杆塔的接地电阻

杆塔的接地电阻
杆塔的接地电阻

架空送电线路杆塔接地的作用是在雷击状态下将冲击电流或雷电流通过杆塔基础的自然接地和人工水平接地体导入大地,以保护设备的安全。 一、杆塔的接地电阻测量标准

有避雷线的杆塔均应接地。在雷季干燥时,每基杆塔不连避雷线时的工频接地电阻,不宜超过表4—17的数值。

运行中杆塔接地电阻测量值应按设计要求作为标准。 表4—17 每基杆塔不连避雷线时的工频接地电阻最大值

Rg ——工频接地电阻,Ω; ρ一土壤电阻率,Ω?m ; L ——接地体总长度,m ;

A ——水平接地体形状系数,见表4—

18和表4—19。 表4—18 水平接地体形状系数 表4一19 单射线水平接地体最大长度 (2))在ρ≤300Ω?m 的地区可考虑杆塔基础的自然接地作用。因混凝土毛细孔中渗透水分,其电阻率接近土壤,杆塔自然接地电阻值推荐表4—20供测试中参考。 表4一20 杆塔自然接地电阻值推荐值

三、接地电阻测量

(一)采用ZC 一8型测试仪

测量接地电阻须用专门的仪表,通常采用ZC一8型接地电阻测量仪。这种测量仪是按补偿法原理做成的,有三个端钮和四个端钮两种。有四个端钮时,应将“P2和“C2”短接后再接至被测的接地体。三端钮式测量仪的“P2和“C2”已在内部短接,故只引出一个端钮“E”测量时直接将E接至被测接地体即可。端钮“P”和“C”分别接上电压辅助探针和电流辅助探针,并将探针按规定的距离插入地中。

1.对电压辅助探针和电流辅助探针的要求

在利用接地电阻测量仪测量接地电阻时,辅助探针本身的接地电阻是测量的关键。如果探针的接地电阻太大时,会直接影响仪器的灵敏度,甚至测不出数来。电流辅助探针本身的接地电阻应不大于250Ω,电压辅助探针本身的接地电阻应不大于1000Ω。这些数值对大多数种类土壤来说是容易达到的。如在高土壤电阻率地区进行测量时,可将探针周围的土壤用盐水弄湿,其本身的接地电阻就会大大降低。探针一般采用直径为0.5cm,长度为0.5m的镀锌铁棒做成。

2.电力线路杆塔接地电阻的测量方法

(1)测量前将仪器放平,然后调零,使指针指在红线上。

(2)将被测杆塔接地体和端钮E连接,电压探针和电流探针分别与仪器的端钮P1、C1连接,其电极布置一般如图4—18所示。图4—18中为接地体最长放射线长度,电流探针至接地体的距离d13。一般取的4倍,电压探针至接地体的距离d12。取的2.5倍。

(3)所有连线截面一般应小于1~1.5mm2。

(4)使用摇表,当发现有干扰、指针摆动时,应注意改变几个转动速度,以避免外界的干扰,使指针稳定。图4—18电极布置

3.使用接地电阻摇表的注意事项

(1)应以120r/min的速度均匀摇动仪器摇把。

(2)选取适当倍率。读表值应乘以倍率比即可确定接地电阻值。

(3)沿按顺线路方向和垂直方向设置辅助接地电极P1、C1。杆塔中心距P1的距离应约等于5倍杆塔底部的对角线宽度,P1连接于摇表P1旋钮,C1连接于摇表C1旋钮,P2、C2短接于铁塔。

(二)采用钳型表

推荐使用钳型接地电阻测量仪测量接地电阻的注意事项。

(1)应根据被测点土壤电阻率设定临界值,以免误报警。

(2)测量时,只保留一根接地引线,其他接地极和被测杆塔断开。使接地杆塔连接,但不在本杆塔构成回路。

(3)当显示“NOISS”则表示被测点干扰电流太大,测值不准。

(4)当显示“钩”图像时则表示接地极夹未夹好。

四、接地电阻测试时间和周期

(一)接地电阻测试时间

测量接地电阻一般应在每年1~3月、11~12月时间段进行,测量应在良好天气进行,遇有雷雨天应禁止测量,禁止雨后测量接地电阻。

(二)接地电阻测试周期

接地电阻测试同期应按相应试验规程和有关规定执行。

一般线段,每5年测量一次接地电阻,发电厂变电所进出线段1~2km及特殊点,每2年测量一次接地电阻。

五、土壤电阻率的测量

土壤电阻率是决定接地电阻的主要因素,根据土壤类型以及土壤中所含水分的性质和含水量,土壤电阻在相当大的范围内会变动。运行中杆塔因周边土地环境变化,土壤电阻率也会发生变化,因此土壤电阻率是对特殊地段的抽查,校核接地电阻可靠性的重要检测手段。

推荐使用接地电阻测试仪测量土壤电阻率,选用仪器应满足下列条件:便携、全自动数字显示、抗干扰抑制电压40V、测试电压500V、测试电流(20Ω一10mA、200Ω~lmA、2~2kΩ—0.1mA)、测量精度2%。1.土壤电阻率的测量

如图4—19所示,在被测地区,按照直线排列埋在土壤内的四根棒,它们之间的距离为α,棒的埋入深度h应不低于α/20,电极分别为C1、P 1、P 2、C2。用四端钮接地电阻测量仪时,可将仪器四个端钮分别接在C1、P 1、P 2、C2电极上。从C1、C2端通人电流,则C1、C2对内侧两个电极P 1、P 2上产生的电位为:

图4—19土壤电阻率的测量

因为P 1、P 2两点间的电位差为:

所以土壤电阻率为:

(Ω.m) (4—6)

式中R——实测的接地电阻读数,Ω;

α——棒之间的距离,m。

2.测量方法

用4根直径20mm、长0.5~1.0m的毛钢或钢管作电极,极间距离可选取20m左右,埋深小于间距1/20。测出的土壤电阻率不一定是一年中的最大值,应按下式校正:

ρmax =Ψρ

式中:ρmax——土壤最大电阻率,Ω?m;

Ψ一土壤干燥季节系数,如表4—21所示干燥时取小值,潮湿取大值。

表4—21 土壤干燥系数

装有避雷线的杆塔工频接地电阻值如表4—22所示。

表4—22 装有避雷线的杆塔工频接地电阻值(上限)

3.土壤和水的电阻率参考值(见表4—23)

表4—23 土壤和水的电阻率参考值

4.测土壤电阻率时的注意事项

(1)应在测区找不同的4~6点进行测量,全面了解电阻率水平方向的分布情况。

(2)为了解土壤分层情况,应参考表4—23中电阻率进行测量。

(3)测量时尽可能避开地下管线。

(4)测量应在良好天气进行,并且测前一周无雨。

(5)在测量干燥岩石和粘土时,由于它们内部存在一些具有溶解盐的间隙水,应注意它的电阻率决定于水分含量、电解溶液的浓度和物理化学性质。

避雷线分流对杆塔接地电阻测量的影响

避雷线分流对杆塔接地电阻测量的影响 发表时间:2019-07-16T16:24:17.150Z 来源:《基层建设》2019年第12期作者:张全升陈惠敏韩雪 [导读] 摘要:采用电流-电压三极法测量架空线路杆塔的工频接地电阻时,架空避雷线对注入杆塔地网的测量电流具有分流作用,从而影响接地电阻的测量精度。 河南送变电建设有限公司河南郑州 450007 摘要:采用电流-电压三极法测量架空线路杆塔的工频接地电阻时,架空避雷线对注入杆塔地网的测量电流具有分流作用,从而影响接地电阻的测量精度。建立了架空避雷线对注入杆塔地网的测量电流的分流模型,分析了避雷线分流的程度和影响分流效果的因素及其影响规律。 关键词:杆塔;接地电阻;架空避雷线;分流;相角差 1 前言 目前杆塔工频接地电阻的测量方法主要是电流压三极法和钳表法。由于钳表法在原理上具有很大的局限性,杆塔工频接地电阻的测量宜采用电流-电压三极法。 2 杆塔接地电阻阻抗试验 各个接入地电流以及接地网中分散的电流在空间任一点产生的点位总量就是此点的电位,这就是电场叠加原理。接地网中的主接地网、电缆线路以及架空点设置组成了接地网的拓扑结构。电流经过接地网时,其拓扑系统中的架空地线能够对经过的电流形成分流作用,我们通过节点电流的规律可以得出,在接地线路中同一时间、同一节点的电流流入量和电流流出量的值是相等的。 2.1 使用接地电阻测试仪等仪器 这种测试方案不能直接进行测试。因所有杆塔接地装置都是并联在一起,使用这种注入电流的测试方案,会因接地装置的分流,而导致测试结果偏小,造成很大的数据误差,所以使用注入电流的方案测试,需要将杆塔接地装置与避雷线断开,同时设置辅助电极进行测试。 2.2 使用钳形接地电阻表进行测试 这种方案不需要外接设备电源,不需要断开接地导体,不需要设置辅助电极,测试时只需要用钳表卡在接地导体上,即可测试此杆塔的接地电阻。如果忽略分流部分,直接用测量电流进行接地电阻计算,会使得测量电阻值小于真实接地电阻值;而忽略分流电流与测量电流的相角差,通过用分流系数修正接地电阻测量值,来消除分流影响的做法并不准确,同样会造成较大的测量误差。用钳型接地电阻测试仪测量电力线路杆塔接地电阻方法简单,测量结果可信度高,但只能用于有架空地线的高压线路上,测量时待测杆塔只允许存在一条接地引下线,如各塔脚的地网是不连通的,应将其余各脚的接地引下线拆开后用临时线与测量脚的引下线连通(连通点在钳表之下)。通过对测量结果的分析,可以判断出各塔脚的地网是否连通,接地引下线是否存在接触不良的隐患。 本文在分析避雷线分流原理的基础上,建立架空避雷线对注入杆塔地网的测量电流的分流模型;在此基础上通过对模型的仿真分析,指出避雷线分流大小的主要影响因素及其影响规律。此外,对测量计算接地电阻时是否考虑分流作用以及是否考虑分流电流的相位进行对比分析,指出用分流系数修正接地电阻值而忽略分流电流与测量电流之间的相角差的弊端。 避雷线又称架空地线,架设在杆塔顶部,一根或二根,用于防雷,110-500kV线路一般沿全线架设。在测量时应断开避雷线或地下金属管网的连接,这样才能测量出实际的接地网的接地阻抗。运行中的接地网均与输变线的避雷线,地下金属管网相联,这些均影响测量的实测值,会使接地电阻值变小,不能得到接地网的真实接地电阻值。因此国标DL475-92《接地装置工频特性参数的测量导则》;GB/T17949.1-2000《接地系统的土壤电阻率、接地阻抗和地面电位测量导则》规定在测量接地网接地电阻时,应将其联结断开,但在实际工作中往往无法实现。为了能较准确的测量发电厂、变电站接地网接地电阻的实际值,并能与设计值进行比较,做出安全性评估的结论,应排除避雷线对其测量值的影响。 3 测量杆塔工频接地电阻的方法 3.1 钳表法测量杆塔接地电阻 目前110kV及以下输电线路巡检工作通常采用钳表法测量杆塔工频接地电阻。钳表法由于其具有快速测试、操作简单等优点因此被普遍使用,但是使用钳表测量时必须满足所测线路杆塔具有避雷线,且多基杆塔的避雷线直接接地的要求,且该种测量方法在着精度不高特,而且钳口法测量采用电磁感应原理,易受干扰,测量误差比较大,不能满足高精度测量要求。 其中Rx为被测杆塔的接地电阻,R1,R2...Rn分别为通过避雷线连接的各基杆塔的接地电阻;E为接地装置的对地电压,即接地体与大地零电位参考点之间的电位差;I为通过接地装置泄放人大地的电流。 不过接地引下线并不是不能拆除,而是拆除工作比较繁琐,10m一下防松防盗,同时反复拆卸会对杆塔的主材造成有形磨损,容易造成主材生锈等不利影响,同时指出三极法并非是真正意义的“工频杆塔接地电阻测试”,而钳表法受方法影响,地线的感应电压造成测试的误差不准确的特点。 钳表法虽然使用起来简单方便,工作量小,但对于钳形接地电阻测试仪最理想的应用是用在分布式多点接地系统中。架空输电线路在满足以下条件时可以使用钳表法测量工频接地电阻: (1)杆塔所在输电线路具有避雷线,且多基杆塔的避雷线直接接地。 (2)测量所在线路区段中直接接地的避雷线上并联的杆塔数量满足表规定。 3.2 测量杆塔接地电阻的方法 (1)如果在雷雨天气,输电线路受到雷电的袭击导致线路出现跳闸的现象,在测量时必须要按照DL/T621-1997《交流电气装置的基地电阻测试导则》中对杆塔接地电阻测量的要求故障杆塔的电流辅助射线是人工敷设接地线长的4倍,而电压测量的辅助射线长度是人工敷设接地线长度的2.5倍。只有按照这个要求进行测量,才能为技术部门提供准确的数据,使防雷设施能够更有效,从而真正保证输电线路的正常运行。 (2)如果对正常使用的杆塔的接地电阻进行两年或者是五年的周期检测时,可以按照DL/T741《架空送电线路运行规程》中的规定进行,在检测过程中最好是使用法国生产的C?A6411钳型接地电阻检测仪。如果采用这种仪器进行检测可以不用铺设接地辅助射线,在检测过

杆塔接地电阻改造方法分析

杆塔接地装置改造方法探讨 张文彬 四川省电力公司超特高压运行检修公司 乐山市市中区 关键词:输电线路雷害电阻改造方法

目录1、概述

杆塔接地装置改造方法探讨 [摘要]:架空输电线路杆塔接地电阻直接影响电力系统的安全稳定运行,降低杆塔接地电阻是提高线路耐雷水平的重要措施;本文从分析雷击跳闸的方式入手,详细分析了乐山电业局线路工程处线路二班2009年以前管辖线路的杆塔接地装置、杆塔接地电阻的状况以及杆塔接地电阻不合格的原因,对2003-2008年杆塔接地装置改造过程中使用的一些有效方法进行了探讨;如有不正之处请各位专家斧正。[正文]: 1.概述 1.1乐山电业局线路工程处线路运行二班主要管辖乐山电网内220kV六条、500kV线路1条,所管线路主要经过乐山市的峨边、金口河、峨眉地区,该地区处于小凉山和金口大峡谷边缘,山峦起伏、地形剧变、峰高谷深,线路长度达600余km, 杆塔800多基。线路所过的峨边、金口河、峨眉地区年均雷暴日达40,为重雷区。以500kV 普天线2006-2008年线路跳闸分析情况为例(见表1),雷击跳闸约占28.5%,可见雷击跳闸的事故率是相当高的。 表1:500kV普天线2006-2008年线路跳闸分析

1.2.雷击跳闸的类型及与杆塔接地电阻的关系 1.2.1 以DL/T620-1997《交流电气装置的过电压保护和绝缘配合》中500kV典型的酒杯塔尺寸和绝缘子串的50%雷电冲击绝缘水平为例,500kV线路耐雷水平与杆塔接地电阻的关系为(见表2) 由表2可见,杆塔接地电阻的大小直接关系着线路的耐雷水平 1.2.2 有关资料显示,对于110kV及以上电压等级的输电线路,危害线路的主要是直击雷。直击雷主要分为反击和绕击两种形式。根据输电线路的运行经验,区别绕击和反击有几点方法可供参考(见表3)表3:区分绕击与反击的一般方法 1.2.3 从表2、表3不难看出,杆塔接地电阻过大是雷击跳闸故

输电线路杆塔接地电阻测量方法

输电线路杆塔接地电阻测量方法 文章介绍了输电线路杆塔工频接地电阻的测量方法:三极法和钳表法。分别介绍了这两种方法的工作原理及测量方法,并将测量结果进行比较,比较发现,三极法测量繁琐,工作量大,但测量准确;钳表法测量方法简单,仪器携带方便,但测量结果偏差较大。最后得出结论:将三极法和钳表法配合使用的方法效率最高、测量结果最可靠。 标签:杆塔;接地电阻;测量方法;三极法;钳表法 1 概述 接地电阻就是电流由接地装置流入大地再经大地向远处扩散所遇到的电阻[1]。输电线路杆塔接地电阻的大小,直接关系到线路的耐雷水平,影响输电线路遭受雷击时的安全运行。线路的接地电阻越小,线路耐雷水平越高,线路雷击跳闸率越小[2]。因此,输电线路杆塔工频接地电阻的测量非常重要,准确地测量可以及时对接地电阻较高的输电线路杆塔进行改造,降低线路雷电事故,保证高压输电线路安全稳定运行,防止输电线路雷击跳闸事故的发生,提高供电系统的可靠性[3]。 2 接地电阻测量方法 输电线路杆塔接地电阻测量的方法主要有三种:伏安法、三极法和钳表法。伏安法比较繁琐、工作量大,且受外界干扰极大,已经基本淘汰。目前,常用的方法主要是三极法和钳表法,这两种方法各有优缺点,采用三极法测量接地电阻准确,而且测量方法简单,性能稳定,但测量时需要的人力物力较多,效率低;采用钳表法测量接地电阻比三极法方便、快捷省力,只要用钳表钳住接地线引下线就能测出接地电阻,效率高,但有时会有比较大的测量误差。所以工作人员必须十分熟悉这两种测量方法的工作原理、测量方法及相关要求,结合被测杆塔的实际情况选择适当的测量方法。 2.1 三极法测量接地电阻 三极法是由接地装置、电流极和电压极组成三个电极测量接地电阻的方法[4]。在输电线路杆塔附近分别布置电流极和电压极,用电压表测量接地装置G 与电压极P之间的电位差Ug,电流表测量通过接地装置流入地中的电流Ig,得到了Ug和Ig,就可以求出接地装置的工频接地电阻Rg,即Rg=Ug/Ig,如图1所示。在使用三极法测量时要合理布置电流极和电压极的位置,其布置方式主要有两种:直线法和夹角法。 2.1.1 直线三极法 电压极与电流极测量线在同一水平线上,如图1。电流极C到被测杆塔距离

ZC-8型接地电阻测量仪及其使用方法

一、土壤电阻率检测仪 (本指导书主要介绍ZC-8型接地摇表) 一、定义 土壤电阻率检测仪也称接地摇表,主要用语直接测量各种接地装置的接地电阻值。目前,ZC-8型接地摇表有两种,一种为三个端钮;另一种为四个端钮。 二、结构 ZC-8型接地电阻测量仪主要是由手摇发电机、相敏整流放大器、电位器、电流互感器及检流计等构成,全部密封在铝合金铸造的外壳内。仪表都附带有两根探针,一根是电位探针,另一根是电流探针。 (三端钮的接地摇表)(四端钮的接地摇表) 三、仪表量程 ZC-8型接地摇表有两种量程,一种是0-1-10-100Ω;另一种是0-Ω。 四、正确读数 ZC-8型接地摇表的数字盘上显示为1、2、3…10共10个大格,每个大格中有10个小格。三端钮的接地摇表倍数盘内有1、10、100三种倍数;四端钮的接地摇表倍数盘内有、1、10三种倍数。在规定转速内,仪表指针稳定时指针所

指的数乘以所选择的倍数即是测量结果。如:当指针指在,而选择的倍数为10时,测量出来的电阻值为×10=88Ω (三端钮摇表最大倍率)(四端钮摇表最大倍率) 五、对接地探针的要求 用接地摇表测量接地电阻,关键是探针本身的接地电阻,如果探针本身接地电阻较大,会直接影响仪器的灵敏度,甚至测不出来。一般电流探针本身的接地电阻不应大于250Ω,电位探测针本身的接地电阻不应大于1000Ω,这些数值对大多数种类的土质是容易达到的。如在高土壤电阻率地区进行测量,可将探针周围的土壤用盐水浇湿,探针本身的电阻就会大大降低。探针一般采用直径为,长度为的镀锌铁棒制作而成。 六、仪表好坏检查 1、外观检查。先检查仪表是否有试验合格标志,接着检查外观是否完好;然后看指针是否居中;最后轻摇摇把,看是否能轻松转动。 2、开路检查。三个端钮的接地摇表:将仪表电流端钮(C)和电位端钮(P) 短接,然后轻摇摇表,摇表的指针直接偏向读数最大方向;四端钮的接 地摇表:将仪表上的电流端纽(C1)和电位端纽(P1)短接,再将接地两端 钮(C2、P2)短接[我们常说的两两相接],然后轻摇摇表,摇表的指针直

ETCR2000 钳形接地电阻测试仪接地电阻测量方法.

1. 多点接地系统 某些建筑物等),它们通过架空地线(通信电缆的屏蔽层)连接,组成了接地系统。见下图。 R0为所有其它杆塔的接地电阻并联后的等效电阻。 虽然,从严格的接地理论来说,由于有所谓的“互电阻”的存在,R0并不是通常的电工学意义上的并联值(它会比电工学意义上的并联值稍大),但是,由于每一个杆塔的接地半球比起杆塔之间的距离要小得多,而且毕竟接地点数量很大,R0要比R1小得多。因此,可以从工程角度有理由地假设R0=0。这样,我们所测的电阻就应该是R1了。

多次不同环境、不同场合下与传统方法进行对比试验,证明上述假设是完全合理的。 2. 有限点接地系统 这种情况也较普遍。例如有些杆塔是5个杆塔通过架空地线彼此相连;再如 某些建筑物的接地也不是一个独立的接地网,而是几个接地体通过导线彼此连接。在这种情况下,如果将上图中的R0视为0则会对测量结果带来较大误差。出于与上述同样的理由,我们忽略互电阻的影响,将接地电阻的并联后的等效电阻按通常意义上的计算方法计算。这样,对于N 个(N 较小,但大于2)接地体的接地系统,就可以列出N 个方程: R 1 + 1 ++ ...... +2 R 3 R N 1= R 1T =R 2T ++...... +R 1R 3R N 1R N +=R NT ++...... +R 1R 2R (N -1 R 2+ 其中:R1、R2、…….RN 是我们要求得的N 个接地体的接地电阻。R1T 、 R2T 、……RNT 分别是用钳表在各接地支路所测得的电阻。 这是一个有N 个未知数,N 个方程的非线性方程组。它是有确定解的,但是人工解它是十分困难的,当N 较大时甚至是不可能的。 为此,请选购我公司的有限点接地系统解算程序软件,用户即可使用办公电脑或手提电脑进行机解。从原理上来说,除了忽略互电阻以外,这种方法不存在忽略R0所带来的测量误差。但是,用户需要注意的是:您的接地系统中,有几个彼此相连接的接地体,就必须测量出同样个数的测试值供程序解算,不能或多或少。而程序也是输出同样个数的接地电阻值。 3. 单点接地系统 从测试原理来说,ETCR2000系列钳表只能测量回路电阻,对单点接地是测不出来的。但是,用户完全可以利用一根测试线及接地系统附近的接地极,人为地制

冲击接地电阻模型对输电线路耐雷水平的比较研究_刘杰

收稿日期:2014-10-29 作者简介:刘杰(1988—),男,硕士,助理工程师,现从事电力系统过电压防护工作。 冲击接地电阻模型对输电线路耐雷水平的比较研究 刘 杰1,刘 春2,周国伟1,刘 德1,顾用地1 (1.国网浙江省电力公司检修分公司,杭州310018;2.华中科技大学电气与电子工程学院,武汉430074) 摘要:对规程法冲击接地电阻模型、火花效应接地电阻模型以及暂态接地电阻模型等三种 不同的接地模型进行了分析。结合220kV 双回输电线路,在ATP/EMTP 中建立了相应的输电线路耐雷水平模型。在该耐雷模型中,使用无损多波阻抗模拟输电线路杆塔,同时考虑了工频电压对耐雷水平的影响。分别在工频电压初相角为0°、60°、120°、180°、240°以及300°等6种情况下计算了模型的反击和绕击耐雷水平。仿真结果表明:在相同的条件下,反击耐雷水平从高到低依次为火花效应模型、规程法模型、暂态电阻特性模型,而这三种接地模型下的线路绕击耐雷水平一样。随着电源初相角的改变,输电线路耐雷水平也随之发生相应改变。 关键词:冲击接地电阻;输电线路杆塔;耐雷水平;火花放电模型;暂态电阻模型 Study on Impulse Grounding Resistance Model to Lightning Withstand Level of Transmission Line LIU Jie 1,LIU Chun 2,ZHOU Guowei 1,LIU De 1,GU Yongdi 1 (1.Maintenance Company of State Grid Zhejiang Electric Power Company,Hangzhou 310018,China ;2.School of Electric and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China ) Abstract :Impulse grounding resistance has a big impact on transmission line lightning withstand level.Three models of the impulse grounding resistance such as procedure method model,spark discharge model and transient resistance model are https://www.360docs.net/doc/be14848809.html,bined 220kV double transmission lines,a model of transmission line lightning withstand level in ATP/EMTP is made,in which lossless multi-wave impedance is used to simulate transmission line tower,and the effect of power voltage is also considered.Respectively,the initial phase of 0°,60°,120°,180°,240°and 300°,etc.,is considered to calculate the lightning withstand levels of counterattack and shielding failure.It is shown that under the same conditions,the counterattack withstand level from high to low in turn,the order is spark discharge model,procedure method model,transient resistance model.The shielding failure lightning level of these three models is almost the same.With the change of the initial phase of power voltage,the withstand level also change accordingly. Keywords:Impulse grounding resistance ;transmission line tower ;lightning withstand level ;spark discharge model ;transient resistance model 引言 架空线路杆塔接地对电力系统的安全稳定运行 至关重要,降低杆塔接地电阻是提高线路耐雷水平,减少线路雷击跳闸率的主要措施[1]。现行的研究中 有对变电站接地网冲击接地电阻的研究[2-6],也有对输电线路杆塔冲击接地电阻的研究[7-13]。输电线路杆塔冲击接地电阻的大小直接影响线路的耐雷水平,而以往的研究中多以固定的冲击接地电阻进行研究,这样势必降低了冲击接地电阻对耐雷水平的影 2015年第6期(总第268期) 2015年12月电瓷避雷器 Insulators and Surge Arresters No6.2015(Ser.№.268) Dec.2015 DOI :10.16188/j.isa.1003-8337.2015.06.023

接地电阻摇表使用方法及标准

接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇表,在电力系统以及电信系统比较普及的是钳式接地摇表。 凡施工图上有防雷接地装置的建筑物、构筑物、配电室、高压输电线路等,当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量;单位工程竣工时还要进行复测,作为工程竣工的资料之一。 以ZC29B-2型摇表测试方法如下: (1)在E-E两个接线柱测量接地电阻时,用镀铬铜板短接,并接在随仪表配来的5m长纯铜导线上,导线的另一端接在待测的接地体测试点上。测量屏蔽体电阻时,应松开镀铬铜板,一个E接线柱接接地体,另一个E接线柱接屏蔽。 (2)P柱接随仪表配来的20m纯铜导线,导线另一端接插针。 (3)C柱接随仪表配来的40m纯铜导线,导线的另一端接插针2。 2 接地电阻测试仪设置的技术要求 (1)接地电阻测试仪应放置在离测试点1~3m处,放置应平稳,便于操作。 (2)每个接线头的接线柱都必须接触良好,连接牢固。 (3)两个接地极插针应设置在离待测接地体左右分别为20m和40m的位置;如果用一直线将两插针连接,待测接地体应基本在这一直线上。 (4)不得用其他导线代替随仪表配置来的5m、20m、40m长的纯铜导线。 (5)如果以接地电阻测试仪为圆心,则两支插针与测试仪之间的夹角最小不得小于120°,更不可同方向设置。 (6)两插针设置的土质必须坚实,不能设置在泥地、回填土、树根旁、草丛等位置。 (7)雨后连续7个晴天后才能进行接地电阻的测试。 (8)待测接地体应先进行除锈等处理,以保证可靠的电气连接。 3 接地电阻测试仪的操作要领

杆塔接地电阻测量新技术

杆塔接地电阻测量新技术 A N ew T echno logy fo r M easu ring Earth ing R esistance of Po les &Tow ers 广州电力工业局送电管理所 罗真海 陈雄一 萧定辉 (广州510245) 收稿日期:1997205204 送电线路杆塔必须有可靠的接地,以确保雷电流导泄入大地,保护线路绝缘。为提高杆塔耐雷水平,围绕如何降低杆塔接地电阻(特别是高阻地区)做了大量工作,取得了一些功效。为确保接地电阻符合设计值要求,运行规程规定要周期测量杆塔接地电阻,测量仪器基本沿用四极电阻测量仪(如 ZC 28型),在操作方法正确及地理环境允许的前提下,ZC 28 型能基本完成对地网接地电阻的测量。但是,传统四极电阻测量仪需配备200m 长的测量导线和2根辅助地极,又必须拆开所有接地引下线方能测量,工作量大。另外,由于人为和环境因素,可能出现较大的测量误差。如果接地电阻高,而误测量为低电阻(山区多见,地形所限,当地极打在地网附近时),将存在雷击跳闸率高的隐患;如果本身接地电阻小,而误测量为高电阻(如下面讨论的接触电阻),将浪费改造资金。因此,一直在寻找一种方便、可靠的测量技术。进一步分析后,发现传统方法的致命弱点,即只能测量地网的接地电阻。而雷电流是从杆塔顶部通过塔身及地网泄入大地的,从导泄雷电流的角度讲,应关心整个泄流通道的电阻,而不仅仅是地网的接地电阻。提出一种包括整个通道在内的接地系统接地电阻的测量方法,根据测量结果,提出了各种杆塔接地系统中,存在的薄弱环节及处理方法。这种处理方法对提高杆塔耐雷水平有重大意义。 1 测量原理 C .A 6411钩式接地电阻测量仪的工作原理如图1所示, “电源线圈” 提供一个已知高频恒定交流电压E E =e N g (1) 式中 e ——电源的内部电压。 图1 接地电阻测量仪工作原理 电压E 通过架空地线、杆塔地网及大地组成的回路,流过电流I I =E R (2)电流I 再被内置于表内的“接收线圈”的二次线圈所转换 I =i ×N r (3) 已知电压e ,并测量i ,则由式(1、2、3)计算得 R l oop =(e i )×常数 (4) 式中 R l oop ——测量回路的电阻(表显示的电阻)。 待测杆塔接地电阻R x 与 R l oop 有近似相等的关系,分析如下: 对于多点接地系统,此仪器的测量回路如图2所示。 图2 测量回路 通常,测量回路由以下4部分组成:(1)R x 是待测量的杆塔接地电阻;(2)R earth 是大地电阻,通常远远小于18;(3) R parallel 是R 1∥R 2∥……∥R n ,该线路其余各基杆塔接地电阻 并联值,送电线路的杆塔基数一般大于100基,所以,并联值很小;(4)R guard w ire 是架空地线的电阻,通常小于18。即 R l oop =R x +R parallel +R earth +R guard w ire ≈R x 根据该仪器的工作原理,总结出一套C 1A 6411在送电线路上的使用方法,总的原则是该条线路必须多点接地,待测杆塔必须只有一条接地引下线。此套方法简单适用,可信度高,现已在广州电力局线路上投入使用。 为证明C 1A 6411测试方法的准确性,与传统ZC 28型接地电阻测量仪作了大量对比试验,在接地系统接触良好的情况下,测量结果是准确的,部分测量结果见表1。 表1 部分测量结果 线路名称电压等极 (kV )杆号 C 1A 6411测量值(8)ZC 28测量值(8)相对误差 (%) 郭马线1101610181015418黄郭线22016125182612115茶郭线22070241225 312赤扬线 110 11 419 415 8 2 测量结果分析及处理方法 用C 1A 6411对杆塔接地电阻进行抽样测试,发现杆塔接地系统存在如下比较普遍的问题。 — 07—1997年第10期 中 国 电 力 第30卷

杆塔接地电阻测量

杆塔接地电阻测量

1 适用范围 1.1 本作业指导书适用于10kV-35kV架空送电线路测量杆塔接地电阻标准化作业。 1.2 本作业指导书规定了测量接地电阻所需的人员配置、工器具要求、天气及作业现场的要求、检修作业工序、工艺质量记录卡等内容。 1.3 本作业指导书适用于四川省电力公司所属的各供电企业(公司)。 2 引用文件 2.1 DL/T 887-2004《杆塔工频接地电阻测量》 2.2GBJ 233 《110~500kV架空电力线路施工及验收规范》 2.3 《国家电网公司电力安全工作规程》(电力线路部分)(试行) 2.4 DL/T 5092—1999 《110kV-500kV架空送电线路设计技术规程》 2.5 DL/T 741—2001 《架空送电线路运行规程》 2.7 《电力建设安全工作规程》(架空电力线路部分) 2.9 国电发[2002]659号《输电网安全性评价(试行)》 2.10 国电发[2002]777号《电力安全工器具预防性试验规程》(试行) 2.11 国电发[2003]481号《架空输电线路管理规范》

6.2.1一般性规定 a)采用三极法测量前,应将杆塔塔身与接地极之间的电气连接全部断开。 b)测量前应核对被测杆塔的接地极布置型式和最大射线长度,记录杆塔编号、接地极编号、接地极型式、土壤状况和当地气温。c)布置电流极和电压极时,宜避免将电流极和电压极布置在接地装置的射线方面上。 d)在工业区或居民区,地下可能具有部件或完全埋地的金属物件时,电极应布置在与金属物体垂直的方向上,并且要求最近的测量电极与地下管道之间距离不小于电极之间的距离。 e)电压极和电流极的辅助接地电阻不应超过测量仪表规定的范围。在测量时,测量电极插入土壤深度不低于0.6米,并与土壤接触良好。 f)测量时应注意保持接地电阻测试仪各接线端子、电极和接地装置等电气连接的接触良好。g)测量接线时,应尽量缩短接地电阻测试仪的接地端子与接地装置之间的引线长度。 h)当杆塔是单点接地时,只测试一个电阻值,当杆塔是两点或四点接地时,必须每个接地点都应进行测量,且每个电阻值都应进行记录。 i)所测得的接地电阻值应根据土壤干燥及潮湿情况乘以季节系数后才是最终的接地电阻值。 杆塔防雷接地装置的季节系数为:

用摇表测接地电阻的方法和参数

一般使用的是摇表测量 接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇表,在电力系统以及电信系统比较普及的是钳式接地摇表。 凡施工图上有防雷接地装置的建筑物、构筑物、配电室、高压输电线路等,当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量;单位工程竣工时还要进行复测,作为工程竣工的资料之一 你搞错了,你所说的这种ZC25-3型表是兆欧表,是不能用来测接地电阻的,只能测某线路或设备间的绝缘电阻或其对地的绝缘电阻,因为绝缘电阻越大越好,所以用兆欧(1000000欧),型号普遍都是为ZC25等 而接地电阻值是越小越好的,所以一般要求测能到0.01欧及以下,这种接地电阻仪型号一般为ZC29开头,上面一般有四个端子:C1、C2、P1、P2(还有一种三个端子,分别为E、P、C),其中C2和P2是连通的(带接地符号),直接接被测物接地极;然后P1端接20米线,拉直后将探针插入地下;C1端接40米线,拉直后要和接地极以及之前插入地下的探针在同一直线上,在这个位置插入第二根探针。

摇表的时候保持摇速120转/分,打好1x几,大转盘的一格就是几,转动大转盘使指针停在中间,大转盘上被箭头对准的数就是电阻值。 比如如打好1x0.1,大转盘上被箭头对准的数是2.2,电阻值就是为0.22欧。 摇表使用及接地电阻测试 收藏此信息打印该信息添加:佚名来源:未知 接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇表,在电力系统以及电信系统比较普及的是钳式接地摇表。 凡施工图上有防雷接地装置的建筑物、构筑物、配电室、高压输电线路等,当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量;单位工程竣工时还要进行复测,作为工程竣工的资料之一。以ZC29B-2型摇表测试方法如下: (1)在E-E两个接线柱测量接地电阻时,用镀铬铜板短接,并接在随仪表配来的5m长纯铜导线上,导线的另一端接在待测的接地体测试点上。

浅议输电线路杆塔接地设计

浅议输电线路杆塔接地设计 摘要:降低杆塔接地电阻是提高杆塔耐雷水平、降低雷击跳闸率的重要途径。对输电线路的雷击跳闸率进行的冲击分析表明,山区多雷区的输电线路频频发生雷击跳闸故障,测量雷击故障所在杆塔的接地电阻大部分都偏大。进一步检测分析,杆塔接地装置均不同程度地存在一些缺陷,而原因或是设计不尽合理、或是施工不严格规范、或是运行环境恶劣、或是运行维护不及时。利用各自优点而改进的接地电阻测量新方法,并提出了几种理接地电阻超标值的方法。送电线路杆塔必须可靠接地,以确保雷电流泄入大地,保护线路绝缘。为提高耐雷水平,保护设备绝缘和避免跨步电压产生的人身伤害,就一定要降低杆塔的接地电阻。 关键词:输电线路杆塔接地设计 一、引言 输电线路杆塔接地装置是输电线路的重要组成部分,是接地体和接地引下线的总称,接地电阻是指接地体散流电阻、接地引下线电阻和接触电阻的总和。其作用是确保雷电流可靠泄入大地,保护线路设备绝缘,减少线路雷击跳闸率,提高运行可靠性和避免跨步电压产生的人身伤害。对输电线路杆塔接地装置进行规范管理和维护,确保接地装置完整性是降低输电线路雷击跳闸率的有效措施,降低接地装置接地电阻是提高线路耐雷水平的主要措施。 输电线路杆塔接地装置是输电线路的重要组成部分,是输电线路防

雷的主要措施,其设计、施工及运行维护的好坏直接关系到输电线路杆塔耐雷水平的高低和输电线路的安全稳定运行,为此需要对杆塔接地装置的设计、施工和竣工验收开展全过程、全方位的技术监督,同时要加强运行维护管理,对存在缺陷或不合格的接地装置及时进行改造处理,直至满足相关要求。输电线路杆塔接地装置改造推荐采用增加垂直接地体、加长接地带、改变接地形式、换土或采用接地新技术(如接地模块、阴极保护阳极接地)等措施进行,原则上不使用化学降阻剂。对混凝土杆存在导通接触不良的情况,推荐采用混凝土杆外引接地,即利用一定截面的扁钢从架空地线悬挂点引至接地体进行接地。 二、我国输电线路杆塔接地情况: 输电线路是电力系统的大动脉,它将巨大的电能输送到四面八方,是连接各个变电站、个重要用户的纽带。输电线路的安全运行,直接影响到了电网的稳定和向用户的可靠供电。因此,输电线路的安全运行在电网中占据举足轻重的地位,是实现强电强网的需要,也是向工农业生产、广大人民生活提供不间断电力的需要。 1、我国架空输电线路地基基础工程现状 我国幅员辽阔,各个地区的地质条件相差很大,所采用的输电线路基础形式也较为多样。 其中西北地区主要为黄土地基,也存在部分沙漠及岩石地基。黄土地基使用的基础形式主要有刚性台阶式基础和插入式基础,部分软弱地基则主要采用钻孔灌注桩。西北地区黄土具有湿陷性,常采用二灰换添法,石灰和素土的比例一般采用2:8或3:7,对重点塔位的地基重点处

杆塔接地电阻测试作业指导书

前言 为提高电网公司供电企业输变电设备的运行、检修、试验水平,规操作方法,确保人身和设备安全,由电网公司生产技术部组织,编写了目前我公司输电线路杆塔接地装置接地电阻测试作业指导书。编写中遵循了我国标准化、规化和国际通用的贯标模式的要求。该指导书纳入公司生产技术管理标准体系。 本指导书由电网公司生产技术部提出。 本指导书由电网公司生产技术部归口。 本指导书由省电力试验研究院(集团)负责编写。 本指导书主编人:宇民 本指导书主要起草人:宇民 本指导书主要审核人: 本指导书审定人: 本指导书批准人: 本指导书由电网公司生产技术部负责解释。

目次 1 目的 (1) 2 适用围 (1) 3 引用标准 (1) 4 支持性文件 (1) 5 技术术语 (1) 6 安全措施 (1) 7 作业准备 (2) 8 作业周期 (2) 9 工期定额 (2) 10 设备主要技术参数 (2) 11 作业流程 (2) 12 作业项目、工艺要求及质量标准 (2) 13 作业中可能出现的主要异常现象及对策 (9) 14 作业后的验收与交接 (9)

输电线路杆塔接地电阻测试作业指导书 1目的 为规电网公司的供电企业输电线路杆塔的接地电阻测试作业方法,保证安全,提高试验质量。 2适用围 适用于电网公司供电企业输电线路杆塔的接地电阻试验作业。 3引用标准 下列标准所包含的条文,通过引用而构成本作业指导书的条文。本书出版时,所示版本均为有效。所有标准都会被修订,使用本书的各方,应探讨使用下列标准最新版本的可能性。 GB/T 17949.1-2000《接地系统的土壤电阻率、接地阻抗和地面电位测量导则第1部分:常规测量》DL/T 887-2004《杆塔工频接地电阻测量》 DL/T 475-2006《接地装置工频特性参数的测量导则》 DL/T 621-1997 《交流电气装置的接地》 Q/CSG 10007-2004《电力设备预防性试验规程》 4支持性文件 高压电气设备试验方法 《电力技术监督系统》(待批) 5技术术语 接地体:埋入地中并直接与接触的金属导体,称为接地体。接地体分为水平接地体和垂直接地体。 接地引下线:电力设备应接地的部位与地下接地体或中性线之间的金属导体,称为接地引下线。 接地装置:接地体和接地引下线的总和,称为接地装置。 接地电阻:接地体或自然接地体的对地电阻和接地线电阻的总和,称为接地装置的接地电阻。接地电阻的数值等于接地装置对地电压与通过接地体流入地中电流的比值。 工频接地电阻:按通过接地体流入地中工频交流电流求得的电阻,称为工频接地电阻。 6安全措施 。 6.1试验应在干燥季节进行。进入工作现场的工作人员必须戴安全帽。

降低杆塔冲击接地电阻的有效方法

降低杆塔冲击接地电阻的有效方法 江西省电力科学研究院 章叔昌 [摘要] 输电线路的跳闸原因大多由雷击引起,降低输电线路雷击跳闸率的主要措施之一是降低线路杆塔接地装置的冲击接地电阻。本文对杆塔接地装置的基本冲击特性进行了论述,提出了降低杆塔接地装置冲击接地电阻的基本原则。介绍了采用接地模块环形集中接地方式对线路杆塔接地装置进行防雷接地改造的基本方法,总结了采用该方式对一条输电线路杆塔进行接地改造后的效果。 [关键词] 高压输电线路;防雷接地;冲击接地电阻;接地模块 1 概述 高压输电线路的跳闸原因大多由雷击引起,直接影响供电的可靠性。输电线路杆塔接地装置的主要作用是泄放雷电流,当雷电直击输电线路塔顶或避雷线时,雷电流将经过杆塔及其接地装置向大地流散。在此过程中,雷电流在杆塔的电感及其接地装置的接地阻抗(通常称其为接地电阻)上产生的压降将会使塔顶电位升高,当这一电位升高达到一定值时会使线路的绝缘子串击穿,从而可能引起输电线路因雷电过电压造成的反击而跳闸。对于一般高度的杆塔,引起塔顶电位升高的主要因素是线路杆塔的接地电阻。因此,杆塔的接地电阻是影响输电线路反击耐雷水平的重要参数。由于雷电流高频高幅值的特点,使接地装置的冲击接地电阻与工频接地电阻之间存在显著差异。当雷电流通过杆塔及其接地装置向大地散流时,使塔顶电位升高起主要作用的是冲击接地电阻而不是工频接地电阻。因此要降低线路的雷击跳闸率,主要措施之一是降低线路杆塔的冲击接地电阻。 2 杆塔接地装置的基本冲击特性 冲击接地电阻与工频接地电阻之所以存在较大区别,其主要原因之一是由于高幅值的雷电冲击电流流过接地装置时,会引起接地体周围的土壤发生电离(火花效应),土壤电离后的作用相当于增大了接地体的截面积,因此会使冲击接地电阻降低。但是当接地体的截面积足够大时,这种火花效应将不明显。传统的杆塔接地装置主要是放射型接地体,当放射型接地体通过雷电流时,沿接地体长度方向各点上的电位差别很大,因此引起周围土壤电离的长度很有限,而当放射型接地体的长度超过一定值后,对雷电流的泄放所起的作用将非常小;另外,雷电流在通过接地装置向大地流散过程中会发生一系列复杂的过渡过程,在该过程中的每一时刻接地装置所呈现的冲击接地电阻都存在差异,而且呈现的最大冲击接地电阻有可能并不是雷电流到达幅值的时刻。同时由于雷电流的陡度,即di/dt 很大,因此当雷电流经接地装置向大地散流时,在接地装置接地阻抗中感性分量上的压降不容忽视。对于射线式接地装置其本身的电感与其长度成正比,长度越长则其呈现的电感则越大,因此射线式接地装置的冲击系数将随其长度的增加而增大。 有关的研究结果表明,接地装置的冲击特性主要与土壤电阻率、接地装置的几何形状及尺寸、雷电流的波形及幅值密切相关。 3 降低杆塔冲击接地电阻的基本原则 根据波过程理论,接地装置的冲击接地电阻ch R 是雷电波通过接地装置向大地流散时所遇到的 波阻抗,即C L R ch ,因此要降低接地装置的冲击接地电阻,应该设法增加散流路径中的电容和 减小散流路径中的电感。

ZC-8型接地电阻测量仪使用方法

一、接地电阻检测仪 (本指导书主要介绍ZC-8型接地摇表) 一、定义 接地电阻测量仪也称接地摇表,主要用语直接测量各种接地装置的接地电阻值。目前,我局的ZC-8型接地摇表有两种,一种为三个端钮;另一种为四个端钮。 二、结构 ZC-8型接地电阻测量仪主要是由手摇发电机、相敏整流放大器、电位器、电流互感器及检流计等构成,全部密封在铝合金铸造的外壳。仪表都附带有两根探针,一根是电位探针,另一根是电流探针。 (三端钮的接地摇表)(四端钮的接地摇表)三、仪表量程 ZC-8型接地摇表有两种量程,一种是0-1-10-100Ω;另一种是0-10-100-1000Ω。我局现有的接地摇表中,三个端钮的量程为0-10-100-1000Ω;四个端钮的量程为0-1-10-100Ω。 四、正确读数

ZC-8型接地摇表的数字盘上显示为1、2、3…10共10个大格,每个大格中有10个小格。三端钮的接地摇表倍数盘有1、10、100三种倍数;四端钮的接地摇表倍数盘有0.1、1、10三种倍数。在规定转速,仪表指针稳定时指针所指的数乘以所选择的倍数即是测量结果。如:当指针指在8.8,而选择的倍数为10时,测量出来的电阻值为8.8×10=88Ω (三端钮摇表最大倍率)(四端钮摇表最大倍率) 五、对接地探针的要求 用接地摇表测量接地电阻,关键是探针本身的接地电阻,如果探针本身接地电阻较大,会直接影响仪器的灵敏度,甚至测不出来。一般电流探针本身的接地电阻不应大于250Ω,电位探测针本身的接地电阻不应大于1000Ω,这些数值对大多数种类的土质是容易达到的。如在高土壤电阻率地区进行测量,可将探针周围的土壤用盐水浇湿,探针本身的电阻就会大大降低。探针一般采用直径为0.5cm,长度为0.5m的镀锌铁棒制作而成。 六、仪表好坏检查 1、外观检查。先检查仪表是否有试验合格标志,接着检查外观是否完好;然后看指针是否居中;最后轻摇摇把,看是否能轻松转动。 2、开路检查。三个端钮的接地摇表:将仪表电流端钮(C)和电位端钮(P)

杆塔接地电阻测试作业指导书

杆塔接地电阻测试作业 指导书 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

前言 为提高云南电网公司供电企业输变电设备的运行、检修、试验水平,规范操作方法,确保人身和设备安全,由云南电网公司生产技术部组织,编写了目前我公司输电线路杆塔接地装置接地电阻测试作业指导书。编写中遵循了我国标准化、规范化和国际通用的贯标模式的要求。该指导书纳入公司生产技术管理标准体系。 本指导书由云南电网公司生产技术部提出。 本指导书由云南电网公司生产技术部归口。 本指导书由云南省电力试验研究院(集团)有限公司负责编写。 本指导书主编人:陈宇民 本指导书主要起草人:陈宇民 本指导书主要审核人: 本指导书审定人: 本指导书批准人: 本指导书由云南电网公司生产技术部负责解释。

目次 1目的.....................................................................................................................1 2适用范围 (1) 3引用标准 (1) 4支持性文件 (1) 5技术术语 (1) 6安全措施 (1) 7作业准备 (2) 8作业周期 (2) 9工期定额 (2) 10设备主要技术参数 (2) 11作业流程 (2) 12作业项目、工艺要求及质量标准 (2) 13作业中可能出现的主要异常现象及对策 (9) 14作业后的验收与交接 (9)

输电线路杆塔接地电阻测试作业指导书 1目的 为规范云南电网公司的供电企业输电线路杆塔的接地电阻测试作业方法,保证安全,提高试验质量。 2适用范围 适用于云南电网公司供电企业输电线路杆塔的接地电阻试验作业。 3引用标准 下列标准所包含的条文,通过引用而构成本作业指导书的条文。本书出版时,所示版本均为有效。所有标准都会被修订,使用本书的各方,应探讨使用下列标准最新版本的可能性。 GB/T 《接地系统的土壤电阻率、接地阻抗和地面电位测量导则第1部分:常规测量》 DL/T 887-2004《杆塔工频接地电阻测量》 DL/T 475-2006《接地装置工频特性参数的测量导则》 DL/T 621-1997 《交流电气装置的接地》 Q/CSG 10007-2004《电力设备预防性试验规程》 4支持性文件 高压电气设备试验方法 《云南电力技术监督系统》(待批) 5技术术语 接地体:埋入地中并直接与大地接触的金属导体,称为接地体。接地体分为水平接地体和垂直接地体。 接地引下线:电力设备应接地的部位与地下接地体或中性线之间的金属导体,称为接地引下线。 接地装置:接地体和接地引下线的总和,称为接地装置。 接地电阻:接地体或自然接地体的对地电阻和接地线电阻的总和,称为接地装置的接地电阻。接地电阻的数值等于接地装置对地电压与通过接地体流入地中电流的比值。 工频接地电阻:按通过接地体流入地中工频交流电流求得的电阻,称为工频接地电阻。 6安全措施

相关文档
最新文档