单色仪的定标和光谱测量

单色仪的定标和光谱测量
单色仪的定标和光谱测量

单色仪定标及分类

单色仪定标及分类 单色仪定标是借助于波长已知的线光谱以获取对应的鼓轮读数。为了获得较多的点,必须有一组光源。通常采用汞灯、氢灯、钠灯、氖灯以及用铜、锌、铁做电极的弧光光源等。下面小编简单介绍下单色仪其它信息。 一、单色仪分类 单色仪有多种,从不同的角度对它有不同的分类,如按物镜的形成可分为透射式单色仪和反射式单色仪,按色散元件可分为棱镜单色仪和光栅单色仪。 棱镜单色仪: 棱镜的工作光谱区受到材料的限制(光的波长小于120nm,大于50μm时不能使用),光栅单色仪的角色散率与波长无关,棱镜单色仪的角色散率与波长有关。棱镜单色仪的尺寸越大分辨率越高,但制造越困难,同样分辨率的光栅重量轻,制造容易。 光栅单色仪: 光栅单色仪存在光谱重叠,棱镜光谱仪没有。光栅单色仪存在鬼线(由于刻划误差造成),棱镜单色仪没有。

二、单色仪定标 单色仪出厂时,一般都附有定标曲线的数据或图表供查阅,但经过长期使用或重新装调后,数据会发生变化,需重新定标,以对原数据进行修正。 1、观察入射狭缝和出射狭缝的结构,了解缝宽的调节、读数以及狭缝使用时的注意事项,选取适当的缝宽以获取足够的强度及较好的单色性。 2、在入射狭缝前放置汞灯,为了充分利用进入单色仪的光能,光源应放置在入射准直系统(S1和M1)的光轴上。在单色仪光源与入射缝之间加入聚光透镜,适当选择透镜的焦距和口径,使其相对口径与仪器的相对口径匹配。这样,可获得最大亮度的出射谱线,同时又减少了单色仪内部的杂散光。调节聚光透镜的位置,使出射狭缝呈现的谱线最明亮。 3、将低倍显微镜置于出射狭缝处,对出射狭缝进行调焦,使显微镜视场中观察到的汞谱线最清晰。为使谱线尽量细锐并有足够的亮度,应使入射缝S1尽可能小,出射狭缝可适当大些。根据可见光区汞灯主要谱线的波长、颜色、相对强度和谱线间距辨认谱线。

光谱分析系统定标操作指南解析

光谱分析系统定标操作指南 1.打开WY直流电源和光谱仪电源,预热15分钟,启动 PMS-50/80PLUS软件。 2.在PMS-50/80软件主界面“测试”菜单“系统设置”中的“通讯 选项”对话框里设置相应通讯端口,选择任意一种“测试模式”。 3.把负载线连接在积分球上的“1”“2”接线柱和WY电源输出端之 间(WY305电压电流调至最小位置即逆时针方向调节电压和电流旋钮发出响声) 4.安装标准灯,调节灯杆位置使灯泡处于挡光班的中心高度,以确 保标准灯发出的光线不直射光度探测器和光纤。 5.关闭积分球,在“测试”菜单中或工具栏中选择“光通量定标”, 点击“关灯校零”进行光度校零。 6.校零成功后,手动调节WY电源(也可以在软件中的WY系列功 能中输入标准灯的标定电流和参考电压(输入的电压数值比标识的参考电压高1-2伏以把线路上的压降考虑进去),使其输出电流至标准灯标定电流值并处于稳流状态,等待5分钟以上待发光稳定,进行光通量定标,并“存盘推出”。 7.在“测试”菜单中或工具栏中点击“光谱定标”,进行色温定标, 完毕后“存盘退出”。 8.在PMS-50/80软件主页界面“测试”菜单“系统设置”中的“通 讯选项”对话框里选择另一种“测试模式”。 9.在“测试”菜单中或工具栏中点击“光谱定标”进行色温定标,

完毕后“存盘退出”。 10.把标准灯当做被测光源,在“测试”菜单中或工具栏中点击”电光 源测试“开始测试,测试结束验证测试色温和光通量是否正确:(要求色温偏差在±15K以内,光通量偏差在±1%以内)符合进行11步,如不符合关灯后重新5-10步的操作。 11.把WY电源的输出调至最小,以熄灭标准灯,等标准灯冷却后, 取下放入灯盒。 12.关闭WY电源,取下负载线接至机柜后的负载接线柱,至此完成 定标,即可以正常的测试操作了。 注:早期的PMS-50(即测试时间为2-3分钟的机型不需要8、9两步的操作)!

光栅单色仪的调整和使用实验报告

实验报告 陈杨PB05210097 物理二班 实验题目:光栅单色仪的调整和使用 实验目的: 1.了解光栅单色仪的原理结构和使用方法。 2.通过测量钨灯,钠灯和汞灯的光谱了解单色仪的特点。实验内容: 单色仪中等效会聚透镜的焦距f=500mm 光栅的面积64 64mm2 光栅的刻划密度为1200线/mm 1.钨灯发出的光波长与光强的关系 (1)光电倍增管加-450V的高压

480 612 560 490 667 614 500 737 653 510 780 672 520 831 679 530 873 663 540 915 628 550 943 579 (2)波长----光强图线为: (3)透过率的规律:由原始数据可得下图

(4)下表为相应波长的滤光片透过率 λ400 410 420 430 440 450 460 470 I/I0 0.49123 0.59677 0.64223 0.6789 0.7048 0.73872 0.74734 0.74299 λ480 490 500 510 520 530 540 550 I/I0 0.74739 0.75331 0.73484 0.71521 0.67477 0.62391 0.56019 0.49358 (5)相关分析: 可以看出,滤光片的透过率随入射光的波长变化而变化。波长位于中间时,透过率比较大,本次实验中约为75%;本次实验中,波 长介于500nm和550nm之间时透过率随波长增大明显减小。 可以用薄膜干涉来解释:这里认为膜的折射率大于其两侧介质(空气)的折射率,对膜的两个表面的反射光来说,是有半波损失的。 此两束相干光若干涉相消,则可以增大透射光线的强度。光程差

(完整版)东北大学单色仪定标实验详细过程

首先是实验报告中的记录表格,那本书上并没有给出完整表格,只给了一个表头,我们画表格的时候则要画至少19行(推荐20行乃至21行会更好些),老师在检查完实验报告后说许多人的表格画的不合格,大都是因为行数画少了。 其次就是实验前预习,老师讲解的时候真的会提问的,不过没有扣分就是了。问的问题大致是六个,分别是: 1.单色仪的结构原理 2.单色仪定标的原理 3.单色仪定标的意义 4.如何识别谱图 5.单色仪鼓轮读数怎么读 6.显微镜的使用方法 前3个问题在书中都能找到,后三个问题稍后我会说明,这6个问题也就是整个实验的核心内容,弄懂了这6个问题整个实验操作就不会犯太大的错误。 进教室并将书包放好之后,老师会将实验报告收上来,然后让我们看一段幻灯片(自动播放的),同时她在那检查实验报告,幻灯片的内容就是上述的6个问题的答案,所以万一课前没来得及预习,将幻灯片里的内容记下来也可以。幻灯片结束之后就是老师讲解了,这里我们略过,直接看实验过程吧。

注:单色仪的两狭缝宽度千万不要调! 光谱、读数显微镜与单色仪

透镜和汞灯

以上就是我们实验时用到的仪器。

首先打开汞灯,刚开始不要急着观察,汞灯需要点亮一段时间才能达到最大亮度。 接着是调整单色仪鼓轮的位置 注意:单色仪的鼓轮是配有一个反射镜的(让我拿下去了),单色仪鼓轮上主尺的读数是左大右小(老师可能会问到),和读数显微镜的主尺标示不一样,如上图所示。 而在实验时我们观察单色仪鼓轮读数是通过反射镜来观察,如下图:

从反射镜中看主尺读数就是左小右大了,如此时的读数应为18.311mm左右(主尺上一个格1mm,测微鼓轮一个格0.01mm)。

单色仪的调整和使用

单色仪的调整和使用 ?实验简介 单色仪的构思萌芽可以追述到1666年,牛顿在研究三棱镜时发现将太阳光通过三棱镜太阳光分解为七色光。1814年夫琅和费设计了包括狭缝、棱镜和视窗的光学系统并发现了太阳光谱中的吸收谱线(夫琅和费谱线)。1860年克希霍夫和本生为研究金属光谱设计成较完善的现代光谱仪—光谱学诞生。由于棱镜光谱是非线性的,人们开始研究光栅光谱仪。光栅单色仪是用光栅衍射的方法获得单色光的仪器,它可以从发出复合光的光源(即不同波长的混合光的光源)中得到单色光,通过光栅一定的偏转的角度得到某个波长的光,并可以测定它的数值和强度。因此可以进行复合光源的光谱分析。 ?实验原理 图1 光栅单色仪的结构和原理 仪器原理如图1 ,光源或照明系统发出的光束均匀地照亮在入射狭缝S1上,S1位于离轴抛物镜的焦平面上,光通过M1变成平行光照射到光栅上,再经过光栅衍射返回到M1,经过M2会聚到出射狭缝S2,由于光栅的分光作用,从S2出射的光为单色光。当光栅转动时,从S2出射的光由短波到长波依次出现。

本仪器光学系统为李特洛式光学系统,这种系统结构简单、尺寸小、象差小、分辨率高。更换光栅方便。光栅单色仪的核心部件是闪耀光栅,闪耀光栅是以磨光的金属板或镀上金属膜的玻璃板为坯子,用劈形钻石尖刀在其上面刻画出一系列锯齿状的槽面形成的光栅(注1:由于光栅的机械加工要求很高,所以一般使用的光栅是由该光栅复制的光栅),它可以将单缝衍射因子的中央主极大移至多缝干涉因子的较高级位置上去。因为多缝干涉因子的高级项(零级无色散)是有色散的,而单缝衍射因子的中央主极大集中了光的大部分能量,这样做可以大大提高光栅的衍射效率,从而提高了测量的信噪比 图2 当入射光与光栅面的法线N 的方向的夹角为?(见图2)时,光栅的闪耀角为θ b,取一级衍射项时,对于入射角为?,而衍射角为θ时,光栅方程式为: d(sin?+sinθ)= λ 因此当光栅位于某一个角度时(?、θ一定),波长λ与d成正比。本次实验所用光栅(2号光栅,每毫米1200条刻痕,一级光谱范围为380nm—1000nm, 刻划尺寸为64?64mm2)。当光栅面与入射平行光垂直时,闪耀波长为570nm。由此可以求出此光栅的闪耀角为21.58?。当光栅在步进电机的带动下旋转时可以让不同波长以现对最强的光强进入出射狭缝,从而测出该光波的波长和强度值。(注意计算时角度的符号规定和几何光学方向为闪耀波长的方向)

单色仪的定标

单色仪的定标 姓名:刘国强 学号:201418150285 班级:14级4班 学校:山东大学材料科学与工程学院 摘要:单色仪是产生单色光和测量波长,进行光谱分析的基本仪器,在本实验中所使用的反射式棱镜单色仪其色散器件是棱镜,通过棱镜对不同波长(或频率)的光有不同的折射率,使各种光通过棱镜后能向不同的方向散开,通过在读数显微镜下的观察,得出数据. 关键词;单色仪,光谱,棱镜,汞灯光源,读数显微镜 1672年牛顿发现了光的色散现象,而早在我国北宋初年(公元974-1020年), 杨亿著的《杨文公谈苑》一书中说:“嘉州峨眉山有菩萨石,人多收之,色莹白 如玉,如上饶水晶之类,日射之有五色.”这表明物质的折射率和光的频率有关, 而折射率取决于光在真空中的传播速度和物质中的传播速度之比。不同的光在同 一物质中的传播速度不同,因而棱镜的色散作用是显而易见的. 单色仪是一种常见的分光仪器,利用色散元件把复色光分解为准单色光,能 输出一系列独立的、光谱区间足够窄的单色光,可用于各种光谱分析和光谱特性 的研究,如测量介质的光谱透射率曲线、光源的光谱能量分布、光电探测器的光 谱能量响应等,应用相当广泛. 一、实验目的 通过单色仪的定标,掌握棱镜单色仪的工作原理和正确的使用方法. 二、实验仪器 反射式棱镜单色仪,会聚透镜,汞灯,读数显微镜 三、实验原理 实验室中常采用的棱镜单色仪通常分为两类;一类是透射式单色仪,

一类是反射式单色仪.本实验所用的是国产的WDF 型瓦兹渥斯反射式单色仪.其内部装置主要由以下三部分组成(见图一). 1,入射准直系统 由入射狭缝S 1和使入射光束变为平行光束的准直物镜M 1组成. 2,散射系统 主要是分光棱镜P 使光束色散,这是因为棱镜的材料对不同的波长(或频率)的光有不同的折射率n 所致,即)(λn n =.所以各种波长的光透过棱镜后能向不同的方向散开,如图一所示。复色光 ),,(321 λλλλ,以入射角1i 射入棱镜,单色光1i 以出射角2i 射出,不同 波长的光的出射角2i 是不相等的.入射光和出射光之间的夹角称偏向角,如图二中的即为单色光1λ和入射光之间的偏向角. 棱镜转动时,偏向角可以发生变化,当转动到某一位置时,偏向角具有最小值,称最小偏向角,用min δ表示,光学理论可以证明,当时 m i n δδ=时,21i i =,并且还可以证明,对顶角一定的棱镜,)(min n f =δ,n 为 棱镜P 的折射率,前面已指出了)(λn n =,所以,)(min λδf =.棱镜P 和平面镜M 作为一个整体,由单色仪下部的鼓轮手柄操作.转动鼓轮, 就改

光栅光谱仪实验报告

光栅光谱仪的使用 学号 2015212822 学生姓名张家梁 专业名称应用物理学(通信基础科学) 所在系(院)理学院 2017 年 3 月 14 日

光栅光谱仪的使用 张家梁 1实验目的 1. 了解光栅光谱仪的工作原理。 2. 学会使用光栅光谱仪。 2实验原理 1.光栅光谱仪 光栅光谱仪结构如图所示。光栅光谱仪的色散元件为闪耀光栅。入射狭缝和出射狭缝分别在两个球面镜的焦平面上,因此入射狭缝的光经过球面镜后成为平行光入射到光栅上,衍射光经后球面镜后聚焦在出射狭缝上。光栅可在步进电机控制下旋转,从而改变入射角度和终聚焦到出射狭缝处光线的波长。控制入射光源的波长范围,确保衍射光无级次重叠,可通过控制光栅的角度唯一确定出射光的波长。 光谱仪的光探测器可以有光电管、光电倍增管、硅光电管、热释电器件和CCCD 等多种,经过光栅衍射后,到达出射狭缝的光强一般都比较弱,因此本仪器采用光电倍增管和CCD 来接收出射光。 2.光探测器 光电倍增管是一种常用的灵敏度很高的光探测器,它由光阴极、电子光学输入系统、倍增系统及阳极组成,并且通过高压电源及一组串联的电阻分压器在阴极──打拿极(又称“倍增极”) ──阳极之间建立一个电位分布。光辐射照射到阴极时,由于光电效应,阴极发射电子,把微弱的光输入转换成光电子;这些光电子受到各电极间电场的加速和聚焦,光电子在电子光学输入系统的电场作用下到达第一倍增极,产生二次电子,由于二次发射系数大于1,电子数得到倍增。以后,电子再经倍增系统逐级倍增,阳极收集倍增后的电子流并输出光电流信号,在负载电阻上以电压信号的形式输出。

CCD 是电荷耦合器件的简称,是一种金属—氧化物—半导体结构的新型器件,在电路中常作为信号处理单元。对光敏感的CCD 常用作图象传感和光学测量。由于CCD 能同时探测一定波长范围内的所有谱线,因此在新型的光谱仪中得到广泛的应用。 3. 闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(Φ=90°)光栅衍射的一般特性。当入射角Φ=90°时,衍射强度公式为 光栅衍射强度仍然由单缝衍射因子和多缝衍射因子共同决定,只不过此时 当衍射光与入射光在光栅平面法线同侧时,衍射角θ取+号,异侧时取-号。单缝衍射中央主极大的条件是u=0,即sinΦ=-sinθ或Φ=θ。将此条件代入到多缝干涉因子中,恰好满足v =0,即0 级干涉大条件。这表明单缝衍射中央极大与多缝衍射0 级大位置是重合的(图9.1a),光栅衍射强度大的峰是个波长均不发生散射的0 级衍射峰,没有实用价值。而含有丰富信息的高级衍射峰的强度却非常低。 为了提高信噪比,可以采用锯齿型的反射光栅(又称闪耀光栅)。闪耀光栅的锯齿相当

14-单色仪的应用

实验十四 单色仪的应用 单色仪是将光源发出的复色光用色散元件把它分解为单色光的仪器,这种仪器可用于各种光谱特性的研究:如测量介质的光谱透射率曲线,光源光谱的光强分布、光电探测元件的光谱响应等等。在实验室中常用到的单色仪基本有二类,一类是透射式单色仪,如图1所示,这种单色仪的入射光和出射光恒成90°夹角。成像系统由透镜组成,常用于可见光范围,它的优点是聚光本领强;另一类是反射式单色仪,如图2所示,这种单色仪入射光与出射光夹角为 122,成像系统由反射镜组成,它的优点是使用范围大,只要置换不同的棱镜,使用范围可以从紫外光一直到红外光,本实验所用的正是此类单色仪。 【实验目的】 1. 了解单色仪的结构和原理,学会正确使用的方 法。 2. 以高压汞灯的主要谱线为基准,对单色仪在可 见光区域进行定标。 3. 测定汞灯谱线的光强分布。 【实验原理】 反射式棱镜单色仪外形为一圆盘(如图2)它主要有三部分组成:①入射缝1S 和凹面镜1M ,组成了入射 系统,以产生平行光;②平面镜2M 和棱镜P 组成色散系统; ③凹面镜3M 和出射缝2S 组成聚光出射系统 ,它将棱镜分出的单色平行光由3M 汇聚在出射缝2S 上。图中平面镜2M 和棱镜P 所放的位置,对以最小偏向角通过棱镜的平行光束而言,可使入射到2M 的光束与从棱镜出射的光束平行。这样,以最小偏向角通过棱镜某波长的光,经3M 反射后恰恰成像在出射缝处。因此,只要1S 和1M 保持不变的情况下,当棱镜P 和反射镜2M 同步转动时,对应于最小偏向角的光的波长也跟着改变,出射缝2S 就有不同波长的单色光射出。由于光束以最小偏向角通过棱镜,所以光缝单色像的像差最小。出射的光束单色性好。而棱镜P 和平面镜2M 的转动机构与仪器下部的转动轴杆鼓轮相连,鼓轮上刻有均匀的分度线,因而出射波长 与鼓轮读数R 相对应。单色仪出厂时有对应(定标)曲线的数据。但经过一段时间使用后,定标会有所漂移。因此,在使用单色仪前需作重新定标。 【实验内容】 1.光路调整。调光前使单色仪呈水平,使汞灯的中心,聚光透镜的中心,入射缝的中心都在入射缝和准直反射镜1M 光轴的延长线上,汞灯置于4倍的透镜焦距之处,首先直接用肉眼在入射缝处观察光源的像,移动光源或透镜的前后位置使光源成像于入射缝1S 处。 2.入射缝和出射缝的实际零点的确定 光缝长期使用后,它的实际零点往往与示值不符,故在使用单色仪前应先确定入射缝和出 图 1 图2

单色仪

单色仪的定标及应用 单色仪是一种常用的分光仪器,利用色散元件把复色光分解为准单色光,能输出一系列独立的、光谱区间足够窄的单色光,可用于各种光谱分析和光谱特性的研究,如测量介质的光谱透射率曲线、光源的光谱能量分布、光电探测器的光谱响应等,应用相当广泛。 【实验目的】 1.了解棱镜单色仪的构造、原理和使用方法; 2.以汞灯的主要谱线为基准,对单色仪在可见光区进行定标; 3.掌握用单色仪测定滤光片中心波长的方法。 4. 学会测量发光二极管的波长。 【实验仪器】 小型光栅单色仪,汞灯,卤素灯,显微镜,滤光片,会聚透镜,透镜夹发光二极管 【实验原理】 单色仪是一种分光仪器,它通过色散元件的分光作用,把复色光分解成它的单色组成。根据采用色散元件的不同,可分为棱镜单色仪和光栅单色仪两大类,其应用的光谱区很广,从紫外、可见、近红外一直到远红外。对不同的光谱区域,一般需换用不同的棱镜或光栅。 平面光栅单色仪的工作原理是光源发出的光均匀地照亮在入射狭缝S1上,S1位于离轴抛物镜的焦面上。光经过M1平行照射到光栅上,并经过光栅的衍射回到M1,经M1反射的光经过M2会聚到S2出射狭缝上。由于光栅的衍射作用,从出射狭缝出来的光线为单色光。当光栅转动时,从出射狭缝里出来的光由短波到长波依次出现。这种光学系统称为李特洛式光学系统,见图1所示。 图1光学系统图 一般光源所辐射的光往往是由各种波长的光组成。如果各种波长是连续变化的,那么

这类光源称为连续光源。由于光源的光谱分布与光的物质特性有关,因此测定光源的光谱分布是研究物质内部微观结构的重要工具之一。 单色仪的基本特性是其单色性和出射单色光的强度,实验中,一般总是希望出射的单色光的光谱宽度尽量窄(即单色性尽量好)和单色光的强度尽量高。除了平面光栅的色散率的大小外,单色仪出射光的光谱宽度的宽窄主要由缝宽,衍射和像差等因素决定,其中像差在设计调整时已尽量减小。在正常情况下,对单色仪来说,主要是解决缝宽和色差问题。 缝宽的选择,一方面使缝宽尽可能窄,使相邻两波尽可能分开,另一方面,缝的宽度又不能太小,否则出射的单色光的强度变得太小,而无法探测到。一般要求出射狭缝宽等于入射缝宽,本仪器出入狭缝均为两档,狭缝分别为0.15mm、0.3mm 输出的单色光谱波长,从波长鼓轮直接读取,至于缝宽究竟选择多少,则要根据光强的强弱和接收器的灵敏度来决定。 实验一单色仪的定标 单色仪出厂时,一般都附有定标曲线的数据或图表供查阅,但经过长期使用或重新装调后,数据会发生变化,需重新定标,以对原数据进行修正。 单色仪的定标是借助于波长已知的线光谱以获取对应的鼓轮读数。为了获得较多的点,必须有一组光源。通常采用汞灯、氢灯、钠灯、氖灯以及用铜、锌、铁做电极的弧光光源等。 本实验选用汞灯作为已知线光谱的光源,在可见光区域(400nm—760nm)进行定标。在可见光波段,汞灯主要谱线的相对强度和波长如图2及表1所示。 表1 汞灯主要谱线波长表 颜色波长/nm 强度 紫色 *404.66 407.78 410.81 433.92 434.75 *435.84 强 中 弱 弱 中 强 蓝绿色 *491.60 496.03 496.03 强中中 绿色 535.41 536.51 *546.07 567.59 弱 弱 强 弱 黄色 *576.96 579.07 585.92 589.02 强 强 弱 弱 橙色 607.26 612.33 弱弱 红色 623.44 中 深红色 671.62 690.72 708.19 中 中 弱

单色仪的调节与定标

一.实验题目:单色仪的调节与定标 二.实验目的:1.掌握棱镜单色仪的构造原理和使用方法 2.掌握调节光路准直的基本方法和技巧 3.以汞灯的主要谱线为基准,对单色仪在可见光 区域进行定标 三.实验仪器:反射式棱镜单色仪,低压汞灯(带镇流器),读数照明反射镜,读数照明小电珠(带变压器),聚光透镜(带底座),读数显微镜(带支架),长曲线绘图设备 四.实验原理:单色仪是一种分光仪器,它通过色散元件的分光作用,能输出一系列独立的、光谱区间足够狭窄的单色光,且所输出的单色光的波长可根据需要调节. 主要有三部分组成:由入射缝S1和凹面镜M1组成入射准直系统,以产生平行光束;由玻璃棱镜 P组成色散系统,在它的旁边还附一块平面反射镜M,由凹面镜M2和出射缝S2组成出射聚光系统,将棱镜分出的单色平行光汇聚在出射缝上。随着棱镜台绕O轴转动,以最小偏向角通过棱镜的光束的波长也跟着改变,当最小偏向角由小变大时,从S2输出的单色光的波长将依次由长变短. 单色仪能输出不同波长的单色光,是依赖于棱镜台的转动才得以实现的.棱镜台的位置是由鼓轮刻度标志的,而鼓轮刻度的每一数值都是和一定波长的单色光输出相对应.因此,必须制作单色仪的鼓轮读数和对应光波波长的关系曲线——定标曲线(又称色散曲线),一旦鼓轮读数确定,便可从定标曲线上查知输出单色光的中心波长.单色仪定标曲线的定标是借助于波长已知线光谱光源来进行的.本实验用汞灯来做为已知线光谱的光源,在可见光区域(400 nm 760nm)进行定标. 五.实验步骤:1. 汞灯光源与入射狭缝S1之间放一会聚透镜L1.调节光源与透镜的位置、高低和左右,使光源成像在S1上. 2. 出射狭缝S2处直接用眼观察出射光,并转动鼓轮,可看到红、

单色仪的定标

单色仪的定标 物理学院华远杰实验目的 1.了解棱镜单色仪的构造、原理和使用方法; 2.以汞灯的主要谱线为基准,对单色仪在可见光区进行定标; 3.掌握用单色仪测定滤光片光谱透射率的方法。 仪器和用具 反射式棱镜单色仪、汞灯、光电池、灵敏电流计、(移测)显微镜、滤光片、会聚透镜、电源、自耦变压器、钨合金灯泡。 实验原理 简而言之,单色仪的工作原理是通过棱镜对光的色散作用,使不同波长的光随着棱镜的转动依次从单色仪的孔中射出,并在显微镜中被观察到。棱镜的转动由单色仪的一个鼓轮控制,鼓轮上有类似螺旋测微器的刻度,不同的刻度可对应不同波长的光射出时的棱镜的位置,即满足光的波长与鼓轮读数的一一对应关系。当测得足够多的谱线的波长与鼓轮读数时,即可在坐标纸上绘出单色仪的定标曲线(色散曲线)。 关于光谱半宽度的测定,让连续光源发出的光经过凸透镜后再由一绿色滤光片进入单色仪。将上面提到过的显微镜换成一光电池,并将光电池两极连接在调平后的检流计上。光线从单色仪中射出照到光电池时,光电池将产生电流,使检流计发生偏转。通过检流计偏转的格数来反映光强度。因为同一滤光片对不同频率的光的透射能力不同,所以检流计的偏转存在一个最大值,最大值的二分之一对应有两个波长,这两个波长的差值即为该光的半宽度。 实验内容 1.调节汞灯,凸透镜,单色仪的单缝等高同轴,适当调整凸透镜和光源的位置,使光 源在单缝处成清晰的,指甲盖大小的像,并均匀分布于单缝两侧; 2.调整单缝宽度,转动鼓轮使单色仪的出光口能看到光线; 3.调整显微镜的位置,使视野中出现入射光色散形成的亮场,调整目镜焦距和单缝宽

度,直至出现分离的,清晰的谱线; 4.对比汞发射光谱,确认可计数的谱线的数量,若数量不足,重复上述实验步骤; 5.调整鼓轮位置,使显微镜的叉丝位于光谱最外侧的一条谱线的中心处,记录此时鼓 轮的位置; 6.沿同一方向转动鼓轮,分别记录每一条谱线对应的鼓轮的位置; 7.绘制单色仪的定标曲线; 8.在单缝前加一块滤光片,撤去显微镜,接上光电池并将光电池与调平的检流计连接; 9.转动鼓轮,记录检流计偏转最大的时刻鼓轮的位置和偏转在最大值的一半时的鼓轮 位置。 实验数据 用MATLAB对数据进行拟合,并绘制如下曲线

棱镜单色仪的定标

棱镜单色仪的定标 【实验目的】 1、了解单色仪的结构,分光原理和使用方法; 2、做出单色仪的定标曲线。 【实验仪器】 反射式棱镜单色仪,高压汞灯、读数显微镜、会聚透镜 仪器介绍: 单色仪----能够从复合光源中分解出独立的、足够狭窄的、波长连续可调的单色光的仪器。按波长来分,有红外单色仪、紫外单色仪、可见光单色仪;按分光元件来分,有光栅单色仪和棱镜单色仪;在棱镜单色仪中按物镜的形式来分,有透射式单色仪和反射式单色仪。我们这个实验用的是:反射式玻璃棱镜单色仪,分光波段在可见光范围内。 反射式玻璃棱镜单色仪 反射式玻璃棱镜单色仪的光学系统由三部分组成: 1、入射准直系统-----狭缝1S 和凹面镜1M ,1S 恰好处在2M 的焦平面上。其作用是将进入狭缝1S 的光变为平行光。 2、色散系统----平面镜M 和三棱镜P ,二者作为一个整体安装在转台上。平行入射的复合光经过平面镜M 反射到三棱镜P 上,分解成按波长排列向不同方向偏折的单色光。随着棱镜的转动,只有满足最小偏向角条件的入射光,才能从出射狭缝射出。棱镜转了,出射光的波长也就发生了变化。 3、出射聚光系统----出射狭缝2S 和聚焦凹面镜2M 。2S 恰好处在2M 的焦平面上。将棱镜P 分解出的不同方向的单色光中的一束(哪一束?)汇聚到狭缝2S 上。 单色仪的机械部分包括狭缝和读数鼓轮。狭缝的调节要仔细,不要挤坏。读数鼓轮与万向接头转动杆及把手相连。转动把手,棱镜就转,输出光的波长就在变。读数鼓轮的数值与棱镜的位置相对应,也就是与出射光的波长相对应。 【实验原理】

三色仪不是直接用波长分度定标而是用鼓轮读数来表示,因在使用单色仪之前要定 标:利用已知波长的光谱线标定鼓轮的读数,做出鼓轮读数与波长之间的关系曲线。这 个过程称之为单色仪的定标。 单色仪的定标要借助于已知波长的线光谱光源来进行。本实验选用的光源为高压汞 灯。在可见光波段内,用读数显微镜可以观察到30多条谱线。其相对强度和波长参考 P323和P324。 【实验内容】 1、调整光路 先把读数鼓轮调节到17左右,入射狭缝和出射狭缝开的稍微大一些(约为1mm 左 右)。点燃高压汞灯,直接对准入射狭缝,眼睛从出射狭缝向里看过去,可以看到 灯在2M 中的像,使其恰好位于中央。在灯与狭缝之间放一会聚透镜,前后移动透 镜位置,使光聚焦在入射狭缝上。把读数显微镜放在出射狭缝前,调好聚焦。缓慢 减小两个狭缝的宽度(2S 要略大于1S )。转动读数鼓轮,在显微镜中可以看到清 晰的谱线。此时可以认为单色仪及其光路调节好了。 2、辨认谱线 通过转动鼓轮,有长波到短波在由短波到长波依次观察谱线的分布情况。然后将 谱线P324表中所列谱线波长一一对应起来。 3、测量定标数据 向一个方向缓慢转动鼓轮,当谱线的中心对准显微镜的测量准线竖线时,记下相应 的鼓轮读数和光波波长。来回测量三次然后取平均。 4、绘制定标曲线 以波长λ为横坐标,鼓轮读数T 为纵坐标,在方格坐标纸上绘制T--λ曲线。注意 比例选取要适当,连线要平滑。

单色仪的调节和使用

单色仪的调节和使用 院系:07023 姓名:王曦泽学号:PB07210077 实验目的:了解光栅单色仪的原理、结构和使用方法,通过测量钨灯、钠灯和汞灯的光谱了解单色仪的特点。 实验原理: 一、光栅单色仪的结构和原理 图1 光栅单色仪的分光系统

光栅单色仪的分光系统如图1所示,光源或照明系统发出的光束均匀地照亮在 入射狭缝S1上,S1位于离轴抛物镜M1的焦平面上,光通过M1变成平行光照射到光栅上,再经过光栅衍射返回到M1,经过M2会聚到出射狭缝S2,由于光栅的分光作用,从S2出射的光为单色光。当光栅转动时,从S2出射的光由短波到长波依次出现。 当入射光与光栅面的法线N 的方向的夹角为φ(见图2)时,光栅的闪耀角为θb (光栅面和光栅刻槽面的夹角,因此也是刻槽面法线和光栅面法线N 和n 之间的夹角)。取一级衍射项时,对于入射角为φ,而衍射角为θ时,光栅方程式为: d(sin φ+sin θ)= λ 因此当光栅位于某一个角度时(φ、θ一定),波长λ与d 成正比,角度的符号规定由法线方向向光线方向旋转顺时针为正,逆时针为负。几何光学的方向为闪耀方向,所以可以算出不同入射角时的闪耀波长,由于几何光学方向为入射角等于反射角的方向,即,)(b b θθθφ---=-,所以有,φθθ-=b 2,光栅方程式改为, λφθφ=-+))2sin((sin b d 本次实验所用光栅,为每毫米1200条刻痕,一级光谱范围为380nm —1000nm, 刻划尺寸为64?64mm 2。当光栅面与入射平行光垂直时,闪耀波长为

570nm 。由于此时入射角φ=0,求得 58.21=b θ,再代入光栅方程式可以求得当入射角改变时实现不同波长光的闪耀,如 30,10,5=φ时,λ=587nm ,600.5nm ,606.3 nm 。 3 狭缝是单色仪的关键部件,它的宽度范围是0—3mm ,每格为0.005mm 仪器不工作时狭缝开启宽度应放在最小的位置。在调节狭缝宽度时切记不要用力过猛和过快,要仔细缓慢的调到所要求的值。狭缝应该调到它的最佳宽度,为了说明这个问题先作一定的假设,设照明狭缝的光是完全非相干的(即每一点为独立的点光源),首先设狭缝为无限细,由衍射理论和实验可知谱线的半宽度约为: D f a n λ=86 .0,这里λ为光的波长,f 为离轴抛物镜的焦距,D 时由光栅和抛物镜的口径限制的光束的直径,当狭缝a 逐渐变宽时谱线宽度的变化如图3 所示,图4 为狭缝宽度与光谱的分辨率R 和光谱线的强度I 的变化。由图4 可见缝宽过大时实际分辨率下降,缝宽过小时出射狭缝上得到光强太小,取a=an 最好。 根据光学的理论知识可以知道,光栅的特性主要有:谱线的半角宽度、角色散率和光谱分辨本领。理论上它们分别为: 式中N 为光栅的总线数,在本实验中N 为64?1200=76800,m 为所用的光的 W 0 a/an 图3 狭缝宽度与光谱宽度的关系曲线 a/an 图5 狭缝宽度与光谱分辨率及光谱强度的关系曲线 R I 1 2 1 θ λ θcos Nd d = θ λθθcos d m d d D == m N d R == λ λ

单色仪的定标与滤光片光谱透射率的测定

单色仪的定标与滤光片光谱透射率的测定 【实验目的】 1.了解棱镜单色仪的构造、原理和使用方法; 2.以汞灯的主要谱线为基准,对单色仪在可见光区进行定标; 3.掌握用单色仪测定滤光片光谱透射率的方法。 【实验仪器】 反射式棱镜单色仪,汞灯,硅光电池,灵敏电流计,低倍显微镜,滤光片,会聚透镜,毛玻璃 【实验原理】 单色仪是一种分光仪器,它通过色散元件的分光 作用,把复色光分解成它的单色组成。根据采用色散 元件的不同,可分为棱镜单色仪和光栅单色仪两大类, 其应用的光谱区很广,从紫外、可见、近红外一直到 远红外。对不同的光谱区域,一般需换用不同的棱镜 或光栅。若采用石英棱镜作为色散棱镜,主要应用于 紫外光谱区, 并用光电倍增管作为探测器;棱镜材料用NaCl、LiF或 KBr等,则可用于广阔的红外光谱区,用真空热电偶等作 为光探测器。本实验为玻璃棱镜单色仪,仅适用于可见光 区,用人眼或光电池作为光探测器。

图1所示为反射式棱镜单色仪的结构示意图,其 外壳是圆形的,下方有驱动棱镜台转动的丝杆和读数鼓轮, 外侧装有缝宽可调的入射狭缝S 1和出射狭缝S 2 。其光学系 统由下列三部分组成:1.入射准直系统 由入射狭缝S 1和凹面镜M 1 组成,因S 1 固定在M 1 的 焦面上,它使S 1发出的入射光束经M 1 后成为平行光束。 2.瓦兹渥斯(Wadsworth)色散系统 由玻璃棱镜P和平面镜M联合组成一整体,安装在同图1 一转台上,可以绕通过O点垂直于图面的轴线(棱镜顶角的等分面和底面的交线)转动,该系统的特点是平行光束通过后,以最小偏向角出射的单色光仍平行于原入射光。即该系统为恒偏向色散装置。 3.出射聚光系统 由凹面镜M 2和出射缝S 2 组成,它将色散后沿不同方向传播的单色光经M 2 反 射后,会聚在M 2的焦面,即出射缝S 2 的平面上,因S 2 缝宽较小,从S 2 输出的是 波段很窄的光,通常称为单色光。 随着棱镜台绕O轴转动,以最小偏向角通过棱镜的光束的波长也跟着改变,当最小偏向角由小变大时,从S 2 输出的单色光的波长将依此由长变短。单色仪能输出不同波长的单色光,是依赖于棱镜台的转动而实现,棱镜台的位置是由鼓轮刻度标志的,而鼓轮刻度的每一数值都和一定波长的单色光输出相对应。因此,必须制作单色仪的鼓轮读数和对应光波波长的关系曲线——定标曲线(又称色散曲线),一旦鼓轮读数确定,便可从定标曲线上查知输出单色光的中心波长。 练习一单色仪的定标

光栅单色仪的调整和使用 (11)

光栅单色仪的调整和使用 实验题目:光栅单色仪的调整和使用 实验目的:了解光栅单色仪的原理、结构和使用方法,通过测量钨灯、LED和汞灯的光谱了解单色仪的特点。 实验原理:一.光栅单色仪的结构和原理 2、分光系统, 3、接受系统。 单色仪的光源有:火焰、电火花、激光、高低压气体灯(钠灯、汞灯等)、星体、太阳等。 如下图所视,当入射光与光栅面的法线N 的方向的夹角为φ(见图)时,光栅的闪耀角为θ 。 取一级衍射项时,对于入射角为φ,而衍射角为θ时,光栅方程式为: d(sinφ+sinθ)= λ 因此当φ、θ一定时,波长λ与d成正比。几何光学的方向为闪耀方向,则可以算出不同入射角时的闪耀波长,由于几何光学方向为入射角等于反射角的方向,即) ( b b θ θ θ φ- - - = -,所以有φ θ θ- = b 2,光栅方程式改为: λ φ θ φ= - +)) 2 sin( (sin b d 单色仪中等效会聚透镜的焦距f=500mm 光栅的面积64?64mm2 光栅的刻划密度为1200线/mm 二、狭缝宽度 缝宽过大时实际分辨率下降,缝宽过小时出射狭缝上得到光强太小。最佳狭 缝宽度为: D f a n λ =86 .0。其中f为抛物镜的焦距,D是由光栅和抛物镜的口径限 图1 单色仪的组成 光源 透镜 分光系统 接收系统 系统

制的光束的直径,实验中f =500mm ,D=64mm 。 根据光学的理论知识可知,光栅的特性主要有:谱线的半角宽度、角色散率和光谱分辨本领。根据光学的理论知识可以知道,光栅的特性主要有:谱线的半角宽度、角色散率和光谱分辨本领。理论上它们分别为: 式中N 为光栅的总线数,在本实验中N 为64?1200=76800,m 为所用的光的衍射级次,本实验中m=1。实验中由于光学系统的象差和调整误差,杂散光和噪声的影响,加上光源的谱线由于各种效应而发生增宽,所以实际的谱线半角宽度远远大于理论值,因此光谱仪的实际分辨本领远远小于76800。 数据及数据处理: 焦距f=500mm.光栅的面积64?64mm 2 光栅的宽度D=64mm ,光栅的刻划密度为1200线/mm, 1、最佳狭缝宽度 D f a n λ=86 .0=0.86×500 ×579.06/64 nm=3.891μm D f a n λ=86.0=0.86×500 ×576.96/64 nm=3.876μm 2、理论分辨本领R =1×64×1200=76800 m 为干涉级次,这里m=1,N 为光栅的总线条数。 相关数据处理: 1钠灯 θ λ θcos Nd d = θ λθθcos d m d d D = = mN d R ==λ λmN d R == λ λ

单色仪的定标实验中汞光谱两条谱线的补充标定

单色仪的定标实验中汞光谱两条谱线的补充标定 翟林华 征 洋 姚关心 金 伟 张洪涛 方 涛 (安徽师范大学物理与信息工程学院安徽芜湖241000) 摘 要:讨论了普通物理光学实验有关教材中单色仪定标实验中定标所依据的汞光谱谱线标定问题,通过实验确定了实验可以明显观察到而未能标定的谱线,对原有教材有关内容给出了必要的补充. 关键词:单色仪定标;汞光谱;谱线标定 Two spectral lines supplemented to the Hg spectrum in the monochromator scaling experiment ZHAI Lin-hua ZHENG Yang YAO Guan-x in JIN Wei ZHANG Hong-tao FANG T ao (Department of Physics and Info rmation,Anhui Normal University,Wuhu,Anhui,241000) Abstract:It is sug gested that tw o easily observable spectr al lines should be supplem ented to the Hg spectrum attached to the monochr omator scaling exper im ent in the lecture book,and their w avelengths have been sug gested based on the measurement and co nsulting the comprehensive Hg spectrum Key words:mo no chromator scaling;H g spectr um;spectral line scaling 1 引 言 光学实验中的单色仪定标实验是通过学生观察单色仪所给出的能够清晰观察到的汞光谱可见光的若干条较强的标定谱线对单色仪定标的.教材〔1〕列表给出了相关的汞光谱标定谱线以提供实验依据.这些谱线涵盖了汞光谱从紫光到红光的可见光部分,如表1所示. 实际上通过单色仪除了可以观察到上述谱线以外,还可以明显观察到其它若干条谱线,除了其中强度较弱的以外,尚有与上述谱线强度相当的,处于重要光谱位置的其它谱线.具体说来,在教材标定的蓝绿色和绿色之间可以观察到波长约在500nm的两条谱线,谱线强度和已标定谱线的强度标准相比,强度应为弱谱线,但强于标定谱线中最弱的谱线,通过单色仪仍然可以明显观察到.由于这两条未标定谱线的存在,而且处于光谱显著的位置上,因而较为准确地标定这两条谱线对于这一实验是十分必要的. 2 谱线的测定 为了测定汞光谱中上述谱线的波长位置,实验中采用单色仪定标,实验所使用的高压汞灯为待定光源,以铁的发射光谱为标准,采用W-P1型1m光栅摄谱仪和1200痕/mm的透射光栅对中心位置在510nm的铁和汞一级光谱用全色胶片摄谱.摄谱采用的狭缝宽度铁光谱为10 m,汞光谱为20 m.仪器的光谱分辨率为0.8nm/mm.经过调整曝光条件,摄得蓝

单色仪的调整和使用

单色仪的调整和使用 PB05210153 蒋琪 实验目的 了解光栅单色仪的原理、结构和使用方法,通过测量钨灯、钠灯和汞灯的光谱了解单色仪的特点。 实验原理 一、 光栅单色仪的结构和原理 光栅单色仪由三部分组成:1、光源和照明系统,2、分光系统,3、接受系统。单色仪的光源有:火焰(燃烧气体:乙炔、甲烷、氢气)、 电火花、电弧(电火花发生器)、激光、高低压气体灯(钠灯、汞灯等)、星体、太阳等。 光栅单色仪的分光系统如图2所示,光源或照明系统发出的光束均匀地照亮在入射狭缝S1上,S1位于离轴抛物镜M1 的焦平面上,光 图2 光栅单色仪的分光系统

通过M1变成平行光照射到光栅上,再经过光栅衍射返回到M1,经过M2会聚到出射狭缝S2,由于光栅的分光作用,从S2出射的光为单色光。当光栅转动时,从S2出射的光由短波到长波依次出现。 分光系 是闪耀光 栅,以磨光 的金属板或 镀上金属膜 的玻璃板为坯子,用劈形钻石尖刀在其上面刻画出一系列锯齿状的槽面形成光栅,由于光栅的机械加工要求很高,所以一般使用的光栅是该光栅复制的光栅,它可以将单缝衍射因子的中央主极大移至多缝干涉因子的较高级位置上去。因为多缝干涉因子的高级项(零级无色散)是有色散的,而单缝衍射因子的中央主极大即几何光学的方向集中了光的大部分能量,这个方向就是闪耀光栅的闪耀方向,使用闪耀光栅可以大大提高光栅的衍射效率,从而提高了测量的信噪比。 当入射光与光栅面的法线N 的方向的夹角为φ(见图3)时,光栅的闪耀角为θb(光栅面和光栅刻槽面的夹角,因此也是刻槽面法线和光栅面法线N和n之间的夹角)。取一级衍射项时,对于入射角为φ,而衍射角为θ时,光栅方程式为: d(sinφ+sinθ)= λ

单色仪的定标和光谱测量总结

单色仪的定标和光谱测量实验(1321室) 实验要求: 实验前准备 认真预习(1)认真阅读实验讲义或实验教材 (2)准备预习报告 注明:1、加入自己对实验原理的理解;2、实验课时必须带来,作为当堂打实验操作分的依据;3、认真预习者方可进入实验室进行操作 准时进入实验室(1)不准迟到,请假需要提前上交书面申请 (2)注意保持实验室卫生 (3)严禁携带零食,注重仪表!例如:不穿拖鞋等行为 (4)雨天请将雨伞放置在实验室门外 仔细阅读听讲(1)认真听讲每个仪器的名称,作用及使用方法 (2)阅读实验指导书 实验进行时 严肃认真,不得在实验室内打闹、嬉戏! 严格遵守操作规程,严禁手碰透镜等光学仪器的光学面 不得直视激光,以免损伤视网膜! 严禁损坏仪器经指导老师签字或同意后,并清洁整理完毕方可离开! 实事求是(1)认真观察、分析实验现象 (2)如实记录实验数据,不得抄袭 勇于创新积极思考并提出自己的建议或意见 实验结束后 及时认真完成实验报告!(实验目的、内容、实验原理、实验仪器、实验操 作步骤、实验结果(包括数据处理分析和现象分析)、回答思考题) 下次上课时必须交上,不得延误!

单色仪的定标和光谱测量实验(1321室) 实验目的: (1):了解光栅单色仪的结构以及工作原理并熟练掌握其使用方法; (2):掌握调节光路准直的基本方法和技巧,利用钠灯等标准光源对单色仪进行定标; (3):测量红宝石、稀土化合物的吸收和发射光谱,加深对物质发光光谱特性的了解; (4):测量滤波片和溶液的吸收曲线,掌握测量其吸收曲线或透射曲线的原理和方法。 实验简介 单色仪(monochromator)是指从一束电磁辐射中分离出波长范围极窄单色光的仪器。按照色散元件的不同可分为两大类:以棱镜为色散元件的棱镜单色仪和以光栅为色散元件的光栅单色仪。单色仪的构思萌芽可以追述到1666年,牛顿在研究三棱镜时发现将太阳光通过三棱镜时被分解成七色光的彩色光光谱,牛顿首先将此分解现象称为色散。1814年夫琅和费设计了包括狭缝、棱镜和视窗的光学系统并研究发现了太阳光谱中的吸收谱线(夫琅和费谱线)。棱镜的色散起源于棱镜材料折射率对波长的依赖关系,对多数材料而言,折射率随着波长的缩短而增加(正常色散),及波长越短的光,在介质中传播速度越慢。1860年克希霍夫和本生为研究金属光谱设计完成较完善的现代光谱仪—这标志着现代光谱学的诞生。由于棱镜光谱是非线性的,人们开始研究光栅光谱仪。光栅光谱仪是利用衍射作为光学元件用光栅衍射的方法获得单色光的仪器,光栅光谱仪具有比棱镜单色仪更高的分辨率和色散率。衍射光栅的可以工作于从数十埃到数百微米的整个光学波段,比色散棱镜的工作波长范围宽。此外在一定范围内,光栅产生的是均排光谱,比棱镜光谱的线性要好的多。它也可以从复合光的光源(即不同波长的混合光的光源)中提取单色光,即通过光栅一定的偏转的角度得到某个波长的光,并可以测定它的数值和强度。因此可以进行复合光源的光谱质量分析。实验原理 光栅光谱仪是利用衍射作为色散元件,因此光栅作为分光器件就成为决定光栅光谱仪的性能的主要因素。 1、衍射光栅:现代衍射光栅的种类非常多,按照工作方式分为反射光栅和透射光栅;按照表面形状可分为平面光栅和球面光栅;按照制造方法可分为刻划光栅、复制光栅和全息光栅;按照刻

相关文档
最新文档