氧化能力是水体中存在的氧化剂中最强的,能氧化大部分有机污染物及部分无机污染物,将其最终降解为CO2、H2O等无害物质,而且OH·自由基对反应物几

二氧化钛光催化剂研究进展

二氧化钛光催化剂研究进展 工业催化张春明 摘要:催化是工业生产中追求高效率、高纯度、低耗能的有效手段。纳米TIO2以光催化凭着可以利用可见光进行催化反应而受到催化领域的亲昧,就纳米TIO2光催化剂目前的研究状况展开论述,并列举了TIO2光催化剂应用领域和目前的制备方法。讨论了光催化剂的发展前景,揭示了目前光催化技术对当代化工事业的影响,并对未来的发展发表了预期的倡想。 关键词:二氧化钛光催化剂纳米材料研究进展 前言 通俗意义上讲触媒就是催化剂的意思,光触媒顾名思义就是光催化剂。催化剂是加速化学反应的化学物质,其本身并不参与反应。光催化剂就是在光子的激发下能够起到催化作用的化学物质的统称。 光催化技术是在20世纪70年代诞生的基础纳米技术,在中国大陆我们会用光触媒这个通俗词来称呼光催化剂。典型的天然光催化剂就是我们常见的叶绿素,在植物的光合作用中促进空气中的二氧化碳和水合成为氧气和碳水化合物。总的来说纳米光触媒技术是一种纳米仿生技术,用于环境净化,自清洁材料,先进新能源,癌症医疗,高效率抗菌等多个前沿领域。 目前光催化反应已经在废水处理这一领域逐渐成效。光催化氧化具有很强的氧化能力,在环境污染治 理等方面显示出了巨大的应用潜力,是近年来国内外的一个热点研究领域。由于TiO2半导体光催化具有生物降解所无可比拟的速度快、无选择性、降解完全等优点,又在价廉、无毒、可以长期使用等方面明显优于 传统的化学氧化方法,在环境污染治理方面具有广阔的应用前景。另外最新研究成果显示将TIO2 光催化分子负于磁性,可有效的进行分离回收和再生循环使用。因此,可磁分离的技术的研究成果更为TIO 2 光催剂的应用进展画上了光辉的一笔。 作为高新技术纳米材料。纳米TiO2的制备方法主要分为气相法和液相法,前者包括氢氧火焰水解法、气相氧化法、钛酸盐气相水解法和气相分解法等,后者则包括溶胶一凝胶法、微乳法、水解法、水热合成法 和一步合成法等。尽管气相法制备的TiO2粉体粒度小、纯度高、分散性好,但工艺复杂、成本高且对设备和原料的要求较高。相比而言,液相法制备TiO2的工艺简单、成本低廉、设备投资小,已成为国内研究纳米Ti O2常用的方法。现主要列举有关制备TiO2 光催化剂的研究进展。

纳米二氧化钛的制备及光催化分析

苏州科技大学 材料科技进展 化学生物与材料工程学院 材料化学专业 题目:纳米二氧化钛的制备及光催化 姓名:吕岩 学号:1020213103 指导老师:刘成宝 起止时间:5月20日——6月8日

纳米二氧化钛的制备及光催化 吕岩 (苏州科技学院,化学与生物工程材料学院,江苏,苏州,215009) 摘要:纳米二氧化钛是种重要的纳米材料,其在众多领域有着广泛的应用。本文主要介绍纳米二氧化钛的多种制备方法,包括化学气相法(化学气相沉积法、化学气相水解法等)、液相法( 溶胶凝胶法、沉淀法、水热合成法等)两大类,并分析了各种工艺的优劣。并介绍纳米二氧化钛光催化反应原理,基本方法,影响因素,及其广泛的应用。通过介绍纳米二氧化钛的制备及光催化的研究,更深刻理解其在生产生活中应用。 关键词:纳米TiO2,制备方法,光催化. The study on preparation of nanometer TiO and photocatalytic 2 Lv Yan (University of Science and Technology of Suzhou,School of Chemical and Biological Engineering Materials,Jiangsu,Suzhou,215009) Abstract: A s an important nanomaterial nanometer TiO2 has wide app lications in many fields, such as environmental production. Preparation methods of nanomaterial TiO2w ere briefly summarized, including chemical gas phase method( CVD and chem ical gas phase hydro lysis method etc. ) and liquid phase method( sol- gelmethod, precipitation method, hydrothermal synthesismethod etc. ). The advan tages and disadvanges o f everym ethod w ere analyzed. Introduce nano TiO2reaction principle, basic method, influence factors, and its wide application. Through the introduction of the preparation of nano TiO2 research, a deeper understanding of its application in the production and living. Key words: nanometer T iO2; preparation method, photocatalysis 引言: 纳米二氧化钛是一种新型的光催化无机功能材料,由于其粒径在1~ 100 nm 之间, 具有粒径小、比表面积大表面活性高、分散性好等特点, 表现出独特的物理化学性质。它具有良好的透明性,紫外线吸收性及熔点低、磁性强、热导性强、高效、无毒、成本低和不造成二次污染等优点等奇异特性;还具有良好的抗菌作用,使用过程中不会发生自身损耗,而且资源丰富,价格低廉,因此在光催化降解废水中的有机物、涂料、精细陶瓷、塑料、催化剂、及化妆品等方面应用广泛,成为新型功能材料研究的热点之一。本文将对纳米二氧化钛的制备及光催化在做一些简单介绍。 1.纳米TiO2的制备 纳米TiO2的制备方法有很多, 归纳起来主要有固相法、气相法和液相法等,

氮掺杂二氧化钛光催化剂的研究进展

林仕伟等:尖晶石型化合物的制备及光催化性能 · 535 · 第38卷第3期 氮掺杂二氧化钛光催化剂的研究进展 胡裕龙1,2,刘宏芳1,郭兴蓬1 (1. 华中科技大学化学与化工学院,武汉 430074;2. 海军工程大学理学院,武汉 430033) 摘要:纯纳米二氧化钛禁带较宽,只能在紫外光下激发。拓宽二氧化钛的光谱响应范围,实现可见光激发,是二氧化钛基光催化材料面临的主要问题。氮掺杂二氧化钛具有良好的可见光催化活性,是具有可见光响应的二氧化钛基光催化材料的典型代表,近十年来受到了广泛关注。本文综述氮掺杂二氧化钛可见光响应机理和提高光催化活性方面的研究进展,提出今后值得关注与研究的方向。 关键词:二氧化钛;氮掺杂;可见光;光催化活性;综合评述 中图分类号:O643.1 文献标志码:A 文章编号:0454–5648(2010)03–0535–07 RESEARCH PROGRESS ON NITROGEN DOPED TITANIA PHOTOCATALYST HU Yulong1,2,LIU Hongfang1,GUO Xingpeng1 (1. School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology,Wuhan 430074; 2. College of Science, Naval University of Engineering, Wuhan 430033, China) Abstract: The pristine titania nanomaterial can only be excited by ultraviolet light because of its wide band-gap. Extending the opti-cal response to the visible light spectrum is one of the most important aspects to the TiO2-based photocatalyst. Nitrogen-doped titania has high visible light photocatalytic activity, which is representative of TiO2-based photocatalyst with reactivity under visible light, and has received enormous attention from scientists and engineers in the past decade. In the current review, the recent progress in research on the origins of visible light responses and the improvement of photocatalytic activity of nitrogen-doped titania are dis-cussed in detail, and urgent issues for future research and development are proposed. Key words: titania; nitrogen doping; visible light; photocatalytic activity; review 纳米二氧化钛(TiO2)具有化学稳定、无毒及光催化活性好的特点,已在许多方面获得了应用。纯纳米TiO2的不足是禁带较宽(3.2eV),只在紫外光照射下才有光催化活性,没有可见光光催化活性,因此需要对TiO2进行改性研究,以拓宽TiO2的光谱响应范围,把吸收边红移至可见光区,使其具有可见光催化活性。在TiO2的改性研究中,掺杂TiO2的研究占有很大部分。第一代掺杂研究主要是对TiO2进行金属掺杂。虽然TiO2经大部分金属/金属氧化物或金属离子掺杂后,能够显著降低带隙能级,实现可见光激发,但也促进电子–空穴的再结合,进而降低其光催化的活性。针对金属掺杂TiO2性能的不足,第二代掺杂研究主要是对TiO2进行非金属掺杂。2001年Asahi等[1]报道N置换TiO2晶格中少量O后具有可见光活性,掀起N掺杂研究的热潮,随后又进行了B、C、S、P、Cl及F等非金属元素掺杂TiO2的研究,其中研究最为广泛的是N掺杂TiO2(N-TiO2)。本文综述N-TiO2可见光响应机理和提高光催化活性方面研究的最新进展。 1 N-TiO2可见光响应的机理 任何材料的光学响应主要由自身的电子结构决定,而纳米材料电子结构又与其化学成分、原子排列及物理尺度等紧密相关。由于纳米颗粒尺寸很小, 收稿日期:2009–05–19。修改稿收到日期:2009–08–05。 基金项目:煤燃烧国家重点实验室开放基金(FSKLCC0809)和材料化学与服役失效湖北省重点实验室开放基金(200802)资助项目。第一作者:胡裕龙(1973—),男,博士研究生。 通信作者:刘宏芳(1968—),女,博士,教授。Received date:2009–05–19. Approved date: 2009–08–05. First author: HU Yulong (1973–), male, postgraduate student for doctor degree. E-mail: huyl1217@https://www.360docs.net/doc/ba4884421.html, Correspondent author: LIU Hongfang (1968–), female, Doctor, professor. E-mail: liuhf2003@https://www.360docs.net/doc/ba4884421.html, 第38卷第3期2010年3月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 38,No. 3 March,2010

相关文档
最新文档