平头式塔机起重机平衡臂设计

平头式塔机起重机平衡臂设计
平头式塔机起重机平衡臂设计

一.问题分析

题目:平头式塔机起重机平衡臂设计

载荷确定

1.臂架自重参考同类型产品根据比例假定臂架自重3T

2.配重由任务书知配重为15.7T

3.起升机构重量为2.7T

4.风载荷按照我国《塔式起重机设计规范》(GB/T13752-92)

Pw=CwPwA

Cw为风力系数,查表Cw=1.3

Pw为计算风压,查表的Pw=250Mpa

A为迎风面积A=A1+A2

A1=w1*A11 A1=W1*A11 A2=w2*A2 取w1,w2为0.4

η=0.4 A1=HL

A1=w1*H*L=4㎡

A2=w2*H*L*η=1.6㎡

A=5.6㎡

Fw=1820N

风力除以臂架长度迎风面取100N/m,挡风面积取30N/m

5.其他水平力

回转惯性力T=0.1*Q(Q为配重)T=0.1*15.7T*g=15700N

该平衡臂机构采用格构式等三角形,上弦采用圆钢管或方管,下弦采用两个箱形截面,每个箱形截面可由两个角钢(或槽钢,钢板焊接而成)

材料选择:

该塔机功率较大配重达15.7T,故初选材料Q345B.弹性模量,210e9Mpa,泊松比0.3。钢材密度为7850kg/m3

结构分析:

手工初步计算时将该平衡臂简化为悬臂梁然后初选截面尺寸,确定臂架结构。然后根据所受载荷以及约束条件,经过强度,刚度以及稳定性计算各结构精确尺寸。最后要进行载荷校核优化结构尺寸。

有限元分析时由于平衡臂受水平方向载荷以及竖直方向上载荷而且结构为空间立体结构故简化模型应为三维模型梁结构。

约束条件:平衡臂与塔身连接,两根下肢与塔身铰接需要限制五个自由度(仅绕Z轴旋转自由度未被限制),上主肢也与主肢铰接,但考虑到他们实际连接性状上主肢塔身连接可等效为仅仅限制X轴方向上的自由度。

载荷条件:

设计计算应在最恶劣载荷条件下计算,在竖直平面内受自重及平衡自重。臂架自重通过密度及重力加速度实现平衡重自重则用均布载荷代替。水平平面受风载荷以及回转惯性力,风载荷通过均布载荷实现,挡风面所受载荷为迎风面0.3,回转惯性力通过水平横向均布载荷代替。卷筒水平力该力较小且忽略该力臂架受力仍为最恶劣受力状态简化受力模型忽略该力。二.实验过程

1.单元选择

根据平衡臂结构特征把平衡臂杆件处理成梁单元。选择beam188单元进行模拟就可以满足分析要求。下面对beam188单元进行简介:

三维梁单元beam188单元的节点位置,几何形状,坐标体系如图所示。Beam188是一种

线性;梁单元,他是建立在timoshenke分析理论基础上的。Beam188单元增强了单元截面形状定义功能,用户可以通过相关操作定义单元形状。而且还支持自定义功能。Beam188单元对单元的剪切变形也进行考虑。Beam188单元还改进了梁构件另两维的可视化特性,可以让用户清晰的看到各个部位的应力和变形。Beam188单元的keyopt(1)设置为1时增加扭曲幅度自由度,beam188单元的程序默认设置值为0,也就是认为横截面的扭曲幅度足够小到可以忽略。Beam188单元可以通过参数secdata、secoffset、sectype、secwrite、secread定义截面,截面与单元用截面ID号(SECNUM)来关联,截面号是独立的单元属性。

2.建模及设置基本属性

1)设置文件基本属性,定义单元类型beam188并分别定义上主肢,下主肢、斜腹杆及水平腹杆截面形状。弹性模量210e9Mpa,泊松比0.3,钢材密度。7850kg/m3

2)在总体笛卡尔坐标系中输入各个关键点的坐标

3)将各个关键点连接,形成平衡臂简化结构

3.划分网格

1)经分析选择单元格长度为1m比较合适。选择单元格长度为1m。总共101个单元格。2)对各个杆件进行网格划分并赋予其界面属性。

平衡臂结构如

图一:平衡臂简化图

4加载求解

1)施加边界约束,平衡臂与塔身连接,两根下肢与塔身铰接需要限制五个自由度(仅绕Z轴旋转自由度未被限制),上主肢也与主肢铰接,但考虑到他们实际连接性状上主肢与塔身连接可等效为仅仅限制X轴方向上的自由度。

2)在竖直平面内受自重及平衡重。臂架自重通过密度及重力加速度实现平衡重自重则用均布载荷代替,水平平面内受风载荷以及回转惯性力,风载荷通过均布载荷实现的,挡风面所受载荷为迎风面0.3回转惯性力通过与风载荷同向的水平横向均布载荷代替。平衡重重量通过均不载荷400000N来实现。

3)点击Main menu>solution>current LS进行求解。

5.通用后处理

1)轴力图

图二:平衡臂轴力图

2)弯矩图

图三:平衡臂弯矩

起升面内弯矩较大主要集中在与塔身连接处,最大为9983n*m. 3)剪力图

图四:平衡臂剪力图

动载剪力最大存在

4)变形图:

图五:平衡臂变形图

动载最大变形0.2cm

5)结果讨论

从图中可以看出ansys分析结果与手工技术相差较大,但最危险处出现处(剪力、应力最大处)与手工计算的地点相同。出现这种现象的原因是多方面的。

1.手工计算时简化臂架结构为悬臂梁而ansys分析时却简化为刚性桁架结构,这就不

可避免的产生了较大的误差。

2.ansys分析时所加约束与实际约束也有较大差距,同时风载荷、回转惯性力、平衡

重自重的替代与实际条件相比做了大量简化也存在较大误差。

3.对于应力,在手工计算时主要考虑臂架的稳定性计算时主要进行计算所取应力为不

失稳时的应力,而有限元分析时主要分析臂架结构的强度并未考虑整体结构的稳定性,两者计算结果存在较大系统误差。

4.手工计算时选取界截面尺寸取较大值,按照该截面进行有限元分析结果必然较小。

虽然能较好满足设计要求但造成材料的极大浪费。

四、实验总结

通过一周的课程设计,使我加强了对anasys的了解,能够熟练使用anasys软件计算、分析塔机平衡臂的稳定性.通过anasys软件的应用,可以清楚了解平衡臂最大弯矩、剪力等受力处,可以及时改善对平衡臂的设计。使之更加可靠、安全、经济。

同时,课程设计期间,同学热心的帮助,老师耐心的讲解也令我很快解决问题,提高了水平。感谢老师、同学的帮助。

枯藤老树昏鸦,小桥流水人家,古道西风瘦马。夕阳西下,断肠人在天涯。

塔式起重机基础知识汇总(整理版)

塔式起重机基础知识汇总 塔式起重机的技术性能是用各种参数表示的,其主要参数包括幅度、起重量、起重力矩、自由高度、最大高度等;其一般参数包括:各种速度、结构重量、尺寸、尾部尺寸及轨距轴距等,下面分别简述: 一、幅度: 幅度是从塔式起重机回转中心线至吊钩中心线的水平距离,通常称为回转半径式工作半径。 二、起重量 起重量是吊钩能吊起的重量,其中包括吊索、吊具及容器的重量,起重量因幅度的改变而改变,因此每台起重机都有自己本身的起重量与起重幅度的对应表,俗称工作曲线表。 起重量包括两个参数:即最大起重量及最大幅度起重量。 最大起重量由起重机的设计结构确定,主要包括其钢丝绳、吊钩、臂架、起重机构等。其吊点必须在幅度较小的位置。 最大幅度起重量除了与起重机设计结构有关,还与其倾翻力矩有关,是一个很重要的参数。 塔式起重机的起重量是随吊钩的滑轮组数不同而不同。一般两绳是单绳起重量的一倍,四绳是两绳起重量的一倍等等。可根据需要而进行变换。 为了防止塔式起重机起重超过其最大起重量,所有塔式起重机都安装有重量限制器,有的称测力环,重量限制器内装存有多个限制开关,除了限位塔机最大额定重量外,在高速起吊和中速起吊时,也可进行重量限制,高速时吊重最轻,中速时吊重中等,低速时吊重最重。. 三、起重力矩 起重量与相应幅度的乘积为起重力矩,过去的计量单位为TM,现行的计量单位为KNM,1TM等于10KNM。 额定起重力矩量是塔式起重机工作能力的最重要参数,它是防止塔机工作时重心偏移,而发生倾翻的关键参数。由于不同的幅度的起重力矩不均衡,幅度渐大,力矩渐小,因此常以各点幅度的平均力矩作为塔机的额定力矩。 塔式起重机的起重量随着幅度的增加而相应递减,因此,在各种幅度时都有额定的起重量,不同的幅度和相应的起重量连接起来,就绘制成起重机的性能曲线图,使操作人员一看明了不同幅度下的额定起重量,防止超载。 一般塔式起重机可以安装几种不同的臂长,每一种臂长的起重臂都有其特定的起重曲线,不过差别不大。 为了防止塔机工作时超力矩而发生安全事故,所有塔机都安装了力矩限位器,其工作原理是当力矩增大时,塔尖的主肢结构会发生弹性形变而触发限位开关动作,力矩

附着式塔吊附墙装置要求

附着式塔吊附墙装置 相关标签: ?附着式塔吊附墙装置 1、塔吊高度超过规定未安装附墙装置,扣10分 每台塔吊的性能、载重、受力等不同,因而附着的高度亦不同,一般塔吊的使用说明书都对附墙高度有明确规定,必须按规定严格执行。 2、附墙装置安全不符合说明书要求,扣3-7分 附墙装置的安装应注意以下六个方面: (1)附墙的形式有以下两种 附墙杆与建筑物的夹角以45度至60度为宜,至于采用哪种方式,要根据塔吊和建筑物的结构而定。 (2)附墙杆与建筑物连接必须牢固,保证起重作业中塔身不产生相对运动,在建筑物上打孔与附墙杆联接时,孔径应与联接螺栓的直径相称。分段拼接的各附着杆、各联接螺栓、销子必须安装齐全,各联接件的固定要符合要求。 (3)塔机的垂直度偏差,自由高度时,为3‰,安装附墙后为1‰。 (4)当塔吊未超过允许的自由高度时,而地基的承受力弱场合或风力较大的地段施工,为避免塔机在弯距作用下,基础产生不均匀沉陷,以及其他意外事故,必须提前安装附着装置。(5)因附墙杆只能受拉、受压,而不能受弯,故其长度应能调整,一般调整范围为200mm 为宜。 (6)塔机附墙的安装,必须在靠近柜架柱或现浇柱处。 3、附墙杆超过说明书规定长度无设计计算书,扣10分 附墙杆超过说明书规定长度后将有以下变化: (1)附墙杆所受的弯矩、扭矩将增大,需重新设计计算; (2)附着的形式也许会因受力的增大而改变; (3)建筑物的附着点因受力的增大,其强度也需重新设计计算。 4、内爬塔中固定不符合说明书要求,扣10分 内爬式塔吊一般安装在建筑物的内部,每隔1-2层楼需爬升一次,适用于框架结构的高层建筑施工。但施工完毕后,折装较为复杂,故现场极少使用这种固定方式。 内爬式塔吊的固定要根据建筑物内部结构来设计,不同的结构其固定千差万别,故必须严格按说明书的要求进行固定。 最好是与建筑物成45°!!

塔式起重机平衡臂的作用、功能及检验要求分析

塔式起重机平衡臂的作用、功能及检验要求分析 笔者从事起重机械制造和建筑工地及市政工程工地建筑起重机械检验检测工作多年,特别是从事建筑起重机械检验检测工作,深刻感受到责任重大,检测塔式起重机平衡臂部位,应特别引起高度重视。本文着重研究分析了塔式起重机平衡臂理论方面的问题和检验检测时应特别要注意的问题,供同行们参考借鉴,共同重视塔式起重机平衡臂的检测问题。 1塔式起重机的分类 1.1按标准分 按标准分类可分为快速安装式和非快速安装式。 (1)快速安装式:可以整体拖运、自身架设,起重力矩和起升高度都不大;(2)非快速安装式:虽无整体拖运、自身架设的优点,但起重力矩、起升、臂架长度却可以设计得较大。 1.2按变幅方式分 按变幅方式分为小车水平变幅和动臂变幅。 1.3按回转部位分 按回转部位分为下回转和上回转。 1.4按使用方式分

按使用方式分为有轨行、固定、附着内爬式。 1.5按工作级别分 按工作级别分为检修、建筑用、造船、港口装卸、 混凝土浇灌。 2塔式起重机的主要性能指标 塔式起重机的主要参数为标准臂长时最大幅度处的起重力矩,被称为公称起重力矩,在JG/T 5037中,还同时规定基本参数起升高度、最大起重量、轨距、工作速度、自重等。其主要性能中,特别注意的是塔式起重机的起重量特性,它与桥门式等其他起重机相比区别很大。 2.1起重量特性曲线确定的原则 为了确保安全,还要考虑一定的安全储备,即最大安全工作载荷的限制,此值不超过额定起重量的110%。这要由起重量限制器来控制,起重量限制器的控制方式不同,也影响起重量特性。 塔式起重机起重量特性曲线的确定要求,由下列因素控制;(1)整机抗倾翻确定性;(2)起重力矩限制器控制的设定值。 2.2起重量特性曲线相关的具体因素 (1)变幅小车、吊钩滑轮组、钢丝绳的自重q。自重q使起重力矩随幅度增大而减少,此机械自重q越大,起重力矩减少越多。塔式起重机不同幅度处的

塔式起重机传动机构设计

1.塔式起重机概述 在建筑安装工程中,能同时完成重物的垂直升降和水平移动的起重机很多,其中应用最广泛的是塔式起重机。塔式起重机具有其他起重机械难以相比的优点,如塔身高,起重臂长,有效作业面广,能同时进行起升,回转行走,变幅等动作,生产效率高;采用电力操纵,动作平衡,安全可靠;结构相对较为简单,运转可靠,保养维修业较为容易。因此,他是起重机已成为现代工业与民用建筑不可缺少的主要施工机械。 塔式起重机工作高度大,一般自升式塔机工作高度可在100m左右,特殊用途的可在300m以上。因此塔机的起升机构必须要有较大的容绳量。塔机起升起升机构的卷筒都采用多层缠绕的方式。塔机分为上回转塔机(本次设计题目)和下回转塔机两大类。其中前者的承载力要高于后者,在许多的施工现场我们所见到的就是上回转式上顶升加节接高的塔机。按能否移动又分为:行走式和固定式。固定式塔机塔身固定不转,安装在整块混凝土基础上,或装设在条形式X形混凝土基础上。在房屋的施工中一般采用的是固定式的。 塔机机械通常结构庞大,机构复杂。塔机的工作机构有五种:起升机构(本次设计题目)、变幅机构、小车牵引机构、回转机构和大车走行机构(行走式的塔机)。 2.专业课程设计的题目 上回转自升式塔式起重机起身机构设计 型号:QTZ200 起重力矩(Kn·m):2000 最大幅度/起重载荷(m/KN):40/35 最小幅度/起重载荷(m/KN):10/200 起升高度(m):162(附着式)55(固定式) 工作速度(m/min):6~80(2绳)3~40(4绳) 起重臂长(m):40 平衡臂长(m):20 3.塔式起重机起升机构设计 起重机起升机构用来实现物品的上升与下降。起升机构是任何起重机必须具备的,使物品获得升降运动的基本组成。起升机构工作的好坏将直接影响整台起重机的工作性能。塔式起重机起升机构具有一般起重机起升机构的组成特点。起升机构应具备起升高度大、制动平稳、慢速就位、就位准确、起升速度可调等特点。 起升机构的组成和工作原理 起身机构主要由驱动装置(原动机)、传动装置(减速器)、卷筒、滑轮组、取

QTZ40塔式起重机塔身优化设计

设计题目:QTZ40塔式起重机总体及臂架优化设计设计人: 摘要 本次设计在参照同类塔式起重机基础上,对QTZ40型塔式起重机进行总体设计及吊臂的设计。在吊臂设计工程中,采用了有限元法对其进行分析计算,采用了ANSYS10.0软件进行分析。 按照整机主要性能参数,确定各机构类型及钢结构型式,主要确定了吊臂的结构参数,并按照吊臂端部加载、跨中加载及根部加载三种工况分析。通过对吊臂作适当的简化,应用ANSYS10.0软件建立吊臂有限元模型,施加各工况载荷,进行求解,进而可得各工况下各节点受力情况及各单元所受轴向力、轴向应力大小及各工况下吊臂的变形挠度大小,并能演示吊臂加载过程的动画,清晰的展现了各工况下吊臂的受力性能。 通过修改模型参数,对不同模型进行分析比较。由比较不同模型在相同工况下的受力状况及刚度状况,综合分析强度和刚度条件,可得出受力最为合理的一组模型参数,通过对此组参数下模型进行强度及刚度校核,进而获得吊臂的最终参数结果。 关键词:QTZ40型塔式起重机吊臂有限元分析 ANSYS10.0

设计题目:QTZ40塔式起重机总体及臂架优化设计设计人: Abstract Refers to the similar tower crane, this design is composed by the system design and the lazy arm design to the QTZ40 tower crane. In the lazy arm design progress, it has carried Finite Element method on the analysis computation, and used ANSYS10.0 software. According to the entire machine main performance parameter, various organizations type and the steel structure pattern has been determined. The design parameter of operating modes which are composed of nose increase, the cross center increase and the root increase. Through the suitable simplification to the lazy arm, the lazy arm finite element model is establishment applied ANSYS10.0 software, and then exerted various operating modes load, carried on the solution. Then ANSYS10.0 software can calculate various pitch points stress situation, various units receive the axial stress size, and the lazy arm distortion size under various operating modes. Also it can demonstrate the animation in the process of the lazy arm increase. It has clearly displayed the lazy arm stress performance under various operating modes. Through the revision for model parameter, the analysis comparison is carried on the different model. Because the stress condition and rigidity condition of different model is compared under the same operating mode, and the generalized analysis intensity and the rigidity condition is carried on, a most reasonable model parameter can be obtained, though the intensity and the rigidity examination regarding this model, then the final parameter result of the lazy arm can be obtained. Key words: QTZ40 tower crane Lazy arm Finite element analysis ANSYS10.0

建筑力学-塔吊分析

建筑力学作业 平面一般力系实际工程的应用——塔吊分析 1.塔吊介绍 塔吊,即塔式起重机。机身 很高,像塔,有长臂,轨道上 有小车,可在轨道上移动,工 作面很大,主要用于建筑工地 等处。塔吊一般用于建筑施工、 货物搬运、部分事故现场处理 等场合,主要作为材料、货物 等的高空运输或质量较大物体 的运送的工具。 塔吊一般由外套架、回转轴承、塔冒、平衡臂、平衡臂拉杆、起重臂(吊臂)、起重臂拉杆、电源、支架、变幅小车,起重吊钩、驾驶室等几部分组成。 塔吊一般用于建筑施工、货物搬运、部分事故现场处理等场合,主要作为材料、货物等的高空运输或质量较大物体的运送的工具。

如下图,塔吊可简化为所示主体结构模型 塔吊主体结构模型 塔吊结构图 根据塔吊的组成、用处及发展历程,我们可以对塔吊的结构有一个更加深入的了解。如下图1-2塔吊的主体结构模型图所示,塔吊的各个部分均已经标出在图上。

2.塔吊静力学分析 对塔吊整体为研究对象. 要保证机身满载是平衡而不向右倾倒,则必须 ∑M B=0, W2(a+b)-F A b-W1-W max l max=0; 限制条件F A≥0. 再考虑空载时的情形,这时W=0. 要保证机身空载时平衡而不向左倾倒,则必须满足平衡方程: ∑M A=0, W2 a+F B b-W1(b+e)=0; 限制条件F B≥0.

1)对塔吊的平衡臂,由平衡条件得: ∑F x =0, F 1cos θ=F x ; ∑F y =0, F 1sin θ+F y =W 2+m 1g ; ∑M=0, (F 1sin θ-W 2)l 1=m 1gl 2; 2)如左图塔吊吊臂,由平衡条件得 ∑Fx=0, F x =F 2cos α+F 3cos β; ∑F y =0, F 2sin α+F 2sin β+F `y =m 2g+W ; ∑M=0, F 2sin αl 3+F 3sin βl 4=m 2gl 5+Wl . 3)如右图塔吊吊帽与拉杆的受力情况,则由共点力的平衡条件可得平衡方程如下: ∑Fx=0, F 1cos α= F 2cos β+ F 3cos γ ∑F y =0, F 1sin α+F 2sin β+ F 3sin γ=F L 1

塔式起重机抗倾覆计算及基础设计

塔式起重机抗倾覆计算 及基础设计 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

塔式起重机抗倾覆计算及基础设计 一、基础的设置:根据塔式起重机说明书基础设置要求的技术参数及对地基的要求 选用基础设计图,基础尺寸采用××,基础砼标号为C35(7天和28天期龄各一组), 要有砼检测报告,基础表面砼平整度要求≤1/1000,塔式起重机预埋螺栓材料选用40Cr 钢,承重板高出基础砼面5~8㎜左右,要有排水设施。 二、塔式起重机抗倾覆计算 ①、塔式起重机的地基为天然地基,必须稳妥可靠,在表面上平整夯实,夯实后的 基础的承压能力不小于200kPa,基础的总重量不得小于80T,砼标号不得小于 C35,砼的捣 制应密实,塔式起重机采用预埋螺栓固定式。 ②、参数信息:塔吊型号:QTZ5510,塔吊起升高度H:,塔身宽度B:,自重F K :453kN,基础承台厚度h:,最大起重荷载Q:60kN,基础承台宽度b:,混凝土强度等级:C35。 ③、塔式起重机在安装附着前,处于非工作状况时为最不利工况,按此工况进行设计计算。塔式起重机受力分析图如下: 根据《塔式起重机说明书》,作用在塔吊底座荷载标准值为:M K =1654kn·m, F K = 530KN,Fv K =,砼基础重量G K = 835KN ④、塔式起重机抗倾覆稳定性验算: 为防止塔机倾覆需满足下列条件: 式中e----- 偏心距,即地基反力的合力至基础中心的距离; M K ------ 相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的力矩值; Fv K ------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的水平荷载; F K -------塔机作用于基础顶面的竖向荷载标准值; h ---------基础的高度(h=); G K ----------基础自重; b---------矩形基础底面的短边长度。(b= 将上述塔式起重机各项数值M K 、Fv K 、F K 、h、G K 、b代入式①得: e =< b/3= 偏心距满足要求,抗倾覆满足要求。 三、塔式起重机地基承载力验算:根据岩土工程详细勘察报告资料,1#塔吊基础底板处承载力特征值为372Kpa。取塔式起重机基础底土层的承载力标准值为372Kpa,根据《TCT5613塔式起重机使用说明书》,采用塔式起重机基础:长×

塔式起重机的分类和型号

塔式起重机的分类和型号 (2011-11-09 11:22:49) 塔吊是一种塔身直立,起重臂和平衡臂铰接在塔帽下面,能够作360°回转的起重机,具有起升高度大、变幅半径长、回转角度广、工作效率高、操作方便、运转可靠等特点。由于塔吊高耸直立、结构复杂、装拆转移频繁以及技术要求高,也给安全施工生产带来一定困难,易发生倾翻倒塌的事故,塔吊的安全安装拆卸、运行使用尤为重要。 一、塔机的分类 1、按回转支承位置分类,塔式起重机可以分为上回转塔机和下回转塔机 上回转塔机的起重臂、平衡臂、塔帽、起升机构、回转机构、变幅机构、电控系统、驾驶室、平衡重都在回转支承以上。它的自身不平衡力矩和起重力矩,就作用在塔身顶部,所以塔身以受弯为主,受压力为辅。正是依靠塔身,把力矩和压力从上面一直传到底部。上回转塔机的突出优点是可以随时加节升高。这是我国目前用得最多的塔机。但是,由于它的塔身要承受很大的弯矩,故容易晃动,自升加节和超力矩倒塔的危险性比较大。 下回转塔式起重机除承载能力大之外,还具有以下特点:由于平衡重放在塔身下部的平台上。所以整机重心较低,安全性高,由于大部分机构均安装在塔身下部平台上,使维护工作方便,减少了高空作业。但由于平台较低,为使起重机回转方便,必须安装在离开建筑物有一定安全距离的位置处。 2、按臂架结构方式分类,分为小车变幅式塔机、动臂变幅式塔机和折臂变幅塔机 小车变幅式塔机的起重臂固定在水平位置上,变幅是通过起重臂上的运行小车来实现的,它能充分利用幅度,起重小车可以开到靠近塔身的地方,变幅迅速,但不能调整仰角。 动臂变幅式塔机的吊钩滑轮组的定滑轮固定在吊臂头部,起重机变幅由改变起重臂的仰角来实现,这种塔式起重机可以充分发挥起重高度。 折臂变幅式塔机的基本特点是小车变幅式,同时吸收了动臂变幅式的某些优点。它的吊臂由前后两段(前段吊臂永远保持水平状态,后段可以俯仰摆动)组成,也配有起重小车,构造上与小车变幅式的吊臂、小车相同。 3、按安装方式不同,可分为能进行折叠运输,自行整体架设的快速安装塔式起重机和非快速安装式 4、按底架是否移动分为固定式塔机和行走式塔机

塔式起重机常见的八种安全隐患(正式版)

文件编号:TP-AR-L3383 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 塔式起重机常见的八种 安全隐患(正式版)

塔式起重机常见的八种安全隐患(正 式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 塔式起重机是一种可以实现重物全方位运送的起 重机械,作业高度一般几十米到几百米,作业半径可 达数十米。目前建筑工地广泛使用,主要用于房屋建 筑施工中物料的垂直和水平输送及建筑构件的安装。 根据最近几年国家质检总局统计的事故数字来 看,起重机械的事故发生率和发生事故导致人员伤亡 的绝对数字一直高居八大类特种设备榜首。面对塔式 起重机数量的不断增加,分布区域广而杂给监管带来 了不便,且塔机使用方为图快图多图省,对塔式的安 全装置有意或无意识地予以忽视,给日常生产带来了

诸多的安全隐患。下面笔者对建筑工地塔式起重机使用过程中常见的八种安全隐患分析如下: 1、力矩限制器的失效 力矩限制器的失效主要有弓型架弹性变形的失效和力矩限制器电气触动开关的失效。 弓型架弹性的变形失效引起塔机超载而弓型架变形接触不到该电气触动开关,以至超载不报警。形式有弓型架用铁丝绑牢和弓型架永久性变形。 力矩限制器触动开关的失效为电器元件的损坏,由于无防雨罩壳的保护,长时间暴露于外,引起锈蚀、老化失效。 另外一种失效形式为调节螺杆反装,即调节螺杆螺帽方向与电气触动开关相反方向安装。 2、起重量限制器的失效 有的施工人员是将起重量限制器传感器销轴与吊

平头塔吊尖头塔吊区别

【学员问题】平头与尖头塔吊有什么区别? 【解答】平头塔吊一般用在建筑工地或桥梁工地,通过大臂回转和小车远近来控制吊钩的位置,在转弯半径能都能起吊物体,但是起吊能力和小车的位置有关,距离塔身越近,起吊能力越大,本身的起吊能力用吨*米表示。所以到大臂的远端,起吊能力就很差了,有点是起吊范围比较大。 尖头塔吊的一般用在港口和船上,这种塔吊能回转,但只有在尖头起仰的角度不同的长度内起吊,起吊半径区域比较小,但是起吊能力基本和位置没关系,起吊能力基本固定。 平头塔吊的优点和缺点: 与带塔头、拉杆的水平臂小车变幅式塔吊相比,平头塔吊臂的受力状况、连接方式明显不同。立塔后无论是工作和非工作状态,平头塔吊臂和平衡臂上下主弦杆受力状态不变,上弦杆主要受拉,下弦杆主要受压,没有交变应力的影响,其力学模型单一、简明。 正是基于这一点,平头塔吊臂的连接设计才更简便,非常便于臂节之间的快速拆装,现代的平头塔吊臂大多采用正三角形截面的空间桁架结构主要也是考虑这一受力状况。上弦杆靠一个销轴连接承受拉力,下弦杆则靠结合处的端面承受压力,这样下弦杆的连结方式非常简便,仅靠两个定位锁销并配锁止螺栓。安装时先将上面的销轴连好,然后下落臂节,两锁销自动就位,穿上螺栓即可,臂节间主要靠上弦杆的一个大销轴连接,既省力又省时,这是平头塔吊的特色之一。 近年来,塔吊厂家纷纷涉足平头塔吊领域,使平头塔吊成为一种新潮。那么,平头塔吊到底有哪些优点? 随着平头塔吊应用领域的不断加大,人们逐渐发现了平头塔吊的许多优点,这是其它类型塔吊所无法替代的。 1)大大降低拆装塔吊对所需起重设备起重能力的要求。 平头塔吊由于取消了塔头,其单元质量小、安装高度低,最大安装高度可比同级的其它塔吊降低10m以上。普通塔吊安装吊臂时必须在地面上先将臂架、拉杆等全部连接好再进行整体吊装,此时对起重设备的要求最高,要有很大的起重量和起升高度。因为臂根销轴连好后还要将大臂抬高许多才能将吊臂拉杆连好,安装吊臂拉杆时容易出现安全事故,而平头塔安装则彻底被改善。平头塔的吊臂节通常有4m、5m或10m节。以50m长的吊臂为例,其最大单元质量只相当于吊臂总量的1/5左右,臂架在空中逐节拆装和整体吊装相比对起重设备的要求大大降低,不仅节省拆装费用,而且更加安全、快捷。 2)适合于群塔作业。 由于平头塔取消了塔头,当群塔交叉作业时每两台交叉的高度差通常可降到3m,而带塔头的塔吊要10m以上。平头塔群交叉作业总体高度可大大降低,则具有总体安装时间少、对安装设备的要求低、减小每台塔吊的压重及采用较小的塔身截面和底架等优点。 3)适合对高度有特殊要求的场合施工。 平头塔没有塔头,吊钩的有效高度大为提高,空间利用率高,因此非常适合于对高度有特殊要求的场合,如机场的改扩建,机场旁的施工,隧道内、厂房内的施工,高压线下的施工等,而传统带塔头的塔吊往往很难胜任。 4)适合于对幅度变化有要求的施工场合。 平头塔吊臂节特殊的连接方式及没有塔头、拉杆,使其吊臂的逐节拆装非常简易、安全,施工过程中如需要改变吊臂的长度(加长或缩短)时都不用拆下整个吊臂,而在空中就可以完成臂节的加、减。这种需要改变幅度的情形在电厂(站)的双曲线冷却塔施工中经常会遇到,当冷却塔建好后塔吊

QTZ40附着式塔机安装拆卸工艺

QTZ40附着式塔机安装拆卸工艺 QTZ40塔机系上回转附着式、附着高度最大为100米,固定独立高度为32米、最大臂长为45米,起重力矩为40T?M。 塔机基础施工 基础尺寸为4150×4150×1200,砼标号为C30,总重量不小于51吨,地面基础承压能力不低于0.2Mpa。 地脚螺栓为Φ36×4的螺栓、强度等级不低于 6.6级,其预紧力矩必须达到60Kg·m。 砼基础强度必须达到90%方可进行塔机总装,并做好接地,接地电阻不大于4Ω。 b.塔式起重机安装 1.将四只基础脚与预埋脚螺栓相连,校正水平拧紧螺栓。吊装二节标准节并用螺栓与下部结构连接。 将爬升架套入塔身,注意套架上有油缸的一面要对准塔身有踏步的一面。 在地面上,将上、下支座以及回转支承、回转机构等用螺栓朕成一体后,吊装到塔身和套架上并用螺栓锁紧。 吊装回转塔身及塔顶 吊装平衡臂,平衡臂拉杆,然后吊起一块2吨平衡重放最后第二块处。 吊装司机室 吊装起重臂,起重臂拉杆。 吊装平衡重,穿绕有关绳索系统。 检查整机的机械部分结构连接部分,电气和液压部分等无误后开始顶井工作。 将起重臂旋转至引入塔身标准节的方向。(起重臂位于爬升架上外伸推架的飞上方)回转机构制动器处于制动状态。 在地面上先将四个引进滚轮固定在塔身标准节下部横腹杆的四个角上,然后吊起标准节并安放在外伸框架上。吊起1个标准节调整小车的位置,使得塔吊的上部重心落在顶升油缸梁的位置上(37米臂长,小车停在约定俗成19米幅度处;42米臂长,小车停在约定俗成14米幅度处,实际操作中,观察到爬升架上四周8

个导轮基本上与塔身标准节主弦杆脱开时,即为理想位置,然后,将爬升架与下支座的4个M42的连接螺栓。) 将顶升横梁顶在塔身的踏步上,开动液压系统使活塞杆全部出,稍缩活塞杆,使爬升横梁顶在塔身踏步上,再次全部伸出油缸,此时塔身上方恰好能有装人个标准节的空间利用引进滚轮在外伸框架滚动,把标准节与塔身的正上方。对准标准节的螺栓连接孔缩回油缸至上下标准节接触时用1个M42高强度螺栓将上下塔身标准节连接牢靠,螺栓预紧力为70吨,预紧力矩为502KV.M,卸下引进滚轮,调整油缸的伸缩长度,将下支与塔身连接牢固即完成一节标准节的加节工作若连续加几节标准节,则可按照以上步骤连续几次即可。 顶工作全部完成后,即可将下架到塔身底部并加以固定或拆除,以降低整个塔机的重心和减少迎风面积。 塔机加节完成后,应旋转臂架至有同的角度,检查塔身各接头处高强度螺栓的拧紧问题(哪一根塔身主弦杆位于平衡臂正下方时,就把此弦杆从下至上的所有螺栓拧紧)。 c.调整各种安全装置 拆卸:塔机的拆卸方面与安装相同只是工作程序与安装相反,即先装后拆,后装先拆,拆卸时风力小于4级。 d.塔吊安全事项 起重机必须在符合设计图纸规定基础上工作。 起重机的操作人员必须经过培训,了解机械化的构造和使用,必须熟知机械化的保养和安全操作规程,非安装、维护人员末经许可不得攀登塔机。 起重机正常工作气温为-20度~40度,风速低于6级。其静载试验吊重为额定载荷的125%,动载试验吊重采用额定载荷的110%。 在夜间工作时,除塔机本身备用照明,施工现场必须备有充分的照明设备。 司机室内禁止存放润滑油、油棉纱及其它易燃、易爆物品,冬季用电炉取暖时更要注意防火。 起重机必须有良好的电气接地措施,防止雷击,遇有雷雨,严禁在底架附近走动(接地电阻不大于4Ω)。 司机必须在得到指挥信号后,方可进行操作,操作前必须鸣笛,操作时要精神集中。 司机必须严格按起重机性能表中规定的幅度和起重量进行工作,不许超载使用。

塔式起重机的静力学分析

塔式起重机结构的静力学分析 摘要:强度和振动特性是设计塔式起重机的金属结构的重要指标。文章从有限元的基础理论出发,利用ANSYS软件,对塔式起重机进行静力学分析,获得了其应力应变结果,比较了三种典型的工况,指出了极限吊重情况下静态极限强度的位置,并分析了塔式起重机的振动频率和振型,为研究塔式起重机的其他动力响应提供了依据。

关键词:塔式起重机静力学分析有限元 ANSYS 引言:塔式起重机(tower crane)简称塔机,亦称塔吊,起源于西欧。动臂装在高耸塔身上部的旋转起重机。作业空间大,主要用于房屋建筑施工中物料的垂直和水平输送及建筑构件的安装。由金属结构、工作机构和电气系统三部分组成。当起重臂架绕塔式起重机的回转部分作360°回转、吊重载荷沿起重臂架运行并升降时以及由于驱动控制系统电机抖动等原因,都会使塔式起重机引起振动。在此情况下,吊重荷载等动荷载对塔式起重机结构所引起的内力和变形,要比同样大小的静荷载所引起的大,有时甚至大得多。由于塔式起重机结构及构件承受的动荷载一般都很大,而且加载次数较为频繁,更容易产生疲劳破坏。作为大型设备,塔机的工作特点是根据建筑需要将物品在很大空间内升降和搬运,属于危 险作业。目前,在建筑施工中,由塔机引起的人员伤亡和设备事故屡禁不止,重大事故发生率居高不下。 塔机的强度和振动频率是影响塔机寿命和稳定性的重要因素,因此对塔式起重机进行静力学和振动的研究是十分要必要的。本文利用有限元分析软件ANSYS对塔式起重机QTZ630进行建模,分析了三种加载在塔式起重机上的 典型的工况,得出了塔式起重机在三种工况下的静力学应力和应变云图,找出塔式起重机各个工况下的危险位置,为其塔机的改进提供参考。提取出塔机的前5阶振动模态,为其他动力学响应提供研究依据。 1.塔式起重机的结构及性能参数 1.1塔式起重机的结构 塔式起重机主要由机械部分、金属结构和电气三大部分组成。 机械部分主要是指起升机构、运行机构、变幅机构、回转机构、行走机构、架设机构等等,这些机构根据工作需要或有或无,但起升机构是必不可少的。 金属结构是构成起重机械的躯体,是安装各机构和支托它们全部重量的主体部分。金属结构主要由门架、塔身、其中避、塔顶与塔顶撑架、平衡臂、转台等组成,其中门架是起重机的基础,所有物机和压重均装于其上。门架由两个侧架和一个长方形平台组成。塔身结构也成为塔架,是塔式起重机结构的主题,主要指自底架以上的垂直塔桅部分,它支撑着塔式起重机上部结构的全部重量,并将其转至底架和台车,进而分布给轨道基础。 电气是起重机械动作的能源,各机构都是单独驱动的。 在结构的力学分析中,主要分析塔身、塔臂和塔顶的杆件受力。 1.2性能参数 起重能力:Rmax =50 m ,Q =1.2 t R=2~15.44 m ,Q=5 t 起升速度: 100/80/50/40/5 m/min 回转速度: 0.6/0.4 r/min 变幅速度: 45/16 m/min 2.创建塔式起重机的有限元模型 塔机的金属结构主要包括塔顶、起重臂架、平衡臂、变幅小车、吊钩以及上下转台等组成.根据塔机设计规范的规定,建立塔机结构几何模型过程中,忽略结构阻尼,不考虑非线性关系和过渡圆角.为了有限元建模更加合理,应考虑:模型能全面准确地反映塔机结构特点;模型受力应与塔机在工作时外载荷作用

塔式起重机设计毕业设计

塔式起重机设计毕业设计 目录 第一章关于塔式起重机…………………………………… 1.1 设备特点与安全装置 (1) 1.2 塔式起重机的安全使用与管理…………………(1-4) 1.3 塔式起重机的检验要点 (5) 第二章塔机小车吊臂设计………………………………… 2.1吊臂的主要结构形式及主要寸 (5) 2.2 吊臂的主要材料 (5) 2.3 吊臂的机构形式 (5) 2.4 吊臂的尺寸…………………………………………(5-6) 2.5 吊点位置的确定 (6) 2.6 吊臂运输单元划分…………………………………(6-7) 2.7 吊臂计算简图、载荷、内力计算及在和组合 (7) 2.8 吊臂自重小车及变幅机构引起的内力………… (7-8) 2.9 吊重引起的内力……………………………………(8-10) 2.9.1 水平反力HA(HB)产生的偏心弯矩…………… (10-11) 2.9.2 风载引起的内力…………………………… (11-12) 2.9.3 回转水平惯性力……………………………… (12-13) 2.9.4 起升绳牵引力产生的轴心压力 (13) 2.9.5 小车轮压产生下弦局部弯矩 (14) 第三章吊臂截面的选择计算………………………

3.0 吊臂的几何特征尺寸计算…………………… (14-19)

3.1 整体稳定性的计算……………………………(19-23) 3.2 单肢(上、下弦杆)验算………………………(23-26) 3.3 缀条的计算……………………………………(26-28) 3.4 整体强度计算…………………………………(28-29) 参考文献……………………………………………………… 致谢……………………………………………………………

塔吊防碰撞方案大臂碰塔身

塔吊防碰撞方案大 臂碰塔身

目录 一、工程概况 (2) 二、塔吊布置 (2) 三、多塔作业防碰撞措施 (2) 四、吊装范围内的其它防护 (6) 五、塔吊指挥要求 (6) 六、塔吊应急措施 (8)

一、工程概况 世茂香槟湖苑2.2期工程,包括59#、60#、68#~71#共计6栋住宅楼。工程建设地点:东至规划东经120度路,西至老藻江河,北至河海东路,南至北唐河,太湖东路将地块分成南北两块。住宅楼都属于框剪结构。59#、60#、68#~71#地下室3.3米,顶层2.95米,其余均为2.9米。71#地下室4.5米,1层4.8米,顶层2.95米,其余均为2.9米。 本工程由常州世茂房地产有限公司投资建设,浙江大学建筑设计研究院设计,江苏苏州地质工程勘察院地质勘察,江苏安厦工程项目管理有限公司监理,中建七局(上海)有限公司组织施工;由向东担任项目经理,王杭立担任技术负责人。 二、塔吊布置及选择 根据图纸设计,考虑塔吊的利用效率,扩大吊装范围以及施工方便,整个施工区域需设置5台塔吊(四台QTZ63一台QTZ80),其中QTZ80塔吊设置在71#楼北侧。具体布置如附图: 三、多塔作业防碰撞措施 本工程为满足施工需求,共设置了5台塔吊,塔吊之间交叉作业,属

多塔施工,为保证施工安全,制定如下措施: 1、塔吊质量要求必须符合国家相关要求,塔吊备案、检测经过。 2、塔吊司机必须持证上岗,且经过三级安全教育,项目部安全组安全施工交底到位。 3、塔机指挥必须固定人员,一对一指挥,熟悉多塔作业要求,发布指令要求简洁明了肯定,塔机指挥员要眼看四方,时刻注意塔机的运转。 4、根据本工程塔机安拆施工方案要求,塔机安装后,在水平面上相互交叉作业,为防止塔吊吊臂发生碰撞事故,塔吊的安装高度上应严格按照施工方案规定互相错开。根据建筑施工安全标准,多台塔吊作业中固定式塔吊:低位塔臂端部与高位塔身之间的距离不得小于2m,高位塔钩与低位塔垂直距离不得小于2m。根据下文的编号,现场布置塔吊时,多台塔吊同时作业,应周密考虑附着前后塔吊的高度差和锚固的时间差,保证主体结构施工全过程保持各塔吊间的高度差。如遇特殊情况或与方案有冲突,应适时调整。 5、防碰撞规定及措施 1)、多塔作业必须遵循以下原则:底塔让高塔——后塔让先塔——动塔让静塔——轻塔让重塔——客塔让主塔 2)、各组塔吊配备对讲机一对,对讲机经统一确定频率后锁频,使用人员无权调改频率,并要专机专用,不得转借。 3)、多塔作业前的检查:作业前,塔吊司机要对机械和电器进行检查,试运转。塔机临时停止作业,必须将重物卸下,吊钩升起。塔机作业完毕,要卸载,停放在可自由回转的位置,同是塔机各控制系统置于零

自升式塔式起重机顶升过程详解

自升式塔式起重机顶升过程详解 自升式塔式起重机是指依靠塔机自身的、专门的外套架及顶升装置,增、减塔身标准节(即附着式塔式起重机)。自升式塔式起重机顶升部件见图一,(其中8和9部件见图二) 图一 序号部件名称序号部件名称 1 塔身(标准节) 6 塔顶 2 顶升外套架7 平衡臂 3 转体部分8 顶升油缸 4 驾驶室9 顶升横梁 5 起重臂

图二 自升式塔式起重机的顶升是通过液压顶升油缸8来完成自升的;与顶升油缸8上铰点相连的上部结构(部件2、3、4、5、6、7)可随油缸8的伸出(收缩),做上移(或下移)动作,实现塔机顶升(降落)过程。具体操作如下:(一)、首先在塔机进行安装、顶升操作时,必须由具有受过塔机操作特殊培训的,并持有特种设备操作上岗证的人员进行操作,严禁无证操作。操作人员在进行操作前,必须掌握塔机使用说明书中相关内容,对设备性能进行全面了解。 (二)、先通过塔机吊起一节标准节,并放置于塔机外套架上的标准节引进装置上,如图三所示。 (三)、再用起重臂吊起一节标准节,通过变幅小车前后移动,使塔机起重臂5与平衡臂7保持平衡,如图四所示;锁紧回转,此时拧开转体部分3下端与塔身标准节1的紧固螺栓,等待顶升操作。

图三 图四 (四)、派专人协调并扶正顶升横梁9,使顶升横梁9两端的活动插销插入塔身标准节的爬升爪圆孔内,并确保两端活动插销均伸出塔身标准节的爬升爪圆孔并且,伸出端不少于5mm,如图二和图五所示,在确认顶升横梁9,安装到位后,方可开动液压顶升油缸8,进行顶升作业,顶升过程中操作人员要密切关注个零部件的状态,遇有疑问时,要及时停止顶升作业。

图五 (五)、当油缸达到活动行程后,需要进行换步,此时需要用外套架的活动插销,将已经顶起的部分(部件部件2、3、4、5、6、7)销住,然后缩回顶升横梁9的活动插销,收进油缸8。重复在操作第(四)步,完成第二步、或三步顶升后,使油缸的顶升高度足以满足标准节引入,此时,引入第(二)步中预放置的标准节,并拧紧标准节螺栓,至此完成一次顶升加节。 (六)、若要进行多节顶升,则重复第(二)步以后的步骤,逐一完成。 最后拧紧塔身标准节螺栓,关掉油缸8的操作电源。 (七)操作完成。

平头式塔机起重机平衡臂设计(仅供参考)

一.问题分析 题目:平头式塔机起重机平衡臂设计 载荷确定 1.臂架自重参考同类型产品根据比例假定臂架自重3T 2.配重由任务书知配重为15.7T 3.起升机构重量为2.7T 4.风载荷按照我国《塔式起重机设计规范》(GB/T13752-92) Pw=CwPwA Cw为风力系数,查表Cw=1.3 Pw为计算风压,查表的Pw=250Mpa A为迎风面积A=A1+A2 A1=w1*A11 A1=W1*A11 A2=w2*A2 取w1,w2为0.4 η=0.4 A1=HL A1=w1*H*L=4㎡ A2=w2*H*L*η=1.6㎡ A=5.6㎡ Fw=1820N 风力除以臂架长度迎风面取100N/m,挡风面积取30N/m 5.其他水平力 回转惯性力T=0.1*Q(Q为配重)T=0.1*15.7T*g=15700N 该平衡臂机构采用格构式等三角形,上弦采用圆钢管或方管,下弦采用两个箱形截面,每个箱形截面可由两个角钢(或槽钢,钢板焊接而成) 材料选择: 该塔机功率较大配重达15.7T,故初选材料Q345B.弹性模量,210e9Mpa,泊松比0.3。钢材密度为7850kg/m3 结构分析: 手工初步计算时将该平衡臂简化为悬臂梁然后初选截面尺寸,确定臂架结构。然后根据所受载荷以及约束条件,经过强度,刚度以及稳定性计算各结构精确尺寸。最后要进行载荷校核优化结构尺寸。 有限元分析时由于平衡臂受水平方向载荷以及竖直方向上载荷而且结构为空间立体结构故简化模型应为三维模型梁结构。 约束条件:平衡臂与塔身连接,两根下肢与塔身铰接需要限制五个自由度(仅绕Z轴旋转自由度未被限制),上主肢也与主肢铰接,但考虑到他们实际连接性状上主肢塔身连接可等效为仅仅限制X轴方向上的自由度。 载荷条件: 设计计算应在最恶劣载荷条件下计算,在竖直平面内受自重及平衡自重。臂架自重通过密度及重力加速度实现平衡重自重则用均布载荷代替。水平平面受风载荷以及回转惯性力,风载荷通过均布载荷实现,挡风面所受载荷为迎风面0.3,回转惯性力通过水平横向均布载荷代替。卷筒水平力该力较小且忽略该力臂架受力仍为最恶劣受力状态简化受力模型忽略该力。二.实验过程 1.单元选择 根据平衡臂结构特征把平衡臂杆件处理成梁单元。选择beam188单元进行模拟就可以满足分析要求。下面对beam188单元进行简介:

塔式起重机设计说明书讲解

设计题目:QTZ40塔式起重机总体及塔身的优化设计设计人: 设计项目计算与说明结果 前言 塔式起重机概述 塔式起重机发展情况 第1章前言 1.1 塔式起重机概述 塔式起重机是一种塔身竖立起重臂回转的起重机械。在工业与民用建筑施工中塔式起重机是完成预制构件及其他建筑材料与工具等吊装工作的主要设备。在高层建筑施工中其幅度利用率比其他类型起重机高。由于塔式起重机能靠近建筑物,其幅度利用率可达全幅度的80%,普通履带式、轮胎式起重机幅度利用率不超过50%,而且随着建筑物高度的增加还会急剧地减小。因此,塔式起重机在高层工业和民用建筑施工的使用中一直处于领先地位。应用塔式起重机对于加快施工进度、缩短工期、降低工程造价起着重要的作用。同时,为了适应建筑物结构件的预制装配化、工厂化等新工艺、新技术应用的不断扩大,现在的塔式起重机必须具备下列特点: 1.起升高度和工作幅度较大,起重力矩大。 2.工作速度高,具有安装微动性能及良好的调速性能。 3.要求装拆、运输方便迅速,以适应频繁转移工地的需要。 QTZ40型自升式塔式起重机,其吊臂长40米,最大起重量4吨,额定起重力矩40吨米。是一种结构合理、性能比较优异的产品,比较目前国内外同规格同类型的塔机具有更多的优点,能满足高层建筑施工的需要,可用于建筑材料和构件的调运和安装,并能在市内狭窄地区和丘陵地带建筑施工。整机结构不算太大,可满足中小型施工的要求。 本机以基本高度(独立式)30米。用户需高层附着施工,只需提出另行订货要求,即可增加某些部件实现本机的最大设计高度100米,也就是附着高层施工可建高楼32层以上。 1.2 塔式起重机发展情况 塔式起重机是在二次世界大战后才真正获得发展的。战后各国面临着重建家园的艰巨任务,浩大的建筑工程量迫切需要大量性能良好的塔式起重机。欧洲率先成功,1923年成

相关文档
最新文档