工程电磁场与电磁波实验指导书

工程电磁场与电磁波实验指导书
工程电磁场与电磁波实验指导书

《工程电磁场与电磁波》

实验指导书

微波分光仪简介

一、微波分光仪概述

DH926B型微波分光仪是用来进行有关电磁波的反射、衍射(绕射)、干涉和极化等方面的实验演示及测试的系统。它由分度转台、3cm微波固态信号源、反射板、介质板、喇叭、微安表组成。

二、微波分光仪工作原理

微波虽然有和光波不同的地方,但就电磁波的本质来说,它们具有波动的某些共同特点,如反射、折射、绕射、干涉、偏振以及能量传递等。我们正是充分利用微波的准光特性,模仿光学实验的基本方法,开展了下列几个极有意义的实验,以培养学生的基本技能和加深对电磁波的认识。

三、微波分光仪系统主要组成

DH926B微波分光仪系统主要由DH926B微波分光仪及DH1121B型三厘米固态信号源组成。

1.DH926B型微波分光仪的主要配件

序号 名称 数量

1分度转台 1

2喇叭天线 2

3可变衰减器 1

4晶体检波器 1

5视频电缆 1

6金属反射板 2

7单缝板 1

8双缝板 1

9半透射板 1

10模拟晶体(模拟晶体及支架) 1

11读数机构 1

12支座 1

13支柱 4

14模片 1

15技术说明书 1

3.DH1121B型三厘米微波固态信号源的主要配件

序号 名称 数量

1主机电源 1

2振荡器/隔离器单元 1

3技术说明书 1

4保险丝管(0.5A,1A) 各1

5电源线 1

6技术说明书 1

其中,DH1121B型的三厘米固态振荡器发出的信号具有单一的波长(出厂时信号调在32mm

λ=上),这种微波信号就相当于光学实验中要求的单色光束。三厘米固态振荡器上的调节千分尺是用来调节振荡器的频率的。

DH926B型微波分光仪的喇叭天线的增益大约是20分贝,波瓣的理论半功率点宽度大约为:H面是20°,E面是16°。当发射喇叭口面的宽边与水平面平行时,发射信号电矢量的偏振方向是垂直于水平面的;可变衰减器用来调节微波信号幅度的大小,衰减器的度盘指示越大,对微波信号的衰减也越大;晶体检波器可将微波信号变成直流信号或低频信号(当微波信号幅度用低频信号调制时)。

安装于分光仪旋转臂上的微安表是用来显示晶体检波器的检波电流的,一般情况下,由于微波功率很小,检波器的检波电流与接收喇叭所接收的功率成正比,及与接收电场幅值的平方成正比,也就是满足平方律检波。

注意:当以上这些元件连接时,各波导端口应对齐。如果连接不正确,则信号传输可能受到影响。

四、机械结构的安装与调整

本DH926B型微波分光仪分度转台的安装与调整已经完成,并放置在实验桌上,请同学们自行熟悉仪器,不要随意改动设置。

DH1121B型三厘米固态信号源的安装在DH926B型微波分光仪喇叭天线和可变衰减器后面。如要改变频率(或波长)参数,请参照波长表设定。

五、3cm固态信号源的基本操作规程

(1)开机前先不要连接振荡器的连线(取下“输出”)插座(?),打开电源,状态选“等幅”,电压表应指示12V,检查电流应接近于零。符号===è表示电源工作正常。为了防止意外,如需重新连线,应先关断电源,连好后再打开电源,此时信号源可以正常工作。

(2)每次开机前将衰减器调节至衰减最大(即将衰减器上的千分尺顺时针调节至极限),这是出于保护微安表的考虑。

(3)通过调节衰减器来控制发射喇叭天线的辐射功率,这可以通过与接收喇叭相连的晶体检波器的检波电流的大小来表示,一般情况下为了保证测量的精

μ左右;

度,检波电流指示控制在80A

(4)每次实验完毕,关断电源,并将检波器衰减调节至衰减最大。

实验一 电磁波反射实验

1.

实验目的

通过实验观察测量电磁波在传播方向上遇到金属或其它媒质,所产生的反射现象及规律。

2. 实验原理

x

图1 电磁波的反射

反射平面(图1)上半空间入射波与反射波的合成电场为

(,)jβξjβξE x z E e E e ′+???=+

在直角坐标系下

sin cos ξx θz θ=+ sin cos ξx θz θ′′′=?

在0z =的理想导体平面上,电场的切向分量应该为零,即(,0)0x E x =

sin sin (,0)cos cos 0jβx θjβx θx E x E θe E θe +???′=?=

要使上式成立,只有θθ′=,E E +?=。

3. 系统构建

(1) 将两个矩形角锥喇叭分别安装于分光仪的固定臂和旋转臂上,调节喇叭保证它们的口径面相互对准,即两个喇叭位置的指针分别指在工作台900刻度线处。或利用辐射电磁波进行调整,转动活动臂使微安表指示最大的位置,一般就表明两个喇叭口面对准了;

(2) 安装金属反射板,使反射板与支座上的一对刻度线平行,此时小平台上00刻度就与金属反射板的法线方向一致。

图2 反射实验系统

4. 实验步骤

(1) 按照信号源操作规程接通电源;

(2) 安装反射板,使反射板与刻度盘上的090刻度一致,此时刻度盘与反射板的法线方向一致;

(3) 转动工作台使入射角为030(即固定臂指针指向300刻度); (4) 调节衰减器使微安表的读数大小合适;

(5) 转动活动臂使微安计的指示最大,活动臂上指针所指读数即为反射角,这时调节衰减器使微安表读数为80A μ;

(6) 重复步骤(3)、(4)、(5)使入射角在003065:之间变化,测出不同情况下的反射角。

5. 实验报告

(1) 整理数据,列表说明; (2) 分析误差存在的原因;

6. 实验前的准备

(1) 到实验室熟悉所用元器件;

(2) 复习与实验内容相关的课堂教学内容。

实验二 单缝衍射

1.

实验目的

通过实验了解电磁波的衍射(绕射)现象,掌握衍射规律。

2. 实验原理

如图2所示,电磁波入射到缝隙上,

在缝隙上产生等效磁流,该等效磁流与入射场的幅度成正比,金属板背面的电磁场可以等效为该等效磁流的辐射,辐射幅度的大小与角度?的关系为

sin[(sin )/2]E ka φ∝

sin[(sin )/2]0ka φ=

(sin )2ka φnπ=,sin 22

λ

a φ=时衍射场出现一级极小值 当

sin[(sin )/2]1ka φ=

(sin )(22πka φn =+ sin (22

λ

a φn =+时衍射场出现一级极大值。

3.实验系统构建

(1) 发射和接收喇叭的安装与实验一相同;

(2) 调节单缝铝板,使缝的宽度为32mm ,或64mm ;

(3) 将单缝板安装到支座上,使铝板平面与小圆盘上的某一对刻度线一致,

图2 单缝衍射

z

90刻度的一对线一致;

此刻度线应与工作台上的0

180处,此时小平台的00就是

(4) 转动小平台使固定臂的指针指向小平台的0

缝隙平面的法线方向

图4 单缝衍射实验系统及单缝板

3.实验步骤

(1) 按照信号源操作规程接通电源;

(2) 调节衰减器使微安表的读数指示合适(如80μA);

(3) 从衍射角00开始,每改变01读取一次表头读数,并记录下来。做完

实验后关闭电源,将衰减器的衰减调至最大。

4.实验报告

(1) 整理数据,绘出曲线。

(2)标注一级极小,一级极大的角度。

(3)对实验现象的分析和讨论。

实验三 双缝干涉

1、实验目的

通过实验观察并测量双缝干涉的现象及特性。

2、实验原理

如图3所示,在一块金属板上相隔b 有两个宽度同为a 的缝隙,当电磁波垂直入射到该金属板时,在两个缝上均产生感应磁流,这两个缝隙可以看成为两个天线,金属板背面的场是这两个缝隙辐射场的叠加(干涉的结果)。

当b 的值较大时,即忽略两个缝隙之间的相互影响,则金属背面的场为

12E E E =+w v v

其中1E v 和2E v

分别为两个缝隙辐射的场,因为金属板与入射线垂直,则两个缝

隙上的感应磁流相同,即

121111

[()sin ]()sin 1111[()sin ]/2

1{}[1] 2sin[()sin ]

jkr jkr jkr jk r a b jkr jk a b jkr j k a b E E e E e E e e E e e jE e

e

k a b ??θθ?????+?+?+=+=+=+=+

则总场的幅度为

12sin[()sin E E k a b θ=+

因此当

sin[()sin ]/21k a b θ+=

[()sin ]/2(21)/2k a b n θπ+=+,

121sin 2n a b

λ

??+=+

图5 双缝干涉

时,总场(干涉场)出现加强) 当

sin[()sin ]/20k a b θ+=

[()sin ]/2k a b n θπ+=,

1sin [a b

λ

??=+

时,总场(干涉场)出现减弱。

3、实验系统构建

(1) 发射、接收喇叭安装同实验一,取工作波长32mm λ=; (2) 调节双缝铝板,使缝的宽度为40a mm =,130b mm =;

(3) 将双缝板安装到支座上,使铝板平面与小圆盘上的某一对刻度线一致,此刻度线应与工作台上的090刻度的一对线一致;

(4) 转动小平台使固定臂的指针指向小平台的0180处,此时小平台的00就是缝隙平面的法线方向;

图6 双缝干涉实验系统及双缝板

4、实验步骤

(1) 按照信号源操作规程接通电源;

(2) 调节衰减器使微安表的读数指到合适位置(80μA);

(3) 从衍射角00开始,每改变01读取一次表头读数,并记录下来。做完实验后关闭电源,将衰减器的衰减调至最大。

5、实验报告

(1) 整理数据,绘出曲线。

(2) 标注一级极小,一级极大的角度。

(3)对实验现象的分析和讨论。

实验四迈克尔逊干涉

1、实验目的

通过实验观察迈克尔逊干涉现象,掌握利用迈克尔逊干涉测量波长的方法。

2、实验原理

图7 迈克尔逊干涉

45夹角的低损如图7所示,在平面电磁波前进的方向放置一块与传播方向成0

耗介质板(实验中用玻璃板),由于该介质板的作用,将入射的电磁波分成为两束,一束穿透介质板继续前进,向反射板B方向传播,另外一束被介质板反射后向反射板A方向传播。到达可移动反射板B的波,被反射板B反射后,又到达介质板,其中一部分被介质板反射后到达接收喇叭;而到达反射板A的波,被反射板A反射后,又到达介质板,其中一部分穿过介质板也到达接收喇叭,因此接收喇叭接收到的是这两束电磁波的和,当两束电磁波的传播路程相同,或相差波长的整数倍时,接收喇叭接收的信号最强,当它们传播的路程相差为半波长的奇数倍时,接收喇叭接收到的信号最弱。通过移动反射板B,可以改变这两束电磁波的传播路程,使得接收喇叭接收到的信号由弱变强,或由强变弱,测得两个相邻最强或最弱时反射板所移动的距离L,就可以得到电磁波的波长,即λ=

2L

3、实验系统构建

(1) 发射、接收喇叭安装与前边实验相同;

(2) 使两个喇叭位置互成900;

(3) 介质板与两个喇叭的轴线互成450;

(4) 安装读数机构,将其固定在底座上,并插上金属反射板。

图8 迈克尔逊干涉实验系统

5、实验步骤

(1) 按照信号源操作规程接通电源;

(4)调节衰减器使微安表的读数指示合适(如80μA);

(3)操作传动机构,使反射板移动,若微安表指示最小时,记录下读数机构的读数,再缓慢移动反射板到下一个最小值,……。

6、实验报告

整理数据,计算波长并讨论实验现象。

实验五 偏振(极化)(一)

1、实验目的

通过实验观察、测量电磁波的偏振(极化)特性。

2、实验原理

平面电磁波是横波,它的电场强度矢量E 和波的传播方向垂直。如果E 在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫线偏振波。电磁场沿某一方向的能量有2sin φ的关系。这就是光学中的马吕斯(Malus)定律:20cos I I φ=,式中0I 为初始偏振光的强度,I 为偏振光的强度,φ是I 与0I 间的夹角。

图9 收发喇叭天线的极化

如图9所示,矩形角锥喇叭天线所发射出来的电磁波属于线极化波,极化方向与矩形喇叭宽边垂直,同时矩形角锥喇叭天线也只能接收与其宽边垂直的电磁波,如果两个喇叭之间有一个夹角?,则接收喇叭所接收到的电磁波的电场为

0cos E E ?=

20cos P P ?=

其中0E 和0P 为分别为接收喇叭极化相同时所接收到的电场和功率。

3、实验系统构建

(1)喇叭安装同实验一;

(2)保证两个喇叭的轴线与工作台面平行;

(3) 松开平台中心三个十字槽螺钉,取下工作台。

4、实验步骤

(1) 按照信号源操作规程接通电源;

(2)调节衰减器,使微安表的读数指示合适(如80μA);

(5)旋转接收喇叭(改变接收喇叭的极化方向),并记录每一个角度微安表的读数。

(6)实验结束,将衰减器调节至衰减最大,关闭电源。

5、实验报告

Iφ曲线。

绘出~

对实验现象的分析和讨论。

实验六 偏振(极化)(二)

1、实验目的

通过实验掌握利用极化栅产生圆极化的方法,掌握圆极化的特性及检测技术。

2、实验原理

如图10所示,将发射喇叭旋转450,则发射喇叭辐射的电磁波可以分解为水平极化和垂直极化波。由实验四已知,从发射喇叭发出的电磁波被介质板(此实验为玻璃板)分成两束波,一束为反射波,这部分波到达栅板1,栅板1只能将电场与金属丝平行的电磁波反射,而电场与金属丝垂直的电磁波则顺利穿过极化栅板,被后面的吸波材料吸收,被栅板1反射回来的电磁波,部分透过介质板到达接收喇叭,这部分电磁波为垂直极化波;同理,另一束从发射喇叭发出的电磁波,透过介质板直接传输到栅板2,电场与栅板2金属丝平行的部分被反射,垂直的部分透过金属栅被其后面的吸波材料吸收,反射回来的电磁波,部分被介质板反射到达接收喇叭,这部分电磁波为水平极化波,这样接收喇叭接收到的电磁波分别为栅板1和栅板2反射的电磁波,它们的极化方向相互垂直,幅度相同,再前后移动栅板2或栅板1,可以使它们的相位差达到90度,形成圆极化。

E //

i E i

E X

X

金属丝栅条

图10 圆极化波的产生及检测

3、实验系统构建

(1) 安装喇叭天线,使发射喇叭(固定臂)和接收喇叭(旋转臂)之间互成900,两个喇叭极化方向一致;

(2) 安装极化栅板,一个极化栅板(如板1)为固定安装,另一个则安装于读数器上,读数器安装于分光仪的指定位置,使极化栅板面与两个喇叭的轴线分别垂直,两个极化栅板的金属丝方向互相垂直;

(3) 安装介质板,使介质板与两个喇叭的轴线互成450。

图11 圆极化实验系统

4、实验步骤

(1) 按照信号源操作规程接通电源;

(2)调节衰减器的衰减量,使微安表的读数合适(如80微安); (3)旋转发射喇叭的极化方向为450;

(4)在00到900之间旋转接收喇叭,将出现在任意角度下αE E ⊥≤(或//E ),这时改变金属栅2的位置,使得//αE E E ⊥==,这样就实现了两个波的相位差为090±,得到圆极化波;

(5)由于测试条件的限制,αE 和E ⊥、//E 不能完全相等,当接收喇叭在

00~360旋转时,总会出现检波电压波动;但当min max /0.93E E ∝≥时,即椭圆度为0.93时,可以认为基本实现了圆极化波;

(6)旋转接收喇叭记下不同角度的检波电流,求出圆极化波的椭圆度; (7)实验结束,将衰减器调节至衰减最大,关闭电源。

5、实验报告

(1) 整理数据,绘出曲线; (2) 分析实验数据,得出结论; (3)对实验现象的分析和讨论。

实验七、左旋/右旋圆极化波

1、实验目的

通过实验观察测试左旋/右旋圆极化电磁波的特性,掌握利用介质片及圆波导产生圆极化波的方法。

2、实验原理

本实验主要使用DH30002型电磁波极化天线(如图12)和DH926B 型微波分光仪。

图12 DH30002型电磁波极化天线

10

11E 介质片

图13 DH30002型电磁波圆极化天线的工作原理

电磁波极化天线DH30002是由方圆波导转换、介质圆波导和圆锥喇叭组成。

介质圆波导可作360o

旋转,并有刻度指示给出转动的角度,当矩形波导中的TE 10

波经方圆波导转换到圆波导口面时,就过渡为圆波导的TE 11波,并可在介质圆波导内分成两个分量的波,即电场垂直于介质片平面的波和电场平行于介质面的波。本系统设计为频率在9370M H z (即32mm λ=)左右,使两个分量的波相位差

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

工程热力学实验 二氧化碳PVT实验指导书(2012.06.07)

二氧化碳临界状态观测及p-v-T关系的测定 一、实验目的 1. 观察二氧化碳气体液化过程的状态变化和临界状态时气液突变现象,增加对临界状态概念的感性认识。 2. 加深对课堂所讲的工质的热力状态、凝结、汽化、饱和状态等基本概念的理解。 3. 掌握二氧化碳的p-v-T关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。 4. 学会活塞式压力计、恒温器等部分热工仪器的正确使用方法。 二、实验原理 当简单可压缩系统处于平衡状态时,状态参数压力、温度和比容之间有确切的关系,可表示为: (,,)=0 (7-1-1) F p v T 或 =(,) (7-1-2) v f p T 在维持恒温条件下、压缩恒定质量气体的条件下,测量气体的压力与体积是实验测定气体p-v-T关系的基本方法之一。1863年,安德鲁通过实验观察二氧化碳的等温压缩过程,阐明了气体液化的基本现象。 当维持温度不变时,测定气体的比容与压力的对应数值,就可以得到等温线的数据。 在低于临界温度时,实际气体的等温线有气、液相变的直线段,而理想气体的等温线是正双曲线,任何时候也不会出现直线段。只有在临界温度以上,实际气体的等温线才逐渐接近于理想气体的等温线。所以,理想气体的理论不能说明实际气体的气、液两相转变现象和临界状态。 二氧化碳的临界压力为73.87bar(7.387MPa),临界温度为31.1℃,低于临界温度时的等温线出现气、液相变的直线段,如图1所示。30.9℃

是恰好能压缩得到液体二氧化碳的最高温度。在临界温度以上的等温线具有斜率转折点,直到48.1℃才成为均匀的曲线(图中未标出)。图右上角为空气按理想气体计算的等温线,供比较。 1873年范德瓦尔首先对理想气体状态方程式提出修正。他考虑了气体分子体积和分子之间的相互作用力的影响,提出如下修正方程: ()()p a v v b RT + -=2 (7-1-3) 或写成 pv bp RT v av ab 320-++-=() (7-1-4) 范德瓦尔方程式虽然还不够完善,但是它反映了物质气液两相的性质和两相转变的连续性。 式(7-1-4)表示等温线是一个v 的三次方程,已知压力时方程有三个根。在温度较低时有三个不等的实根;在温度较高时有一个实根和两个虚根。得到三个相等实根的等温线上的点为临界点。于是,临界温度的等温线在临界点有转折点,满足如下条件: ( )??p v T =0 (7-1-5)

机械工程测试技术基础实验指导书讲解

《机械工程测试技术基础》实验指导书实验一观测50Hz非正弦周期信号的分解与合成 一、实验目的 1、用同时分析法观测50Hz非正弦周期信号的频谱,并与其傅立叶级数各项的频率与系数作比较。 2、观测基波和其谐波的合成 二、实验设备 1、信号与系统实验箱:TKSS-A型或TKSS-B型或TKSS-C型: 2、双综示波器。 三、实验原理 1、一个非正弦周期函数可以用一系列频谱成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的 2、 3、 4、。。。、n等倍数分别称二次、三次、四次、。。。、n次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。 2、不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。 3、一个非正弦周期函数可用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式如下,方波频谱图如图2-1表示 图2-1方波频谱图

1、方波 ()?? ? ??++++= t t t t u t u m ωωωωπ7sin 715sin 513sin 31sin 4 2、三角波 ()?? ? ??++-= t t t U t u m ωωωπ5sin 2513sin 91sin 82 3、半波 ()?? ? ??+--+= t t t U t u m ωωωππ4cos 151cos 31sin 4212 4、全波 ()?? ? ??+---= t t t U t u m ωωωπ6cos 3514cos 1512cos 31214 5、矩形波 ()?? ? ??++++= t T t T t T U T U t u m m ωτπωτπωτππτ3cos 3sin 312cos 2sin 21cos sin 2图中LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。BPF 1~BPF 6为调谐在基波和 各次谐波上的带通滤波器,加法器用于信号的合成。 四、预习要求 在做实验前必须认真复习教材中关于周期性信号傅立叶级数分解的有关内容。 五、实验内容及步骤 1、调节函数信号发生器,使其输出50Hz 的方波信号,并将其接至信号分解实验模块 BPF 的输入端,然后细调函数信号发生器的输出频率,使该模块的基波50Hz 成分BPF

机械工程材料范文

核壳微粒型磁性液体的制备及其流变性能 顾瑞1,龚兴龙1,江万权2,郝凌云3,张忠4 (1.中国科学技术大学近代力学系,中国科学院材料力学行为和设计重点实验室,安徽合肥 230027;2. 中国科学技术大学化学系,安徽合肥 230026;3.阜阳师范学院,安徽阜阳 236032;4.国家纳米科学中心,北京 100080) 摘要:使用单分散Fe/SiO2椭球型微纳复合胶粒作为磁性微粒,将其用吐温20做表面修饰并分散于油性基液中制备得到磁性液体;使用流变仪对这种新型磁流体的流变性能进行了研究。结果表明,这种磁流体在承受垂直磁场方向的小剪切载荷时,其粘度会随磁感应强度的增加而变大;而当剪切率大于25s-1,其粘度又将减小并趋近于一个恒定值约0.5Pa·s;另外,其在承受小幅振荡剪切载荷时会表现出与典型磁流体不同的粘弹性特征。 关键词:磁性液体;核壳颗粒;流变性能 中图分类号: 文章编号: Preparation and Mechanical Characterization of Magnetic Fluid with Core-Shell Particles ,ZHANG Zhong GU Rui 112 ,GONG Xing-long ,JIANG Wan-quan , HAO Ling-yun 34 (1. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China;2. Department of Chemistry, University of Science and Technology of China, Hefei 230026, China; 3. Fuyang Normal College, Fuyang 236032, China; 4. National Center for Nanoscience and Technology, Beijing 100080, China) Abstract: Magnetic fluids were prepared by using monodispersed iron/silica (Fe/SiO2) ellipsoidal composite nanospheres as the magnetic materials,which were modified by Tween-20 and dispersed in an oily medium. The rheological properties of the magnetic fluids were studied in detail by rheometer. The Experimental investigation showed that increasing the magnetic field strength yielded an increase of the viscosity, while increasing shear rate leaded to a decrease of the viscosity and the value became a constant about 0.5 Pa·s when shear rate was larger than 25s-1; it was also indicated that the viscoelastic behavior of the magnetic fluids was different with that of the normal ones. Key words: Magnetic fluid; Core-shell particle; Rheological property 0 引言 磁性液体(又称磁流体),是一种胶体溶液,它兼具液体的流动性和固体的磁性,拥有十分独特的物理性能,且在重力场和磁场下不易沉淀和凝聚,因而在航空﹑电子﹑机械﹑冶金﹑石油化工 ﹑仪表等领域中得了广泛的应用。同他胶体体系一样,磁性液体在热力学上是不稳定体系,并具有凝结不稳定性和动力学不稳定性[1]。为使磁性颗粒能长期稳定地处于胶体状态,研究者对磁性颗粒、表面活性剂和基液作了很多研究,研究表明超微磁性颗粒的稳定性是磁流体研究的关键[2]。磁性微粒既需要有较高的 饱和磁化强度,又要有很强的抗氧化能力,因而可供选择的种类非常有限[3]。而Fe O作为传统磁流体的 34————————————————————— 收稿日期:2007-08-30 修订日期:2008-2-29 基金项目:国家重点基础研究发展计划资助项目(2007CB936803);中国科学院“百人计划”项目。

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

工程热力学实验指导书全解

实验一 空气定压比热容测定 一、实验目的 1.增强热物性实验研究方面的感性认识,促进理论联系实际,了解气体比热容测定的基本原理和构思。 2.学习本实验中所涉及的各种参数的测量方法,掌握由实验数据计算出比热容数值和比热容关系式的方法。 3.学会实验中所用各种仪表的正确使用方法。 二、实验原理 由热力学可知,气体定压比热容的定义式为 ( )p p h c T ?=? (1) 在没有对外界作功的气体定压流动过程中,p dQ dh M =, 此时气体的定压比热容可表示 为 p p T Q M c )(1??= (2) 当气体在此定压过程中由温度t 1被加热至t 2时,气体在此温度范围内的平均定压比热容可由下式确定 ) (1221 t t M Q c p t t pm -= (kJ/kg ℃) (3) 式中,M —气体的质量流量,kg/s; Q p —气体在定压流动过程中吸收的热量,kJ/s 。 大气是含有水蒸汽的湿空气。当湿空气由温度t 1被加热至t 2时,其中的水蒸汽也要吸收热量,这部分热量要根据湿空气的相对湿度来确定。如果计算干空气的比热容,必须从加热给湿空气的热量中扣除这部分热量,剩余的才是干空气的吸热量。 低压气体的比热容通常用温度的多项式表示,例如空气比热容的实验关系式为 3162741087268.41002402.41076019.102319.1T T T c p ---?-?+?-=(kJ/kgK) 式中T 为绝对温度,单位为K 。该式可用于250~600K 范围的空气,平均偏差为0.03%,最大偏差为0.28%。 在距室温不远的温度范围内,空气的定压比热容与温度的关系可近似认为是线性的,即可近似的表示为 Bt A c p += (4) 由t 1加热到t 2的平均定压比热容则为 m t t t t pm Bt A t t B A dt t t Bt A c +=++=-+=? 2 21122 1 21 (5) 这说明,此时气体的平均比热容等于平均温度t m = ( t 1 + t 2 ) / 2时的定压比热容。 因此,可以对某一气体在n 个不同的平均温度t m i 下测出其定压比热容c p m i ,然后根据最小二乘法原理,确定

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

二氧化碳临界状态观测及PVT关系工程热力学实验指导书

程热力学 氧化碳临界状态观测及 P-V-T 关系 一、实验目的 了解CO 2临界状态的观测方法,增加对临界状态概念的感性认识。 增加对课堂所讲的工质热力状态、凝结、汽化、饱和状态等基本概念的理解。 掌握CO 2的p-v-t 关系的测定方法,学会用实验测定实际气体状态变化规律的方法 学会活塞式压力计, 恒温器等热工仪器的正确使用方法。 二、实验内容 1、 测定CO 的p-v-t 关系。在P-V 坐标系中绘出低于临界温度(t=20 C)、临界温度 (t=31.1 C)和高于 临界温度(t=50 C)的三条等温曲线,并与标准实验曲线及理论计算值 相比较,并分析其差异原因。 2、 测定CQ 在低于临界温度(t=20 C 、27C )时饱和温度和饱和压力之间的对应关系, 并与图四中的t s -p s 曲线比较。 3、 观测临界状态 (1) 临界状态附近气液两相模糊的现象。 (2) 气液整体相变现象。 (3) 测定CQ 的p c 、V c 、t c 等临界参 数,并将实验所得的 V c 值与理想气体状态方程和范 德瓦 尔方程的理论值相比教,简述其差异原因。 三、实验设备及原理 整个实验装置由压力台、恒温器和实验台本体及其防护罩等三大部分组成(如图一所 示)。 1、 2、 3、 和技巧。 4、 图一 试验台系统图

蛍渥水 H -------------------------------- * CU J空间 承压玻璃 4” 十一 Ezz E力油 高压容器 图二试验台本体 试验台本体如图二所示。其中1—高压容器;2 —玻璃杯;3 —压力机;4—水银;5—密 封填料;6—填料压盖;7 —恒温水套;8—承压玻璃杯;9—CQ空间;10—温度计。、 对简单可压缩热力系统,当工质处于平衡状态时,其状态参数P、V、t之间有:F( p,v,t)=0 或t=f(p,v) (1) 本实验就是根据式(1),采用定温方法来测定CQ的p-v-t关系,从而找出CQ的p-v-t关系。 实验中,由压力台送来的压力由压力油进入高压容器和玻璃杯上半部,迫使水银进入预 先装了CQ气体的承压玻璃管,CQ被压缩,其压力和容器通过压力台上的活塞杆的进、退来调节。温度由恒温器供给的水套里的水温来调节。 实验工质二氧化碳的压力,由装在压力台上的压力表读出(如要提高精度,可由加在活塞转盘上的平衡砝码读出,并考虑水银柱高度的修正) 。温度由插在恒温水套中的温度计读 出。比容首先由承压玻璃管内二氧化碳柱的高度来测量,而后再根据承压玻璃管内径均匀、截面不变等条件来换算得出。 四、实验步骤 1、按图一装好实验设备,并开启实验本体上的日光灯。 2、恒温器准备及温度调节: (1)、入恒温器内,注至离盖30?50mm检查并接通电路,开动电动泵,使水循环对

机械工程材料实验与实践教学

《机械工程材料》实验与实践教学 实验一铁碳合金平衡组织分析 一、实验目的 1. 熟练运用铁碳合金相图,提高分析铁碳合金平衡凝固过程及组织变化的能力。 2. 掌握碳钢和白口铸铁的显微组织特征。 二、原理概述 铁碳合金相图是研究碳钢组织、确定其热加工工艺的重要依据。按组织标注的铁碳相图见图。铁碳合金在室温的平衡组织均由铁素体(F)和渗碳体(Fe3C)两相按不同数量、大小、形态和分布所组成。高温下还有奥氏体(A)和δ固溶体相。 利用铁碳合金相图分析铁碳合金的组织时,需了解相图中各相的本质及其形成过程,明确图中各线的意义,三条水平线上的反应及反应产物的本质和形态,并能做出不同合金的冷却曲线,从而得知其凝固过程中组织的变化及最后的室温组织。 根据含碳量的不同,铁碳合金可分为工业纯铁、碳钢及白口铸铁三大类,现分别说明其组织形成过程及特征。 1. 工业纯铁 碳的质量分数小于0.0218%的铁碳合金称为工业纯铁。见图1-1。当其冷到碳在α-Fe中的固溶度线PQ以下时,将沿铁素体晶界析出少量三次渗碳体,铁素体的硬度在80HB左右,而渗碳的硬度高达800HB,因工业纯铁中的渗碳体量很少,故硬度、强度不高而塑性、韧性较好。

图1-1 工业纯铁组织 2. 碳钢 碳的质量分数C w 在(0.0218~2.11)%之间的铁碳合金称为碳钢,根据合金在相图中的位置可分为亚共析、共析和过共析钢。 (1)共析钢 成分为%77.0=C w ,在727℃以上的组织为奥氏体,冷至727℃时发生共析反应: {}{}C Fe F A C C 3%0218.0%77.0+→ 将铁素体与渗碳体的机械混合物称珠光体(P )。室温下珠光体中渗碳体的质量分数约为12%,慢冷所得的珠光体呈层片状。 图1-2 珠光体电镜组织 图1-3 珠光体光镜组 织 采用电子显微镜高倍放大能看出Fe 3C 薄层的厚度,图1-2中窄条为Fe 3C ,

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

工程热力学课程教案完整版

工程热力学课程教案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

《工程热力学》课程教案 *** 本课程教材及主要参考书目 教材: 沈维道、蒋智敏、童钧耕编,工程热力学(第三版),高等教育出版社,2001.6手册: 严家騄、余晓福着,水和水蒸气热力性质图表,高等教育出版社,1995.5 实验指导书: 华北电力大学动力系编,热力实验指导书,2001 参考书: 曾丹苓、敖越、张新铭、刘朝编,工程热力学(第三版),高等教育出版社,2002.12 王加璇等编着,工程热力学,华北电力大学,1992年。 朱明善、刘颖、林兆庄、彭晓峰合编,工程热力学,清华大学出版,1995年。 曾丹苓等编着,工程热力学(第一版),高教出版社,2002年 全美经典学习指导系列,[美]M.C. 波特尔、C.W. 萨默顿着郭航、孙嗣莹等 译,工程热力学,科学出版社,2002年。 何雅玲编,工程热力学精要分析及典型题精解,西安交通大学出版社,2000.4 概论(2学时) 1. 教学目标及基本要求 从人类用能的历史和能量转换装置的实例中认识理解:热能利用的广泛性和特殊性;工程热力学的研究内容和研究方法;本课程在专业学习中的地位;本课程与后续专业课程乃至专业培养目标的关系。 2. 各节教学内容及学时分配 0-1 热能及其利用(0.5学时) 0-2 热力学及其发展简史(0.5学时) 0-3 能量转换装置的工作过程(0.2学时) 0-4 工程热力学研究的对象及主要内容(0.8学时) 3. 重点难点 工程热力学的主要研究内容;研究内容与本课程四大部分(特别是前三大部分)之联系;工程热力学的研究方法 4. 教学内容的深化和拓宽 热力学基本定律的建立;热力学各分支;本课程与传热学、流体力学等课程各自的任务及联系;有关工程热力学及其应用的网上资源。 5. 教学方式 讲授,讨论,视频片段 6. 教学过程中应注意的问题

中南大学机械工程测试技术实验指导书

机械工程测试技术基础 实验报告 学号:0801130801 学生: 俞文龙 指导老师:邓春萍

实验一电阻应变片的粘贴及工艺 一、实验目的 通过电阻应变片的粘贴实验,了解电阻应变片的粘贴工艺和检查方法及应变片在测试中的作用,培养学生的动手能力。 二、实验原理 电阻应变片实质是一种传感器,它是被测试件粘贴应变片后在外载的作用下,其电阻丝栅发生变形阻值发生变化,通过阻桥与静动态应变仪相连接可测出应变大小,从而可计算出应力大小和变化的趋势,为分析受力试件提供科学的理论依据。 三、实验仪器及材料 QJ-24型电桥、万用表、兆欧表、电烙铁、焊锡、镊子、502胶、丙酮或酒精、连接导线、防潮材料、棉花、砂纸、应变片、连接片。 四、实验步骤 1、确定贴片位置 本实验是在一梁片上粘贴四块电阻应变片,如图所示: 2、选片 1)种类及规格选择 应变片有高温和常温之分,规格有3x5,2x4,基底有胶基箔式和纸基箔式。常用是3*5

胶基箔式。 2)阻值选择: 阻值有120欧,240欧,359欧,500欧等,常用的为120欧。 3)电阻应变片的检查 a.外观检查,用肉眼观察电阻应变是否断丝,表面是否损坏等。 b.阻值检查:用电桥测量各片的阻值为配组组桥准备。 4)配组 电桥平衡条件:R1*R3 = R2*R4 电桥的邻臂阻值小于0.2欧。 一组误差小于0.2% 。在测试中尽量选择相同阻值应变 片组桥。 3.试件表面处理 1) 打磨,先粗打磨,后精细打磨 a. 机械打磨,如砂轮机 b. 手工打磨,如砂纸 打磨面积应大于应变片面积2倍,表面质量为Ra = 3.2um 。应成45度交叉打磨。因为这样便于胶水的沉 积。 2)清洁表面 用棉花粘积丙酮先除去油污,后用酒精清洗,直到表面干净为止。 3)粘贴。涂上502胶后在电阻应变片上覆盖一薄塑料模并加压,注意电阻应变片的正反面。反面涂胶,而正面不涂胶。应变片贴好后接着贴连接片。 4)组桥:根据要求可组半桥或全桥。 5)检查。 用万用表量是否断路或开路,用兆欧表量应变片与被测试件的绝缘电阻,静态测试中应大于100M欧,动态测试中应大于50M欧。 6)密封 为了防止电阻应变被破坏和受潮,一般用AB胶覆盖在应变片上起到密封和保护作用,为将来长期监测做好准备。 五实验体会与心得 本次亲自动手做了应变片的的相关实验,对应变片有了进一步的认识,通过贴应变片组成电桥,认识并了解了应变片的粘贴工艺过程,以及对应变片在使用之前是否损坏的检查。通过实验,进一步了解了应变片在试验中的作用,同时也锻炼了自身的动手能力。

《机械工程材料》实验指导书-江洁实验一硬度试验

机械工程材料 实 验 指 导 书 红河学院机械系

实验一硬度实验 【实验目的】 1.进一步加深对硬度概念的理解。 2.了解布氏、洛氏硬度计的构造和作用原理。 3.熟悉布氏硬度、洛氏硬度的测定方法和操作步骤。 【实验设备及材料】 布氏硬度计、洛氏硬度计、读数显微镜、试样(钢、铸铁或有色金属)一组。 【实验原理】 硬度计的原理是:将一定直径球体压入试样表面,保持一定的时间后卸除试验力,测量试样表面的压痕直径,用试验力压出一压痕表面面积计算硬度。 1.布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2) ,布氏硬度计适用于铸铁等晶粒粗大的金属材料的测定。 2.洛氏硬度(HR)当HB大于450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计。它是用一个顶角120°的金刚石圆锥体或直径为1.59、 3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的硬度标尺HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。HRB:是采用100kg 载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 一、布氏硬度实验 【布氏硬度计】 THBS-3000DA采用电子自动加荷,计算机软件编程,高倍率光学测量,采用自动数字式编码器直接测量,测试结果LCD显示。 图1 THBS-3000DA型布氏硬度试验机 【试样的技术条件】

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

二氧化碳PVT实验指导书

第七章工程热力学综合实验 实验1 二氧化碳临界状态观测及p-v-T关系的测定 一、实验目的 1. 观察二氧化碳气体液化过程的状态变化和临界状态时气液突变现象,增加对临界状态概念的感性认识。 2. 加深对课堂所讲的工质的热力状态、凝结、汽化、饱和状态等基本概念的理解。 3. 掌握二氧化碳的p-v-T关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。 4. 学会活塞式压力计、恒温器等部分热工仪器的正确使用方法。 二、实验原理 当简单可压缩系统处于平衡状态时,状态参数压力、 间有确切的关系,可表示为: (,,)=0 (7-1-1) F p v T 或 =(,)(7-1-2) v f p T 在维持恒温条件下、压缩恒定质量气体的条件下,测量气体的压力与体积是实验测定气体p-v-T关系的基本方法之一。1863年,安德鲁通过实验观察二氧化碳的等温压缩过程,阐明了气体液化的基本现象。 当维持温度不变时,测定气体的比容与压力的对应数值,就可以得到等温线的数据。 在低于临界温度时,实际气体的等温线有气、液相变的直线段,而理想气体的等温线是正双曲线,任何时候也不会出现直线段。只有在临界温度以上,实际气体的等温线才逐渐接近于理想气体的等温线。所以,理想气体的理论不能说明实际气体的气、液两相转变现象和临界状态。

二氧化碳的临界压力为73.87b a r (7.387M Pa ),临界温度为31.1℃,低于临界温度时的等温线出现气、液相变的直线段,如图1所示。30.9℃是恰好能压缩得到液体二氧化碳的最高温度。在临界温度以上的等温线具有斜率转折点,直到48.1℃才成为均匀的曲线(图中未标出)。图右上角为空气按理想气体计算的等温线,供比较。 1873年范德瓦尔首先对理想气体状态方程式提出修正。他考虑了气体分子体积和分子之间的相互作用力的影响,提出如下修正方程: ()()p a v v b R T + -=2 (7-1-3) 或写成 pv bp RT v av ab 3 2 -++-=() (7-1-4) 范德瓦尔方程式虽然还不够完善,但是它反映了物质气液两相的性质和两相转变的连续性。 式(7-1-4)表示等温线是一个v 的三次方程,已知压力时方程有三个根。在温度较低时有三个不等的实根;在温度较高时有一个实根和两个虚根。得到三个相等实根的等温线上的点为临界点。于是, 临界温度的等温线在临界点有转折

机械工程测试技术试卷4,有答案

一、 填空题(20分,每空1分) 1.测试技术是测量和实验技术的统称。工程测量可分为 静态测量 和 动态测量 。 2.测量结果与 被测真值 之差称为 测量误差 。 3.将电桥接成差动方式习以提高 灵敏度 ,改善非线性,进行 温度 补偿。 4.为了 补偿 温度变化给应变测量带来的误差,工作应变片与温度补偿应变片应接在 相邻 桥臂上。 5.调幅信号由载波的 幅值携带信号的信息,而调频信号则由载波的 频率 携带信号的信息。 6.绘制周期信号()x t 的单边频谱图,依据的数学表达式是 傅氏三角级数中的各项系数 ,而双边频谱图的依据数学表达式是 傅氏复指数级数中的各项系数 。 7.信号的有效值又称为 均方根值 ,有效值的平方称为 均方值2ψ ,它描述测试信号的强度(信号的平均功率)。 8.确定性信号可分为周期信号和非周期信号两类,前者频谱特点是 离散的 ,后者频谱特点是 连续的 。 9.为了求取测试装置本身的动态特性,常用的实验方法是 频率响应法 和 阶跃响应法 。 10.连续信号()x t 与0()t t δ-进行卷积其结果是:0()()x t t t δ*-= 0()x t t - 。其几何意义是 把原函数图像平移至0t 位置处 。 二、 选择题(20分,每题2分) 1.直流电桥同一桥臂增加应变片数时,电桥灵敏度将(C)。 A .增大 B .减少 C.不变 D.变化不定 2.调制可以看成是调制信号与载波信号(A)。

A 相乘 B .相加 C .相减 D.相除 3.描述周期信号的数学工具是(D)。 A .相关函数 B .拉氏变换 C .傅氏变换 D.傅氏级数 4.下列函数表达式中,(B)是周期信号。 A .5cos100()00 t t x t t π? ≥?=? ?

机械工程材料习题答案

机械工程材料习题答案 第二章作业 2-1常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?-Fe、-Fe、Al、Cu、Ni、Cr、V、Mg、Zn各属何种结构? 答:常见晶体结构有3种: ⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn 2---7为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性? 答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。 第三章作业 3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。 答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒

小 第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好?试用多晶体塑性变形的特点予以解释。 答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是: (1)强度高:Hall-Petch公式。晶界越多,越难滑移。 (2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。 (3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15天,然后 再精加工。试解释这样做的目的及其原因? 答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)? 答:W、Sn的最低再结晶温度分别为: TR(W) =(0.4~0.5)×(3410+273)-273 =(1200~1568)(℃)>1000℃TR(Sn) =(0.4~0.5)×(232+273)-273 =(-71~-20)(℃) <25℃ 所以W在1000℃时为冷加工,Sn在室温下为热加工

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验 2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题 目录 一、电磁场仿真软件——Matlab的使用入门……………............................................... .4 二、单电荷的场分

布 (10) 三、点电荷电场线的图像 (12) 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17) 实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、 ^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是 一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6) y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2; plot(x,y1,x, y2,x, y3) (二)几个绘图命令 1. doc命令:显示在线帮助主题 调用格式:doc 函数名 例如:doc plot,则调用在线帮助,显示plot函数的使用方法。 2. plot函数:用来绘制线形图形 plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y 坐标数据。 plot(x,y,s)

相关文档
最新文档