直线与圆典型题型

直线与圆典型题型
直线与圆典型题型

直线与圆方程

一:圆的方程

例1、 若方程01422

2=+++-+a y x y x 表示的曲线是一个圆,则a 的取值范围是

圆心坐标是__________________,半径是________________

例2、 求过点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程,并判断点)4,2(P 与圆的

关系.

例3 圆心在直线30x y -=上,与直线0=y 相切,且被直线0x y -=所截得的弦长为的圆的方程.

**练习. 方程(0x y +-=所表示的曲线是 ( )

A .一个圆和一条直线

B . 两个点

C . 一个点

D .一个圆和两条射线 二:点与圆,直线与圆的位置关系:

1、直线1=+y x 与圆)0(022

2>=-+a ay y x 没有公共点,则a 的取值范围是

*2、设点(00,y x )在圆222r y x =+的外部,则直线200r y y x x =+与圆的位置关系是( )

A .相交

B .相切

C . 相离

D .不确定

*3、原点与圆22(1)()2(01)x y a a a -+-=<<的位置关系是___________ 三:直线与圆的位置关系

(一)相交

例1、已知圆 042:22=--+y x y x C 和点(0,2)P ,(1)求直线1:360l x y --=被圆C 截得的

弦AB 的长;(2)直线2l 与圆 C 交与MN 两点,弦MN 被点P 平分,求2l 的方程(*3)过P

点的直线l 截圆C 所得的弦长为4,求直线l 的方程。

**例2、 圆9)3()3(22=-+-y x 上到直线340x y b ++=的距离为1的点有三个,则_____b =, **例3、.已知方程0422

2=+--+m y x y x 表示圆,(1)求m 的取值范围;

(2)若该圆与直线042=-+y x 相交于两点,且OM ⊥ON (O 为坐标原点)求m 的值;

(3)在(2)的条件下,求以MN 为直径的圆的方程.

**例4. 已知圆22:(1)5C x y +-=,直线:10l mx y m -+-=。

(1) 求证:对m R ∈,直线l 与圆C 总相交;

(2)设l 与圆C 交与不同两点A 、B ,求弦AB 的中点M 的轨迹方程;

练习、1、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为 2、已知圆16)1()2(22=++-y x 的一条直径通过直线032=+-y x 被圆所截弦的中点,则该直

径所在的直线方程为_____________________

3、圆03422

2=-+++y x y x 上到直线01=++y x 的距离为2的点共有______个

(二)相切

例1 已知圆422=+y x O :,

(1) 求过点M 与圆O 相切的切线方程; (2) *求过点()42,

P 与圆O 相切的切线方程并求切线长; (3) 求斜率为2且与圆O 相切的切线方程;

(4) **若点(,)x y 满足方程224x y +=,求2y x -的取值范围;

(5) **若点(,)x y 满足方程224x y +=,求

43

y x ++的取值范围。

**例2、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

**例3、若直线m x y +=与曲线24x y -=

有且只有一个公共点,求实数m 的取值范围.若有两

个公共点呢?

练习:

1.求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程是____________________________.

2、已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为 . 3. 过圆422=+y x 外一点)1,4(-M 引圆的两条切线,则经过两切点的直线方程是______________

4.已知P 是直线0843=++y x 上的动点,PB PA ,是圆012222=+--+y x y x 的两条切线,,A B 是切

点,C 是圆心,那么四边形PACB 面积的最小值为 .

**5、已知对于圆1)1(2

2=-+y x 上任一点),(y x P ,不等式0≥++m y x 恒成立,求实数m 的取

值范围是____________

**6.曲线)2|(|412≤-+=x x y 与直线4)2(+-=x k y 有两个交点时,实数k 的取值范围是( )

A .]43,125(

B .),125(+∞

C .)43,31(

D .)125,0( (三)相离

例1: 圆010442

2=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是 四:圆与圆的位置关系

例1、判断圆02662:221=--++y x y x C 与圆0424:222=++-+y x y x C 的位置关系,

例2、求两圆0222=-+-+y x y x 和52

2=+y x 的公共弦所在的直线方程及公共弦长。

例3:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。 1、若圆042222=-+-+m mx y x 与圆084422

22=-+-++m my x y x 相切,则实数m 的取

值集合是 .

2、与圆522=+y x 外切于点)2,1(-P ,且半径为52的圆的方程是___________

五:直线与圆中的对称问题

例1、(1) 圆22

2690x y x y +--+=关于直线250x y ++=对称的圆的方程是

(2)已知圆522=+y x 与圆224430x y x y ++-+=关于直线l 对称,求直线l 的方程。

例2.一束光线从点()33,

-A 出发经x 轴反射到圆222690x y x y +--+=的最短路程是 .

例3、已知圆07442

2=+--+y x y x C :,自点()33,-A 发出的光线l 被x 轴反射,反射光线所在的直线与圆C 相切,(1)求反射光线所在的直线方程.(2)光线自A 到切点所经历的路程.

例4、 已知直线:33l y x =+,(1)(1,1)P -关于直线l 对称点的坐标是____________

(2) 直线2y x =-关于直线l 对称的直线方程是_______________

(3) 已知点(1,2)A ,(3,1)B ,则线段AB 的垂直平分线的方程为_________

**例5、已知点M(3,5),在直线:220l x y -+=和y 轴上各找一点P 和Q ,使ABC ?的周长最小.

例6. (1)直线:3l y x b =+是圆22

2690x y x y +--+=的一条对称轴,则b =______

(2) 圆222690x y x y +--+=关于点M(3,5)对称的圆的方程是_____________________ 六:直线与圆中的最值问题

例1、已知圆1)4()3(2

21=-+-y x O :,),(y x P 为圆O 上的动点,则 22x y +的最小值是_________ 例2、已知)0,2(-A ,)0,2(B ,点P 在圆4)4()3(22=-+-y x 上运动,则2

2PB PA +的最小值是 .

例3.点(,)A x y 满足30x y +-=,[]21x ,∈,求x

y 的最大值和最小值

例4.(1)点A(1,3),(5,1)B -,点P 在x 轴上使||||PA PB +最小,则P 的坐标为( )

(2)点A(1,3),(5,1)B ,点P 在x 轴上使||||PA PB +最小,则P 的坐__________

(3)点A(1,3),(5,1)B ,点P 在x 轴上使||||PA PB -最大,则P 的坐标为_________

例5.点(,)P x y 在直线40x y +-=上,则

(1________________

(2________________

(3)22x y +的最小值是________________

(4)222x y x ++的最小值是________________

(5)若点Q 在直线2230x y ++=上则||PQ 的最小值是___________

练习、

1、已知22430x y x +-+=,则22x y +的最小值是______;222x y y +-的最大值是_________

2、已知点)2,4(),6,2(),2,2(----C B A ,点P 在圆422=+y x 上运动,求222PC PB PA ++的最

大值和最小值.

3、已知点(1,1)A ,(2,2)B ,点P 在直线x y 2

1=上,求22PB PA +取得最小值时P 点的坐标。

七: 轨迹问题

例1、已知 点M 与两个定点)0,0(O ,)0,3(A 的距离的比为

2

1,求点M 的轨迹方程.

例2、已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程.

例3、由动点P 向圆122=+y x 引两条切线PA 、PB ,切点分别为A 、B ,APB ∠=600

,则动点P 的轨迹方程是 .

直线与圆题型总结

高中数学圆的方程典型例题 类型一:圆的方程 1求过两点A(1,4)、B(3,2)且圆心在直线y 0上的圆的标准方程并判断点 2、设圆满足:(1)截y 轴所得弦长为2; (2)被x 轴分成两段弧, 求圆 心到直线I : x 2y 0的距离最小的圆的方程. 类型二:切线方程、切点弦方程、公共弦方程 1已知圆O : x 2 y 2 4,求过点P 2,4与圆0相切的切线. 2两圆C 1: x 2 y 2 D 1x E 1 y F 1 0与C 2: x 2 y 2 D 2x E 2y F 2 0相交于A 、B 两点,求它们的公共 弦AB 所在直线的方程. 3、过圆x 2 y 2 1外一点M(2,3),作这个圆的两条切线 MA 、MB ,切点分别是 A 、B ,求直线AB 的方程。 练习: 2 2 1?求过点 M(3,1),且与圆(x 1) y 4相切的直线I 的方程 __________________ 2 2 5 2、 过坐标原点且与圆 x y 4x 2y 0相切的直线的方程为 _________ 2 2 2 3、 已知直线5x 12y a 0与圆x 2x y 0相切,则a 的值为 _________________________ . 类型三:弦长、弧问题 2 2 1、 求直线I : 3x y 6 0被圆C : x y 2x 4y 0截得的弦AB 的长 ________________________________ 2、 直线 3x y 2 3 0截圆x 2 y 2 4得的劣弧所对的圆心角为 _________________________ 3、求两圆x 2 y 2 x y 2 0和x 2 y 2 5的公共弦长 __________________________ 类型四:直线与圆的位置关系 I 1、若直线y x m 与曲线y 4 x 2有且只有一个公共点,实数 m 的取值范围 _________________________________ 4、 若直线y kx 2与圆(x 2)2 (y 3)2 1有两个不同的交点,贝U k 的取值范围是 ________________________ . 5、 圆x 2 y 2 2x 4y 3 0上到直线x y 1 0的距离为 2的点共有(). (A ) 1 个 (B ) 2 个 (C ) 3 个 (D ) 4 个 2 2 6、 过点P 3, 4作直线l ,当斜率为何值时,直线I 与圆C: x 1 y 2 4有公共点 类型五:圆与圆的位 置关系 2 2 2 2 1、判断圆C 1 : x y 2x 6y 26 0与圆C 2 : x y 4x 2y 4 0的位置关系 ___________________________________ 2 2 2 2 2圆x y 2x 0和圆x y 4y 0的公切线共有 ___________________________条。 P(2,4)与圆的关系. 其弧长的比为3:1 ,在满足条件(1)(2)的所有圆中, 2 圆(x 3)2 (y 3)2 9上到直线3x 4y 11 0的距离为1的点有 _________ 个? 2 2 3、直线 x y 1 与圆 x y 2ay 0 (a 0)没有公共点,则a 的取值范围是 __________

直线与圆(典型例题和练习题)

直线与圆 1.本单元知识点 本单元的学习重点包括:直线的斜率、直线的方程、直线与直线的位置关系,圆的方程、圆与圆的位置关系,直线与圆的位置关系,直线与圆的距离问题,其中直线与圆的位置关系是高考热点. 2.典型例题选讲 例1. 过点M (0,1)作直线,使它被两直线082:,0103:21=-+=+-y x l y x l 所截得的线段恰好被M 所平分,求此直线的方程. 说明:直线方程有三种基本形式:点斜式、两点式、一般式,求直线方程时应根据题目条件灵活选择,并注意不同形式的适用范围. 如采用点斜式,需要注意讨论斜率不存在的情况. 例2.已知圆0822:221=-+++y x y x C 与圆024102:222=-+-+y x y x C 交于A,B 两点. (1)求直线AB 的方程; (2)求过A 、B 两点且面积最小的圆的方程. 说明:应用两圆相减求两圆公共弦的方法,可避免通过求两个交点再求公共弦方程. 另外,在求解与圆有关的问题时,应注意多利用圆的相关几何性质,这样利于简化解题步骤.

例3.若过点A (4,0)的直线l 与曲线1)2(22=+-y x 有公共点,求直线l 的斜率k 的取值范围. (一题多解) 说明:直线与圆的位置关系问题,可以从几何和代数两方面入手. 相切问题应抓住角度问题求斜率;相交问题应抓住半径r 、弦心距d 、半弦长2 l 构造的直角三角形使问题简化. 例4.设定点M (-3,4),动点N 在圆422=+y x 上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹. 说明:轨迹方程在必修2第122页有例题,求动点的轨迹方程要特别注意考虑轨迹与方程间的等价性,有时求得方程后还要添上或去掉某些点.

圆周运动题型总结

一.角速度 线速度 周期之间的关系 1.做匀速圆周运动的物体,10s 内沿半径是20m 的圆周运动了100m ,试求物体做匀速圆周运动时: (1)线速度的大小; (2)角速度的大小; (3)周期的大小. 【答案】(1)10/m s ;(2)0.5/rad s ;(3)12.56s 2.如图所示,两个小球固定在一根长为l 的杆的两端,绕杆上的O 点做圆周运动,当小球A 的速度为v A 时,小球B 的速度为v B .则轴心O 到小球B 的距离是( ) A . B A B v l v v + B .A A B v l v v + C .A B A v v L v + D .A B B v v L v + 【答案】A 3.转笔(Pen Spinning )是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示.转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O 做匀速圆周运动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是( ) A .笔杆上的点离O 点越近的,角速度越大 B .笔杆上的点离O 点越近的,做圆周运动的向心加速度越大 C .笔杆上的各点做圆周运动的向心力是由万有引力提供的 D .若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做 离心运动被 甩走 【答案】D 二.传动装置 4.如图所示,A 、B 是两个靠摩擦传动且接触面没有相对滑动的靠背轮,A 是主动轮,B 是从动轮,它们的半径R A =2R B , a 和b 两点在轮的边缘,c 和d 分别是A 、B 两 轮半径的中点,下列判断正确的有 A .v a = 2 v b B .ωb = 2ωa C .v c = v a D .a c =a d 【答案】B 5.某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为r 1、r 2、r 3,若甲轮的角速度为ω,则丙轮边缘上某点的向心加速度为 A .32 21r r ω B. 12223r r ω C 。22223r r ω D 。 32 21r r r ω 【答案】A 6.如图所示的皮带传动装置中,轮A 和B 同轴,A 、B 、C 分别是三个轮边缘的质点,且RA=RC=2RB ,

高三总复习直线与圆的方程知识点总结及典型例题.

直线与圆的方程 、直线的方程 已知 L 上两点 P 1( x 1,y 1) P 2( x 2,y 2 ) 当 x 1 = x 2 时, =900 , 不存在。当 0 时, =arctank , <0 时, = ②任何一个关于 x 、y 的二元一次方程都表示一条直线。 5、直线系:(1)共点直线系方程: p 0(x 0,y 0)为定值, k 为参数 y-y 0=k (x-x 0) 特别: y=kx+b ,表示过( 0、 b )的直线系(不含 y 轴) ( 2)平行直线系:① y=kx+b ,k 为定值, b 为参数。 ② AX+BY+ 入=0 表示与 Ax+By+C=0 平行的直线系 ③ BX-AY+ 入 =0 表示与 AX+BY+C 垂直的直线系 ( 3)过 L 1,L 2交点的直线系 A 1x+B 1y+C 1+入( A 2X+B 2Y+C 2)=0(不含 L2) 6、三点共线的判定:① AB BC AC ,②K AB =K BC , ③写出过其中两点的方程,再验证第三点在直线上。 、两直线的位置关系 k= y 2 y 1 x 2 x 1 20 2 已知 方程 说明 斜截式 K 、b Y=kx+b 不含 y 轴和行平 于 y 轴的直点斜式 P 1=(x 1,y 1) k y-y 1=k(x-x 1) 不含 y 轴和平 行 于 y 轴的直线 两点式 P 1(x 1,y 1) P 2(x 2,y 2) y y 1 x x 1 不含坐标辆和 平行于坐标轴 的直线 y 2 y 1 x 2 x 1 截距式 a 、b xy 1 ab 不含坐标轴、平 行于坐标轴和 过原点的直线 一般式 Ax+by+c=0 A 、 B 不同时为 0 3、截距(略)曲线过原点 横纵截距都为 0。 4、直线方程的几种形式 几种特殊位置的直 线 ①x 轴: y=0 ② y 轴: x=0 ③平行于 x 轴: y=b ④平行于 y 轴: x=a ⑤过原点: y=kx y 的二元一 次方程。 1、倾斜角: 0< < k 0 2 = 不存在 2 +arctank 2、斜

必修2直线与圆典型题型总结

直线与圆方程复习专题 注:标*的为易错题,标**为有一定难度的题。 一:斜率与过定点问题 1.已知点(1,3)A 、(2,6)B 、(5,)C m 在同一条直线上, 那么实数m 的值为_______直线的斜率=_____. 2.已知0m ≠,则过点(1,1)-)的直线320ax my a ++=的斜率为________ **3.已知线段PQ 两端点的坐标分别为(1,1)-、(2,2),若直线:0l mx y m +-=与线段PQ 有交点,求m 的范围. 二:截距问题: 4.若三点(2,2)A ,B(,0)a ,(0,)C b (0ab ≠)共线,则11a b +=______ **5.已知0,0ab bc <<,则直线ax by c +=通过( ) A. 一、二、三象限 B. 一、二、四象限 C. 一、三、四象限 D. 二、三、四象限 *6.(1)过点(1,2)A 且在x 轴,y 轴上截距相等的直线方程是 . (2)过点(1,2)A 且在x 轴,y 轴截距互为相反数的直线方程是 . 三:平行垂直: 7、已知过点()2A m -,和()4B m ,的直线与直线210x y +-=平行,则m =______ 8、若直线1210l x my ++=:  与直线231l y x =-:平行,则m =___ (若垂直呢) 9、过点(1,3)P -且垂直于直线032=+-y x 的直线方程为__________ 10、已知直线12:(3)453,:2(5)8l m x y m l x m y ++=-++=, (1)若12l l ⊥,则________m =*(2)若12//l l ,则________m = 五:交点问题: 11、过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程.是____________(垂直呢?) **12.若直线:1l y kx =-与直线10x y +-=的交点位于第一象限,求实数k 的取值范围. 六:距离问题 13.已知点(3,)m 到直线340x y +-=的距离等于1,则m =_________ 14.已知直线0323=-+y x 和016=++my x 互相平行,则它们之间的距离是_________ 15. ①平行于直线34120x y +-=,且与它的距离是7的直线的方程是________________________ ②垂直于直线350x y +-=, 且与点(1,0)P -)的距离是105 3的直线的方程是___________

有关直线与圆的几个典型例题

有关直线与圆的几个典型例题 本节内容在高考题中通常是通过选择题、填空题进行考查,在解 答题中往往是出现在第(1)小题中,考查的热点是求直线的方程, 两直线平行、垂直的关系,关于直线的对称问题,直线与圆的位置关 系及圆与圆的位置关系等。要熟练掌握求直线方程的方法,注意根据 已知条件灵活选择方程形式;在解决圆的有关问题时,要注意圆的儿 何性质的应用。 例1:在A ABC 中,已知顶点A(3,-l),过点B 的内角平分线所在 直线的方程为x-4y+10=0,过点C 的中线所在直线的方程为 6x+10y-59=0,求顶点B 的坐标及BC 边的方程。 A + 3 J -1 解:设B 点坐标为(x,y),则AB 的中点E 的坐标为(丁'丁), 因 E 在直线 6x+10y-59=0±, 乳 + 3 ??? 6 ? 2 +10 ? 2 -59=0,整理得 3x+5y-55=Oo 乂过点B 的内角平分线所在直线方程为x-4y+10=0o 戸+ "-55 = 0, |x = 10, 解方程组仍10丸得卜" ???B 点坐标为(10,5)。 6 设BC 边所在直线斜率为k, AB 边所在直线斜率k AB = 7,角B 平 _1 分线的斜率为忆。 例2:已知过点A(1J),且斜率为的直线/与x,y 轴分别 交于P 、Q 点,过P 、Q 作直线2x+y=0的垂线,垂足分别为R, S, 2 - 9 - = k ???BC 边所在直线方程为2x+9y-65=0o 评注:本题是关于求直线方程的例 题。 6 一 7 6 一 7

求四边形PRSQ 的面积的最小值。 丄 解:设直线1的方程为y-l=-m(x-l),则P 、Q 的坐标分别为(1 +也,0), (0,1 +m) o 1 m +1 m +1 /? PR 所在直线方程为y=2(x ?m ),即x ?2y ?朋=0 丄 QS 所在直线方程为 y= 2 x+m+1,即 x-2y+2(m+l)=0。 | 2加十2十1十丄| 3十2眈十丄 m = m m +1 乂IPRI=怎,IQSI=品, ???四边形PRSQ 的面积为 (2 + -+m + 1) 3+2忍十丄2(购+丄尸十9⑻+丄)+ 10 . 〔。 〔 S=- ? ———?— =——世 ------------ 世—丄[(时丄)+分-丄, 2 75 10 5 4 80 丄 *.* m>0,?*. m+m $2, ?°?、勺 m=l 时,Smin=3.6。 故四边形PRSQ 面积的最小值为3.6o 评注:本题是关于直线的平行、垂直问题的例题 例3:根据下列条件求圆的方程: (1) 圆心在直线/]: 5x-3y=O 上,并且圆与直线伍:x-6y-10=0 相切于点P(4,?l); (2) 圆过点P(-2,4), Q(3,-l),并且在x 轴上截得的弦长等于6; (3) 圆心在曲线y 2=-18x ±,并且既与y 轴相切乂与圆 (x+2)2+(y- 3)2=l 外切。 解:(1)设圆心为C(3t,5t), 主十1 . 1 T PR//QS, |RS| = 75

(完整word版)初中的圆题型总结.doc

圆的基本题型 纵观近几年全国各地中考题,圆的有关概念以及性质等一般以填空题,选择 题的形式考查并占有一定的分值;一般在 10 分- 15 分左右,圆的有关性质,如垂径定理,圆周角,切线的判定与性质等综合性问题的运用一般以计算证明的形 式考查;利用圆的知识与其他知识点如代数函数,方程等相结合作为中考压轴题将会占有非常重要的地位,另外与圆有关的实际应用题,阅读理解题,探索存在性问题仍是热门考题,应引起注意 . 下面究近年来圆的有关热点题型,举例解析如下。 一、圆的性质及重要定理的考查 基础知识链接:( 1)垂径定理;( 2)同圆或等圆中的圆心角、弦、弧之间的关 系 .(3) 圆周角定理及推论(4)圆内接四边形性质 【例 1】(江苏镇江)如图, AB 为⊙ O直径, CD 为弦,且 CD AB ,垂足为 H .(1)OCD 的平分线 CE 交⊙ O于 E ,连结 OE .求证: E 为弧 ADB的中点; (2)如果⊙ O的半径为 1,CD 3 , ①求 O 到弦 AC 的距离; ②填空:此时圆周上存在个点到直线 AC 的距离为1.2 【解析】(1)OC OE ,E OCE C 又OCE DCE,E DCE.O E∥C.D A B O H E D 又 CD AB ,AOE BOE 90 .E 为弧 ADB的中点. (2)①CD AB , AB 为⊙ O的直径, CD 3 , 1 CD 3 .又OC CH 3 3 . CH 1 ,sin COB 2 2 2 OC 1 2 COB 60 ,BAC 30 . 作 OP AC于 P,则 OP 1 OA 1 .2 2 ②3.

【点评】本题综合考查了利用垂径定理和勾股定理及锐角三角函数求解问题的 能力 . 运用垂径定理时,需添加辅助线构造与定理相关的“基本图形”. 几何上把圆心到弦的距离叫做弦心距, 本题的弦心距就是指线段OD的长 . 在圆中解有关弦心距半径有关问题时, 常常添加的辅助线是连半径或作出弦心距, 把垂 径定理和勾股定理结合起来解题. 如图 , ⊙O的半径为r , 弦心距为 d , 弦长 a 之间 d 2a 2 的关系为 r 2 . 根据此公式 , 在 a 、r、d 三个量中 , 知道任何两个量就可 2 以求出第三个量 . 平时在解题过程中要善于发现并运用这个基本图形 . 【例】(安徽芜湖)如图,已知点 E 是圆 O上的点, 2 B、C分别是劣弧 AD 的三等分点,BOC 46 , 则 AED 的度数为. 【解析】由B、C 分别是劣弧 AD 的三等分点知,圆心角∠∠∠ AOB= BOC= COD, 又 BOC 46 ,所以∠AOD=138o. 根据同弧所对的圆周角等于圆心角的一半。从而有AED =69o. 点评本题根据同圆或等圆中的圆心角、圆周角的关系。 【强化练习】 【1】. 如图,⊙O是 ABC的外接圆, BAC 60 ,AD,CE分别是 BC,AB上的高,且 AD, CE交于点 H,求证: AH=AO 1 (1)如图,在⊙ O中,弦 AC⊥BD, OE⊥AB,垂足为 E,求证: OE= CD 2 1 2 2 (2)如图, AC, BD是⊙ O的两条弦,且 ACBD,⊙ O的半径为,求 AB+CD 的值。 2

直线与圆知识点及经典例题

圆的方程、直线和圆的位置关系 【知识要点】 一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程这个方程叫做圆的标准方程。 说明: 1 、若圆心在坐标原点上,这时,则圆的方程就是。 2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了 圆,所以,只要三个量确定了且〉0,圆的方程就给定了。 就是说要确定圆的方程,必须具备三个独立的条件确定,可以根据条件,利用待定系数法来解决。 (二)圆的一般方程 将圆的标准方程, 展开可得。可见,任何一个圆的方程都可以写成: 问题:形如的方程的曲线是不是圆 将方程左边配方得: (1)当〉0时,方程(1 )与标准方程比较,方程表示以为圆心,以为半径的圆。, (3)当v 0时,方程没有实数解,因而它不表示任何图形。 圆的一般方程的定义: 当〉0时,方程称为圆的一般方程? 圆的一般方程的特点: ( 1 )和的系数相同,不等于零; ( 2)没有xy 这样的二次项。 (三)直线与圆的位置关系 1、直线与圆位置关系的种类 ( 1 )相离--- 求距离;(2) 相切--- 求切线;( 3)相交--- 求焦点弦长。 2、直线与圆的位置关系判断方法: 几何方法主要步骤: ( 1)把直线方程化为一般式,利用圆的方程求出圆心和半径 ( 2)利用点到直线的距离公式求圆心到直线的距离 (3)作判断:当d>r时,直线与圆相离;当 d = r时,直线与圆相切;当d0时,直线与圆相交。 【典型例题】 类型一:圆的方程 例 1 求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系. 变式1:求过两点、且被直线平分的圆的标准方程. 变式2:求过两点、且圆上所有的点均关于直线对称的圆的标准方程. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点与圆的位置关系,只须看点与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为????圆心在上,故????圆的方程为. 又???该圆过、两点.??? 解之得:, 所以所求圆的方程为.解法二:(直接求出圆心坐标和半径) 因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线 的方程为:即. 又知圆心在直线上,故圆心坐标为.??半径. 故所求圆的方程为.又点到圆心的距离为

直线与圆锥曲线题型总结

直线与圆锥曲线题型总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

直线和圆锥曲线基本题型 题型一:数形结合确定直线和圆锥曲线的位置关系 例题1、已知直线:1l y kx =+与椭圆22 :14x y C m +=始终有交点,求m 的取值范 围 解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆 22 :14x y C m +=过动点04m ±≠(,且,如果直线:1l y kx =+和椭圆22 :14x y C m +=始 终有交点,则 14m ≥≠,且,即14m m ≤≠且。 题型二:弦的垂直平分线问题 例题2、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。 设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。 由2 (1) y k x y x =+?? =?消y 整理,得 2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ?=--=-+> 即21 04 k << ② 由韦达定理,得:212221 ,k x x k -+=-121x x =。则线段 AB 的中点为 22 211(,)22k k k --。 线段的垂直平分线方程为:2 2 1112()22k y x k k k --=-- 令y=0,得021122 x k = -,则211( ,0)22 E k -

2019中考数学辅导:圆的考点总结及题型分析

2019中考数学辅导:圆的考点总结及题型分析 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 一、考点分析考点 考点一、点和圆的位置关系 设⊙O的半径是r,点P到圆心O 的距离为d,则有: d d=r点P在⊙O上; d>r点P在⊙O外。 考点二、过三点的圆 1、过三点的圆 不在同一直线上的三个点确定一个圆。 2、三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆。 3、三角形的外心

三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。 4、圆内接四边形性质 圆内接四边形对角互补。 考点三、直线与圆的位置关系 直线和圆有三种位置关系,具体如下: 相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; 相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, 相离:直线和圆没有公共点时,叫做直线和圆相离。 如果⊙O的半径为r,圆心O到直线l的距离为d,那么: 直线l与⊙O相交d 直线l与⊙O相切d=r; 直线l与⊙O相离d>r; 考点四、圆内接四边形

圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 1、切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 2、性质定理:切线垂直于过切点的半径 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。 以上三个定理及推论也称二推一定理: 即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。 考点五、切线长定理 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆

《直线与圆的位置关系》典型例题

《直线与圆的位置关系》典型例题 例1在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么? (1)r=1cm;(2)r=cm;(3)r=2.5cm. 例2 在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆,若直线AB与⊙C,(1)相交;(2)相切;(3)相离.求半径r的取值. 例3如图,在直角梯形ABCD中,AD∥BC,∠C=∠D=90°,若AB=6,AD=4,BC=2,试问:DC上是否存在点P,使R t△PBC∽R t△APD?

例4如图,直角梯形中,,,,为上的一点,平分,平分.求证:以为直径的圆与相切. 例5已知中,,于,,,以为圆心,为半径画圆.求证直线和⊙相离.

参考答案 例1分析如图,欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可. 解:过C点作CD⊥AB于D, 在R t△ABC中,∠C=90°,AB=4,BC=2, ∴AC=2 , ∴AB·CD=AC·BC, ∴, (1)当r =1cm时CD>r,∴圆C与AB相离; (2)当r=cm时,CD=r,∴圆C与AB相切; (3)当r=2.5cm时,CD<r,∴圆C与AB相交. 说明:从“数”到“形”,判定圆与直线位置关系. 例2 解:过C点作CD⊥AB于D, 在R t△ABC中,∠C=90°,AB=4,BC=2, ∴AC=2 , ∴AB·CD=AC·BC, ∴, (1)∵直线AB与⊙C相离,∴0rCD,即r>. 说明:从“形”到“数”,由圆与直线位置关系来确定半径. 例3 分析:若R t△PBC∽R t△APD,则∠APD+∠BPC=90°,可知∠APB=90°,所以P点为以AB为直径的圆O与DC的交点,由条件可知为⊙O与DC相切,

直线和圆【概念、方法、题型、易误点及应试技巧总结】

概念、方法、题型、易误点及应试技巧总结 直线和圆 一.直线的倾斜角: 1.定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。当直线l 与x 轴重合或平行时,规定倾斜角为0; 2.倾斜角的范围[)π,0。如 (1)直线023cos =-+y x θ的倾斜角的范围是____ (答:5[0][ )6 6 ,,πππ ) ; (2)过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],3 2, 3 [π πα∈值的范围是 ______ (答:42≥-≤m m 或) 二.直线的斜率: 1.定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;( 2.斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212 121x x x x y y k ≠--= ; 3.直线的方向向量(1,)a k = ,直线的方向向量与直线的斜率有何关系? 4.应用:证明三点共线: AB BC k k =。如 (1) 两条直线钭率相等是这两条直线平行的____________条件 (答:既不充分也不必要); (2)实数,x y 满足3250x y --= (31≤≤x ),则 x y 的最大值、最小值分别为______ (答:2 ,13-) 三.直线的方程: 1.点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。 2.斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线。 3.两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为1 211 21x x x x y y y y --=--, 它不包括垂直于坐标轴的直线。 4.截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为 1=+b y a x ,它不包括垂直于坐标轴的直线和过原点的直线。 5.一般式:任何直线均可写成0Ax By C ++=(A,B 不同时为0)的形式。如 (1)经过点(2,1)且方向向量为v =(-1,3)的直线的点斜式方程是___________ (答:12)y x -=-); (2)直线(2)(21)(34)0m x m y m +----=,不管m 怎样变化恒过点______

初中直线与圆的位置关系经典练习题

圆与直线的基本性质 一、定义 [例1]在ABC Rt?中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何位置关系?为什么? (1)r=2cm; (2)r=2.4cm; (3)r=3cm。 [例2]在ABC ?中,BC=6cm,∠B=30°,∠C=45°,以A为圆心,当半径r多长时所作的⊙A与直线BC相切?相交?相离? [变式题]已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是【】 A.相切B.相离C.相离或相切 D.相切或相交 二、性质 例1:如图,AB是⊙O的直径,C.D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于【】A.40°B.50°C.60°D.70°变式1:如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠ACP=【】 A. 30B. 45 C. 60D.67.5 例3:如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是【】 A.80° B.110° C.120° D.140° 变式2:如图,圆周角∠BAC=55°,分别过B,C两点作⊙O的切线,两切线相交与点P,则∠BPC=°. 例5:如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.

变式3:如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为cm2.例7:如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N. (1)求证:OM=AN; (2)若⊙O的半径R=3,PA=9,求OM的长.变式4:如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF 于点H,交⊙O于点C,连接BD. (1)求证:BD平分∠ABH; (2)如果AB=12,BC=8,求圆心O到BC的距离. 三、切线的判定定理: 例1:如图,AB是⊙O的直径,AC和BD是它的两条 切线,CO平分∠ACD.(1)求证:CD是⊙O的切线; (2)若AC=2,BC=3,求AB的长.

必修2直线与圆典型题型总结

AHA12GAGGAGAGGAFFFFAFAF 直线与圆方程复习专题 注:标*的为易错题,标**为有一定难度的题。 一:斜率与过定点问题 1.已知点(1,3)A 、(2,6)B 、(5,)C m 在同一条直线上,那么实数m 的值为_______直线的斜率=_____. 2.已知0m ≠,则过点(1,1)-)的直线320ax my a ++=的斜率为________ **3.已知线段PQ 两端点的坐标分别为(1,1)-、(2,2),若直线 :0l mx y m +-=与线段PQ 有交点,求m 的范围. 二:截距问题: 4.若三点(2,2)A ,B(,0)a ,(0,)C b (0ab ≠)共线,则11a b +=______ **5.已知0,0ab bc <<,则直线ax by c +=通过( ) A. 一、二、三象限 B. 一、二、四象限 C. 一、三、 四象限 D. 二、三、四象限 *6.(1)过点 (1,2)A 且在x 轴, y 轴上截距相等的直线方程

AHA12GAGGAGAGGAFFFFAFAF 是 . (2)过点(1,2)A 且在x 轴,y 轴截距互为相反数的直线方程是 . 三:平行垂直: 7、已知过点()2A m -,和()4B m ,的直线与直线210x y +-=平行,则 m =______ 8、若直线1 210l x my ++=: 与直线2 31l y x =-:平行, 则m =___ (若垂直呢) 9、过点(1,3)P -且垂直于直线032=+-y x 的直线方程为__________ 10、已知直线12:(3)453,:2(5)8l m x y m l x m y ++=-++=, (1)若12l l ⊥,则________m =*(2)若12//l l ,则________m = 五:交点问题: 11、过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线 032=-+y x 的直线方程.是____________(垂直呢?) **12.若直线:1l y kx =-与直线10x y +-=的交点位于第一象限,求实数k 的取值范围. 六:距离问题

直线与圆位置关系知识点与经典例题

直线与圆位置关系 一.课标要求 1.能根据给定直线、圆的方程,判断直线与圆的位置关系; 2.能用直线和圆的方程解决一些简单的问题; 3.在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。 二.知识框架 相离 几何法 弦长 直线与圆的位置关系 相交 代数法 切割线定理 相切 直线与圆 代数法 求切线的方法 几何法 圆的切线方程 过圆上一点的切线方程 圆的切线方程 切点弦 过圆外一点的切线方程 方程 三.直线与圆的位置关系及其判定方法 1.利用圆心0),(=++C By Ax b a O 到直线的距离2 2 B A C Bb Aa d +++=与半径r 的大小来判 定。 (1)?r d 直线与圆相离 2.联立直线与圆的方程组成方程组,消去其中一个未知量,得到关于另外一个未知量的一元二次方程,通过解的个数来判定。 (1)有两个公共解(交点),即?>?0直线与圆相交 (2)有且仅有一个解(交点),也称之为有两个相同实根,即0=??直线与圆相切 (3)无解(交点),即????r d 练习

(位置关系)1.已知动直线5:+=kx y l 和圆1)1(:2 2=+-y x C ,试问k 为何值时,直线与圆相切、相离、相交? (位置关系)2.已知点),(b a M 在圆1:2 2 =+y x O 外,则直线1=+by ax 与圆O 的位置关系是() A.相切 B.相交 C.相离 D.不确定 (最值问题)3.已知实数x 、y 满足方程0142 2 =+-+x y x , (1)求 x y 的最大值和最小值; (2)求y x -的最大值和最小值; (3)求2 2 y x +的最大值和最小值。 〖分析〗考查与圆有关的最值问题,解题的关键是依据题目条件将其转化为对应的几何问题求解,运用数形结合的方法,直观的理解。①转化为求斜率的最值;②转化为求直线b x y +=截距的最大值;③转化为求与原点的距离的最值问题。 (位置关系)4.设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(2 2 =-+-y x 相切,则n m +的取值围是() (位置关系)5.在平面直角坐标系xoy 中,已知圆224x y +=上有且仅有四个点到直线 1250x y c -+=的距离为1,则实数c 的取值围是 6.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是 ( C ) A 、 6π B 、4π C 、3π D 、2 π (位置关系)7.圆01222 2 =+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .2 2 1+ D .221+ (最值问题)8.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______. 9.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆 C 的方程为( ) A .0322 2 =--+x y x B .042 2=++x y x C .0322 2 =-++x y x D .042 2 =-+x y x

《圆》题型总结

《圆》题型总结 【圆的定义与确定】 一、选择题 1.(2015春?张掖校级月考)有下列四个说法:①半径确定了,圆就确定了;①直径是弦;①弦是直径;①半圆是弧,但弧不一定是半圆⑤长度相等的弧是等弧⑥经过圆内一定点可以作无数条直径⑦半径不等的圆叫做同心圆⑧优弧一定大于劣弧⑨不同的圆中不可能有相等的弦.其中错误说法的个数是( ) A .4 B .5 C . 6 D .7 2. 平面上的一个点到圆的最小距离是4cm,最大距离是9cm ,则圆的半径是( ). A.2.5cm B.6.5cm C. 2.5cm 或6.5cm D. 5cm 或13cm 4.如图,已知①O 的半径为5,点O 到弦AB 的距离为3,则①O 上到弦AB 所在直线的距离为2的点有( ) A .1个 B .2个 C .3个 D .4个 5.已知:A ,B ,C ,D ,E 五个点中无任何三点共线,无任何四点共圆,那么过其中的三 点作圆,最多能作出( ). A .5个圆 B .8个圆 C .10个圆 D .12个圆 6. 如图,点A 、D 、G 、M 在半圆O 上,四边形ABOC ,DEOF ,HMNO 均为矩形,设BC=a,EF=b,NH=c, 则下列各式正确的是( ) A.a >b >c B.b >c >a C.c >a >b D.a=b=c 第6题 第7题 二、填空题 7.如图,P(x ,y)是以坐标原点为圆心,5为半径的圆周上的点,若x 、y 都是整数,猜想这样的P 点一共有 . 8.若①ABC 中,①C=90°,AC=10cm ,BC=24cm ,则它的外接圆的直径为___________. 10.如图,在半径不等的同心圆中,圆心角①AOB 所对的 的长度有__ ___关 5 5 -5 -5 P x y O

直线与圆知识点总结及例题

直线和圆知识点总结 1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l , 如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就 叫做直线的倾斜角。当直线l 与x 轴重合或平行时,规定倾斜角为0;(2)倾斜角的范围 [)π,0。如(1)直线023cos =-+ y x θ的倾斜角的范围是____(答:5[0][)66,,πππ); 倾斜角的取值范围是0°≤α<180°.倾斜角不是90°的直线,它的倾斜角的正切叫做这 条直线的斜率,常用k 表示.倾斜角是90°的直线没有斜率. (2)过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],32,3[π πα∈值的范围是 ______(答:42≥-≤m m 或) 2、直线的斜率:(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直 线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经 过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212 121x x x x y y k ≠--=;(3)直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系?(4)应用:证明三点共线: AB BC k k =。如(1) 两条直线钭率相等是这两条直线平行的____________条件(答:既不充 分也不必要);(2)实数,x y 满足3250x y --= (31≤≤x ),则x y 的最大值、最小值分别为______(答:2,13 -) 3、直线的方程:(1)点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为 00()y y k x x -=-,它不包括垂直于x 轴的直线。直线的斜率0=k 时,直线方程为1y y =; 当直线的斜率k 不存在时,不能用点斜式求它的方程,这时的直线方程为1x x =.(2)斜 截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于 x 轴的直线。(3)两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为 1 21121x x x x y y y y --=--,它不包括垂直于坐标轴的直线。若要包含倾斜角为00或090的直线,两点式应变为))(())((121121y y x x x x y y --=--的形式.(4)截距式:已知直线在x 轴 和y 轴上的截距为,a b ,则直线方程为1=+b y a x ,它不包括垂直于坐标轴的直线和过原点

圆的知识点总结及典型例题.

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。 1

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆 心角或两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; (3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB =,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB =,半径OM⊥AB,∴AN=BN = ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60° 2

相关文档
最新文档