广义相对论入门03-广义相对论的数学基础(中)20160507

广义相对论入门03-广义相对论的数学基础(中)20160507
广义相对论入门03-广义相对论的数学基础(中)20160507

广义相对论基础

广义相对论基础 Introduction to General Relativity 课程编号:S070200J15 课程属性:学科基础课学时/学分:60/3 预修课程:大学理论物理、高等数学 教学目的和要求: 本课程为物理学、天文学研究生的学科基础课,同时也是为今后有可能接触到引力理论的其它学科研究生的学科基础课。主要介绍爱因斯坦的广义相对论。使学生具有在今后接触到引力场问题时,能通过阅读有关书籍文献对更深入的问题进行了解的能力。本课强调弄清物理和几何图像。本课不涉及引力场量子化、引力和其它作用之统一以及以抽象数学工具表现时空几何等问题。本课也扼要对广义相对论的观测和实验检验,黑洞问题和宇宙学问题进行简要地介绍。 内容提要: 第一章张量分析基础 张量代数,联络,协变微商,测地线方程,Killing矢量。 第二章引力场方程 引力与度规,引力红移,黎曼曲率张量,Bianchi恒等式,引力场方程。 第三章场方程的应用(Ⅰ) 西瓦兹解,西瓦兹场中质点的运动,光线偏折,引力透镜效应,雷达回波,0Kruskal坐标和黑洞,Keer度规。 第四章场方程的应用(Ⅱ) 宇宙学原理,共动坐标系,Robertson-Walker度规,宇宙学红移,标准宇宙学模型简介。 主要参考书: 1. R, Adler, M.Bagin,M.Schiffer,Introduction to General Relativity(第二版),McGraw-Hill Book Company,New York,1975. 2. 俞允强,《广义相对论引论》,北京大学出版社,北京,1997。 3. S. Weinberg,Gravitation and Cosmology,John Wiley Sons,Inc.,New York,1972. 撰写人:邓祖淦(中国科学院研究生院) 撰写日期:2001年09日

周成康_广义相对论学习心得

广义相对论学习心得 理论物理周成康 学号16212289 张宏浩老师您好,我是选修了您的广义相对论的硕士生周成康,首先谢谢您在广相课程中的付出的劳动。 我的导师是姚道新老师,方向是关联电子体系的蒙特卡洛模拟。虽然方向与广义相对无关,但是基于兴趣选择了广义相对论的课程。很高兴选修了张宏浩老师的广义相对论的课程,本人本科只是一般院校,基础一般,不能说得上好,所以刚开始听的几堂课都比较吃力,但老师您的课幽默不失风趣,是我能够坚持听下来,对广义相对论与黎曼几何有了一定程度的了解。 广义相对是描述物质间的引力相互作用的理论,将引力与时空的变化相联系起来,而描述时空变化的工具是黎曼几何和张量分析。黎曼几何相对于欧几里的几何的优势在于,在描述同样的空间扭曲时,不需要引入额外的维度来描述,例如描述二维曲面时,在欧氏几何需要三维空间才能表达,但是在黎曼几何却只需要同样的二维表达。这意味着分析广相时,使用黎曼几何能有效简化过程,只利用最少的维度便可以表示清楚。 在广义相对论理论体系中,基本假设包含以下几点:1,等效原理:爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身固有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走;2,广义相对性原理:物理定律的形式在一切参考系都是不变的。该定理是狭义相对性原理的推广。在狭义相对论中,如果我们尝试去定义惯性系,会出现死循环:一般地,不受外力的物体,在其保持静止或匀速直线运动状态不变的坐标系是惯性系;但如何判定物体不受外力?回答只能是,当物体保持静止或匀速直线运动状态不变时,物体不受外力。很明显,逻辑出现了难以消除的死循环。这说明对于惯性系,人们无法给出严格定义,这不能不说是狭义相对论的严重缺憾。为了解决这个问题,爱因斯坦直接将惯性系的概念从相对论中剔除,用“任何参考系”代替了原来狭义相对性原理中“惯性系”;3,引力质量与惯性质量:人们做了许多实验以测量同一物体的惯性质量和引力质量。所有的实验结果都得出同一结论:惯性质量等于引力质量(实际上是成正比,调整系数后,就变成"等于"了,这么做是为了方便计算),牛顿自己意识到这种质量的等同性是由某种他的理论不能够解释的原因引起的。但他认为这一结果是一种简单的巧合。与此相反,爱因斯坦发现这种等同性中存在着一条取代牛顿理论的通道。 广义相对不但是人们对时空与引力的认识跨入一个新的高度,同时也预言了许多新的现象和结论,包括引力波,引力透镜效应等。 引力波随着LIGO成功测得,成为时下热词。在爱因斯坦的广义相对论中,引力被认为是时空弯曲的一种效应。这种弯曲是因为质量的存在而导致。通常而言,在一个给定的体积内,包含的质量越大,那么在这个体积边界处所导致的时空曲率越大。当一个有质量的物体在时空当中运动的时候,曲率变化反应了这些物体的位置变化。在某些特定环境之下,加速

清华数理基科班课程

清华大学基础科学班本科培养方案 一、培养目标 基础科学班是清华大学为加强基础科学教学与研究,于1998年开始试办的一个跨系跨学科的教学试验计划。通过强化数学和物理学的教学,基础科学班的本科生应掌握扎实的数学与物理学基础理论,并具有较强的物理实验技能和接受一定的科学研究的实际训练。同时安排一定教学环节加强学生与国际同行进行交往能力的训练,以及人文科学精神的熏陶。基础科学班的学生从三年级开始逐步向物理学、数学及校内其它对数理基础要求较高的学科分流发展,学生根据自己的志趣与能力,选定自己的发展方向。 基础科学班的目标是培养能从事数学、物理等基础科学教学和科研的有发展潜力的优秀人才,同时也为对数理基础要求高的其它学科培养有良好的数理基础的新型人才。 二、学制、专业与学位授予 本科学制4年,按照学分制管理机制,实行弹性学习年限;对完成并符合本科培养方案要求的学生授予理学学士学位,并按照数理基础科学专业毕业。 三、基本学分要求 培养方案总学分:170学分。其中课程学习140学分,实践环节30学分。 (1)“课程学习”中包括如下课程: 15门数学和物理学主干课(以下简称主干课,必修课),共55学分。 人文社科类课程(必修/限选),共35学分。 除上述课程外,其他课程均为选修课,共50学分。课程结构要求如下: ①①4门荐选的数理主干课,18学分(完成15门必修数理主干课,并进一步完 成这4门荐选数理主干课的学生,可被优先考虑参加免试推研的选拔)。 ②②生化类基础课程不少于6学分。 ③③工程技术类基础课程不少于8学分。 ④④Seminar导师要求选修的与Seminar方向相关的专业基础/专业课程不少于 12学分。 ⑤⑤剩余学分(≤6)的课程由学生任选。 (2)“实践环节”是必修课,共30学分,包括:军事理论技能训练3学分,基础英语强化训练3学分,专题研究(Seminar)6学分,交叉学科前沿专题3学分,综合论文训练15学分。 四、课程结构及其学分分布 1. 人文社科类课程(12门,35学分)(注:此大类完全按照学校要求) “两课”(5门,14学分) ?10610022 思想道德修养2学分必修 ?10610013 毛泽东思想概论3学分必修

狭义相对论和广义相对论

要了解狭义相对论和广义相对论的区别,我们首先要搞清楚,这两个理论大概说了什么? 狭义相对论 我们先从狭义相对论说起,其实狭义相对论解决了一个物理学的重大矛盾。在爱因斯坦之前,最成功的两个理论分别是牛顿提出的牛顿力学和麦克斯韦提出麦克斯韦方程。只不过,这两个理论有个矛盾,那就是:光速。 具体来说,牛顿的理论认为,速度可以不断地进行叠加,没有上限,只要你加得上去就行。可是,麦克斯韦方程得出的光速是一个固定值,似乎暗示着光速无论在什么惯性坐标系下都是一样的。要知道,我们在使用牛顿力学时,是需要先选定参考坐标的。因此,科学家就在思考,是不是存在一个奇怪的坐标系,让光速一直保持一个速度,它们管这个叫做以太。于是,一群科学家就拼了命地去找“以太”,然后他们接二连三地失败了。 后来,26岁的爱因斯坦提出了狭义相对论。

有人说他高举了奥卡姆剃刀原理才成功的,这个奥卡姆剃刀原理大意是:如无必须勿增实体。翻译过来就是,咋简单咋来。既然光速是不变的,那为啥还要假设“以太”? 于是,爱因斯坦就以“光速不变原理”和“相对性原理”为基础假设,推导出了狭义相对论。这个过程就有点像平面几何,就只有五条公设,但是能搞出一整套体系。而这里的相对性原理,说白了就是经典物理学的老套路,在研究运动时,需要先选个惯性参考系。 通过这两条假设,爱因斯坦出了很多奇葩的结论,比如:时间膨胀。说的是,如果你想对于我高速运动,那我看你的时间就会变慢,这种变慢可以理解成,如果你在高速的飞船里做操,那我这里看到的就是你在慢动作做操。而你自己其实感觉到的时间是正常流逝。所以,是以我参考系看你时间膨胀了。如果你也 看到,你也会发现我的时间也变慢了,因为我想对于你也是在高速运动的。

学习广义相对论宇宙论的心得体会

学习广义相对论心得体会学习广义相对论宇宙论的心得体会 最近看完梁灿斌的微分几何与广义相对论教程中的宇宙论部分,果然比以前的学到的科普知识深了一层,下面就来写一段自己的小结体会。 先谈一下宇宙论的范围,以前总觉得好像研究宇宙中的东西就叫做宇宙论,但现在知道宇宙论研究的就是宇宙本身,如果研究其中恒星、黑洞之类的,还称不上的严格意义上宇宙论。宇宙论有一条基本原理,就是宇宙在大尺度下是均匀与各向同性的,即使是星系(比如我们的银河系)乃至星系团,在浩瀚宇宙中也只是沧海一粟而已。 由宇宙学原理,我们可以选定各向同性参考系,并且知道宇宙的空间几何(三维)是常曲率的,因此只可能有球形、平直或者是双曲型的度规结构。然而,我们还要考虑的宇宙四维时空结构,为此我们需要使用所谓的Robertson-Walker度规。请注意,宇宙的时空并不是一个单纯的容器,而是与物质分布通过Einstein方程G=8πT相联系。Einstein当年并不满意这个方程得到的动态解,特别增加了一项宇宙因子项Λ,通过求解修正的Einstein 方程G+Λg=8πT得到静态宇宙解,但遗憾的是这个解是不稳定的。然而,关于宇宙因子Λ的讨论却是几经周折,当量子场论发现“真空不空”时就解释成了真空的能量密度,1998 年的观测发现宇宙加速膨胀时又以Λ作为了主要原因。 借助于Robertson-Walker度规,可以对Einstein方程做一番复杂的推到,最后得到Friedmann方程,实际上宇宙论的讨论大都是从Friedmann方程出发的。由Friedmann方程,我们可以得到两种极端情况,对于尘埃宇宙的能量密度ρ∝a^(-3),而辐射宇宙(极早期)则有ρ∝a^(-4),其中a是R-W度规中的尺度因子。此外,Friedmann方程还引出了奇点问题,后来Penrose与Hawking断言了在相当宽容的条件下,奇点是不可避免的,这说明广义相对论与经典物理有着不相容的一面。物理学家曾试图用量子力学的方法来消除奇点问题, - 1 -

百度相对论吧视频导航 20101005

CassioPeia系列科普视频:关于物理学概念的通俗讲解,均配有英文字幕,部分有中文翻 译,详见帖子后面的回复。内容包括:物理学;相对论;宇宙;量子力学;标准模型。 百家讲坛——物理的挑战:共14讲,包括杨振宁、李政道、丁肇中在内的物理学家,总结 物理学的发展历程,并对今后的发展做出展望。 清华大学普通物理:杨振宁教授曾在清华大学讲授过一个学期的普通物理课,这是当时的 录像。配套教材是哈里德著《物理学基础》。授课语言主要是英语。我们提供教材及学习辅导的电子书下载。 上海交大大学物理:2个学期的课程,内容完整,范围包括力学、热学、电磁学、光学、近 代物理等。是非物理理工科专业学习的课程。 麻省理工学院力学:共36讲,适合非物理专业或物理专业低年级学生。内容丰富全面,课 堂演示实验是其最大特色。英文授课,点此下载讲稿(需要科学网帐号)。 绍兴文理学院力学:共60讲,内容全面。 中科大电磁学:共68讲,内容全面。 麻省理工学院电磁学:共36讲,适合非物理专业或物理专业低年级学生。英文授课,点此 下载讲稿(需要科学网帐号)。 麻省理工学院振动和波:共23讲,英文授课。适合非物理专业或物理专业低年级学生。 麻省理工学院热力学:共36讲,是麻省理工学院化学系开设的课程。 厦门大学热力学与统计:较为全面的学习资料,包括视频、课件、习题等。 Berkeley大学物理学基础:一个学期的大学物理课程,共24讲,内容全面,选材广泛。适 合非物理专业学生。英文授课,教授语速较快。 Yale大学物理学基础:一个学期的大学物理课程,共24讲,由著名物理学家Shankar教 授主讲。内容全面,涵盖了大学物理的主要内容。适合非物理专业学生。英文授课,已有字幕组制作中文字幕。 国立交通大学基础物理:由电子物理系李威仪教授主讲,授课风趣细致,内容比较全面。 北京大学物理学讲座:由程檀生教授主讲,面向非物理专业学生,属于拓展知识面的科普 讲座。内容包括原子核物理、粒子物理以及凝聚态物理学。 其它零散的大学物理视频有:复旦大学侯晓远教授主讲的万有引力;复旦大学蒋最敏教授 主讲的动量和动量守恒定律;复旦大学文科物理(物理与文化、自学物理实验)北京大学陈秉乾教授主讲的电磁学第一章:静电学;北京师范大学梁灿彬教授主讲的电磁学(静电场的高斯定理、动生电动势);复旦大学金晓峰教授和孙鑫教授主讲的热力学和统计物理学,配有孙鑫教授的教案;还有一些高中物理和大学物理的视频资源,适合教师用在课件之中。

广义相对论的学习总结

广义相对论的学习总结 1.引言 1.1前言 经过过去一年对广义相对论的学习,基本对广义相对论的基本原理和运用有了比较完整的认识。这篇文章是为了总结自己学习的体会,尽量用自己的语言谈谈对广义相对论的理解。由于作者水平有限,也为了文章的简洁,所以省去数学推导,仅保留基本的数学公式和方法说明。 广义相对论是爱因斯坦一大理论成果,可以解释宏观世界一切物体的运动,可以在一切坐标系下运用,本身又保持了相当完美的对称性和简洁性。随着空间探测技术的发展,广义相对论的许多结论都得到了证明,而广义相对论和量子力学构成了现代物理的两大支柱。 1.2导语 在具体介绍广义相对论的内容之前,我想用自己的语言,对广义相对论的思想和研究问题步骤做一个小的总结和介绍。总的来说,广义相对论是建立在四个假设之上,通过这四个假设,爱因斯坦认为惯性场和引力场等效,以及所有参考系的平权性。然后爱因斯坦把引力场认为是一种几何效应。是由于质量在空间上的分布不均匀,导致空间的空间扭曲。 在数学上,用张量来代表物理量,以满足物理规律在所有参考系下都成立。用黎曼几何来刻画弯曲空间,联络来描述引力强度,曲率

张量来描述空间弯曲,度规张量来描述引力势。 接下来便是构建场运动方程。我们可以用惠曼的名言总结道:“物质告诉时空如何弯曲,时空告诉物质如何运动。”按照爱因斯坦的想法,引力是由于质量空间分布不均匀造成的几何效应。所以爱因斯坦场方程左边应该是反映时空的几何性质的张量,右边是能动张量。再继续利用能量守恒定律,便可以推出爱因斯坦场方程。 应用爱因斯坦的场方程,得到了很多新奇的结论和实验预言,并且以“水星进动”和“引力红移”为代表的实验验证了广义相对论的正确性。 广义相对论还预言了引力弯曲效应极大情况下黑洞的存在。 而广义相对论作为宇宙学的理论基础,特别是近几十年观测技术的进步,使得宇宙学建立起了相对完整的理论系统。 2.基本假设 广义相对论建立在以下假设下。 2.1等效原理 广义相对论用的是强等效原理。 引力场与惯性场的的一切物理效应都是局域不可分辨的。 2.2马赫原理 惯性力起源于物质间的相互作用,起源于受力物体相对于遥远星系的加速运动,而且与引力有着相同或相近的物理根源。

爱因斯坦广义相对论

爱因斯坦广义相对论 广义相对论是爱因斯坦继狭义相对论之后,深入研究引力理论,于1913年提出的引力场的相对论理论。这一理论完全不同于牛顿的引力论,它把引力场归结为物体周围的时空弯曲,把物体受引力作用而运动,归结为物体在弯曲时空中沿短程线的自由运动。因此,广义相对论亦称时空几何动力学,即把引力归结为时空的几何特性。 如何理解广义相对论的时空弯曲呢?这里我们借用一个模型式的比拟来加以说明。假如有两个质量很大的钢球,按牛顿的看法,它们因万有引力相互吸引,将彼此接近。而爱因斯坦的广义相对论则并不认为这两个钢球间存在吸引力。它们之所以相互靠近,是由于没有钢球出现时,周围的时空犹如一张拉平的网,现在两个钢球把这张时空网压弯了,于是两个钢球就沿着弯曲的网滚到一起来了。这就相当于因时空弯曲物体沿短程线的运动。所以,爱因斯坦的广义相对论是不存在“引力”的引力理论。 进一步说,这个理论是建立在等效原理及广义协变原理这两个基本假设之上的。等效原理是从物体的惯性质量与引力质量相等这个基本事实出发,认为引力与加速系中的惯性力等效,两者原则上是无法区分的;广义协变原理,可以认为是等效原理的一种数学表示,即认为反映物理规律的一切微分方程应当在所有参考系中保持形式不变,也可以说认为一切参考系是平等的,从而打破了狭义相对论中惯性系的特殊地位,由于参考系选择的任意性而得名为广义相对论。 我们知道,牛顿的万有引力定律认为,一切有质量的物体均相互吸引,这是一种静态的超距作用。 在广义相对论中物质产生引力场的规律由爱因斯坦场方程表示,它所反映的引力作用是动态的,以光速来传递的。 广义相对论是比牛顿引力论更一般的理论,牛顿引力论只是广义相对论的弱场近似。所谓弱场是指物体在引力场中的引力能远小于固有能,力场中,才显示出两者的差别,这时必须应用广义相对论才能正确处理引力问题。 广义相对论在1915年建立后,爱因斯坦就提出了可以从三个方面来检验其正确性,即所谓三大实验验证。这就是光线在太阳附近的偏折,水星近日点的进动以及光谱线在引力场中的频移,这些不久即为当时的实验观测所证实。以后又有人设计了雷达回波时间延迟实验,很快在更高精度上证实了广义相对论。60年代天文学上的一系列新发现:3K微波背景辐射、脉冲星、类星体、X射电源等新的天体物理观测都有力地支持了广义相对论,从而使人们对广义相对论的兴趣由冷转热。特别是应用广义相对论来研究天体物理和宇宙学,已成为物理学中的一个热门前沿。 爱因斯坦一直把广义相对论看作是自己一生中最重要的科学成果,他说过,“要是我没有发现狭义相对论,也会有别人发现的,问题已经成熟。但是我认为,广

广义相对论 一个极其不可思议的世界

广义相对论一个极其不可思议的世界 谷锐译原文:Slaven 广义相对论的基本概念解释: 在开始阅读本短文并了解广义相对论的关键特点之前,我们必须假定一件事情:狭义相对论是正确的。这也就是说,广义相对论是基于狭义相对论的。如果后者被证明是错误的,整个理论的大厦都将垮塌。 为了理解广义相对论,我们必须明确质量在经典力学中是如何定义的。 质量的两种不同表述: 首先,让我们思考一下质量在日常生活中代表什么。“它是重量”?事实上,我们认为质量是某种可称量的东西,正如我们是这样度量它的:我们把需要测出其质量的物体放在一架天平上。我们这样做是利用了质量的什么性质呢?是地球和被测物体相互吸引的事实。这种质量被称作“引力质量”。我们称它为“引力的”是因为它决定了宇宙中所有星星和恒星的运行:地球和太阳间的引力质量驱使地球围绕后者作近乎圆形的环绕运动。 现在,试着在一个平面上推你的汽车。你不能否认你的汽车强烈地反抗着你要给它的加速度。这是因为你的汽车有一个非常大的质量。移动轻的物体要比移动重的物体轻松。质量也可以用另一种方式定义:“它反抗加速度”。这种质量被称作“惯性质量”。 因此我们得出这个结论:我们可以用两种方法度量质量。要么我们称它的重量(非常简单),要么我们测量它对加速度的抵抗(使用牛顿定律)。 人们做了许多实验以测量同一物体的惯性质量和引力质量。所有的实验结果都得出同一结论:惯性质量等于引力质量。 牛顿自己意识到这种质量的等同性是由某种他的理论不能够解释的原因引起的。但他认为这一结果是一种简单的巧合。与此相反,爱因斯坦发现这种等同性中存在着一条取代牛顿理论的通道。 日常经验验证了这一等同性:两个物体(一轻一重)会以相同的速度“下落”。然而重的物体受到的地球引力比轻的大。那么为什么它不会“落”得更快呢?因为它对加速度的抵抗更强。结论是,引力场中物体的加速度与其质量无关。伽利略是第一个注意到此现象的人。重要的是你应该明白,引力场中所有的物体“以同一速度下落”是(经典力学中)惯性质量和引力质量等同的结果。 现在我们关注一下“下落”这个表述。物体“下落”是由于地球的引力质量产生了地球的引力场。两个物体在所有相同的引力场中的速度相同。不论是月亮的还是太阳的,它们以相同的比率被加速。这就是说它们的速度在每秒钟内的增量相同。(加速度是速度每秒的增加值)

广义相对论的引力场方程

广义相对论的引力场方程 1955年,物理学家玻恩在一次报告中评价道:“对于广义相对论的提出,我过去和现在都认为是人类认识大自然的最伟大的成果,它把哲学的深奥、物理学的直观和数学的技艺令人惊叹地结合在一起.”德布罗意(Louis de Broglie ,1892-1987)在《阿尔伯特·爱因斯坦科学工作概况》中谈到广义相对论时说:“依靠黎曼(G ·Riemann ,1826-1866)的弯曲空间理论,借助于张量运算,广义相对论提出一种万有引力现象的解释,这种解释的雅致和美丽是无可争辩的,它该作为20世纪数学物理学的一个最优美的纪念碑而永垂不朽.” 1983年诺贝尔物理学奖获得者昌德拉塞卡说得更清楚:爱因斯坦是“通过定性讨论一个与对于数学的优美和简单的切实感相结合的物理世界,得到了他的场方程.” 相对论实在可以说是对麦克思韦和洛伦兹的伟大构思画了最后一笔,因为它力图把场物理学扩充到包括引力在内的一切现象.爱因斯坦在1905年发表了狭义相对论公式之后的几十年内,他就对数学的各个领域烂熟于心了,而同时代的大多数物理学家则对这些领域知之甚少甚至一无所知.在他迈向广义相对论的最终等式的过程中,在将这些数学结构同他的物理学直觉结合在一起 这个方面,爱因斯坦展示出了罕见的天赋. 广义相对论理论的核心是新的引力场定律和引力场方程.有人说,麦克斯韦在电磁场上做过什么工作, Einstein 在引力场也做过什么工作.广义相对论引人注目的特征之一是将牛顿力学中的引力简化为四维时空中的弯曲,“宇宙图景”的新情景不再是“三维空间中一片以太海洋的受迫振动”,而是“四维空间世界线上的一个纽结”.1914年,Einstein 与洛伦兹的学生福寇一起发表了一篇严格遵守广义协变性要求的引力理论的简短论文,发现从绝对运算和广义协变性的要求出发,可以证明诺茨屈劳姆的理论只是Einstein —格罗斯曼理论的一种特殊情况,其标志是真空光速不变这一附加条件;Einstein —格罗斯曼理论包含着光的弯曲,而诺茨屈劳姆的理论没有光的弯曲.广义相对论具有最简单,最优雅的几何基础(三个公理:(1)具有度规;(2)度规由爱因斯坦方程G=8πT 支配;(3)在度规的局部洛伦兹标 架中所有狭义相对论的物理规律是正确的). 1.广义坐标变换 设一个时空区域同时被旧坐标系()3210x x x x x ,,,μ和新坐标系()3'2'1'0x'x x x x ,,,'μ所覆盖,其中','ct x ct x 00==,c 是光速,t 与t ’是时间.新旧坐标之间的关系可表示为 () )(',,,a 3210x x x x x x x'x'μμμ== ),,,,(3210a =μ (1),每一个新坐标都是四个旧 坐标的函数.微分(1)式,得到广义坐标变换下微分的变换关系

爱因斯坦《狭义与广义相对论浅说》

狭义与广义相对论浅说 爱因斯坦 .

第一部分狭义相对论·············································································································· ····································································································································································································································· ················································································································································································································· ······································································································· ················································································· ····································································· ············································································································ ············································································································ ························································································································································································································· ··························································································· ······················································································· ······································································································· ··························································································· ······································································································· ··································································································· ·········································································································· ························································································································································································································· ········································ ····························· ······················································································· ·························································································································································································· ················································ ······················································ ······················································································· ···································································· ··················································································· ··················································································· ···························································· ····················································································································································································································· ······························································································· ··············································································· ······························································································· ····························································································· ····················································································· ····························································································· ······································································· (4) 1.几何命题的物理意义 4 2.坐标系 5 3.经典力学中的空间和时间7 4.伽利略坐标系8 5.相对性原理(狭义)8 6.经典力学中所用的速度相加定理10 7.光的传播定律与相对性原理的表面抵触10 8.物理学的时间观12 9.同时性的相对性14 10.距离概念的相对性15 11.洛伦兹变换16 12.量杆和钟在运动时的行为19 13.速度相加定理斐索实验20 14.相对论的启发作用22 15.狭义相对论的普遍性结果22 16.经验和狭义相对论25 17.闵可夫斯基四维空间27 第二部分广义相对论29 18.狭义和广义相对性原理29 19.引力场31 20.惯性质量和引力质量相等是广义相对性公设的一个论据32 21.经典力学的基础和狭义相对论的基础在哪些方面不能令人满意34 22.广义相对性原理的几个推论35 23.在转动的参考物体上的钟和量杆的行为37 25.高斯坐标41 26.狭义相对论的空时连续区可以当作欧几里得连续区43 27.广义相对论的空时连续区不是欧几里得连续区44 28.广义相对性原理的严格表述45 29.在广义相对性原理的基础上解引力问题47 第三部分关于整个宇宙的一些考虑49 30.牛顿理论在宇宙论方面的困难49 31.一个“有限”而又“无界”的宇宙的可能性50 32.以广义相对论为依据的空间结构53 附录54 一、洛伦兹变换的简单推导54 二、闵可夫斯基四维空间(“世界”)57 三、广义相对论的实验证实58 (1)水星近日点的运动59 (2)光线在引力场中的偏转60 (3)光谱线的红向移动62 四、以广义相对论为依为依据的空间结构64 五、相对论与空间问题65

广义相对论课程教学大纲

广义相对论课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:广义相对论 所属专业:理论物理专业 课程性质:专业方向必修课 学分:3 (二)课程简介、目标与任务;‘ Einstein在1915年创建的广义相对论是关于时间—空间的性质与物质及其运动相互依赖关系的学说,是建立在广义协变性要求,等效原理和黎曼几何基础上的引力理论和宏观物质运动理论。广义相对论就其创造性和理论的深刻程度来说,都是非凡的和令人惊奇的,这一理论不仅对牛顿力学的核心内容(牛顿方程和万有引力)给予了统一和深刻的解释,还预言了许多牛顿力学所不能解释的新物理效应,并为以后的天文观测和实验所验证。本课程主要介绍广义相对论的数学基础、基本概念和基础知识以及广义相对论的经典实验验证。通过课程的学习使学生深入了解和掌握广义相对论的知识,为进一步深造打下扎实的基础,并能够应用到研究工作中。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 先修课程包括:理论力学、电动力学。先修课程是该课程的理论基础。 (四)教材与主要参考书。 教材: 广义相对论讲义,段一士 主要参考书: 1.《广义相对论》,刘辽,高等教育出版社 2.《微分几何入门与广义相对论》,梁灿彬,科学出版社 3.《Gravitation》,C.W.Misner, K.S.Thorne, J.A.Wheeler,W.H.Freeman and company 4.《General Relativity》,Robert M.Wald, The University of Chicago Press

二、课程内容与安排 第一章引言(2学时) 1.1 相对论发展简史 1.2 广义相对论基本原理 第二章黎曼几何(12学时) 2.1 张量 2.2 协变微商 2.3 曲率张量与挠率 2.4 黎曼流形、度规和黎曼联络 2.5 黎曼曲率张量 2.6 利奇(Ricci)张量、标曲率和爱因斯坦张量 2.7 黎曼曲率张量与拓扑 2.8 微分形式与外积 2.9 不变体积元和广义高斯积分定理 第三章爱因斯坦引力场方程(15学时) 3.1 广义相对论基本原理 3.2 “短程线”方程与矢量的平行移动 3.4 度规的弱引力场和低速近似与牛顿第二定律 3.5 爱因斯坦引力场方程 3.6 爱因斯坦引力场方程的作用量、Palatini公式 3.7 广义相对论中的坐标条件 第四章引力场方程的中心球对称解与新引力效应(18学时) 4.1 引力场方程的中心球对称解 4.2 行星轨道进动 4.3 光线在恒星附近的偏折 4.4 雷达回波的延迟 4.5 固有时与引力频移

相对论

相对论(关于时空和引力的基本理论) 相对论是关于时空和引力的基本理论,主要由阿尔伯特·爱因斯坦创立,依据研究的对象不同分为狭义相对论和广义相对论。相对论的基本假设是相对性原理,即物理定律 与参照系的选择无关。 狭义相对论和广义相对的区别是,前者讨论的是匀速直线运动的参照系(惯性参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理 的假设下,广泛应用于引力场中。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。它发 展了牛顿力学,推动物理学发展到一个新的高度。 狭义相对性原理是相对论的两个基本假定,在目前实验的观测下,物体的运动与相对 论是吻合很好的,所以目前普遍认为相对论是正确的理论。 研究发展编辑 研究历程 广义相对论 1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久。突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题。第二天,他又来到贝索家,说:谢谢你,我的问题解决了。原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与 光信号的速度有一种不可分割的联系。他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前。[1] 1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表。这篇论文是关于狭义相对论的第一篇文章,它包含 了狭义相对论的基本思想和基本内容。这篇文章是爱因斯坦多年来思考以太与电动力 学问题的结果,他从同时的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的形式,以太不再是必要的,以太 漂流是不存在的。[2] 1907年,爱因斯坦撰写了关于狭义相对论的长篇文章《关于相对性原理和由此得出的结论》,在这篇文章中爱因斯坦第一次提到了等效原理,此后,爱因斯坦关于等效原 理的思想又不断发展。他以惯性质量和引力质量成正比的自然规律作为等效原理的根

广义相对论的基本原理

广义相对论的基本原理 爱因斯坦提出马赫原理、广义协变性原理和等效原理作为广义相对论的基本原理。他采用弯曲时空的黎曼几何来描述引力场,给出引力场中的物理规律,进而提出引力场方程,奠定了广义相对论的理论基础。 1、1马赫原理 狭义相对论完全废除了以太概念,即电磁运动的绝对空间,但却仍然没有对经典力学把绝对空间当作世界的绝对惯性结构的理由做出解释,也没有为具有绝对惯性结构的力学提供新的替换。也就是说,惯性系的存在,对于力学和电磁学都是必不可少的。狭义相对论紧紧地依赖于惯性参考系,它们是一切非加速度的标准;它们使一切物理定律的形式表达实现了最简化。惯性系的这种特权在很长时间里保持着一种神秘性。为了满足狭义相对论而修改牛顿引力(平方反比)理论的失败,导致了广义相对论的兴起。 爱因斯坦是出于一种哲学欲望才把绝对空间彻底地从物理学中清除出去的。自一开始,狭义相对论就把惯性系当作一种当然的存在。可能,爱因斯坦本来也不反对在狭义相对论基础上建立的引力论。由此,爱因斯坦不得不超越狭义相对论。在这一工作中,他十分诚恳地反复强调,他得益于物理学家兼哲学家马赫的思想。爱因斯坦说:“没有人能够否认,那些认识论的理论家们曾为这一发展铺平了道路;从我自己来说,我至少知道:我曾经直接地或间接地特别从休漠和马赫那里受到莫大的启发。”爱因斯坦建立广义相对论的一个重要思想是认为时间和空间的几何不能先验地给定,而应当由物质及其运动所决定。这个思想直接导致用黎曼几何来描述存在引力场的时间和空间,并成为写下引力场方程的依据。爱因斯坦的这一思想是从物理学家和哲学家马赫对牛顿的绝对空间观念以及牛顿的整个体系的批判中汲取而来的。爱因斯坦把这一思想称为马赫原理。 马赫原理早在17世纪就已经有了萌芽。马赫的惯性思想包括四个方面的内容:(1)空间本身并不是一种“事物”,它纯粹是物质间距离关系总体的抽象。(2)粒子的惯性是由这个粒子与宇宙中所有其他物质的相互作用造成的。(3)局部的非加速度标准决定于宇宙中所有物质的平均运动。(4)力学中的所有物质都与所有物质存在相对运动。由此,马赫写道:“……如果我们认为地球在绕轴自转或处于静止状态,同时恒星在围绕着它公转,这都没有关系……惯性定律必定能证明,第二个假设和第一个假设得出的结果是精确地一致的。”我们说地球在“自旋”,自旋的弹性球在赤道上会凸起来。但是,弹性球是怎么“知道”自旋必然导致凸起的呢?对于这个问题,牛顿的回答是,它“感受”到了绝对空间的运动;马赫的回答则是,变凸的弹性球“感受”到了宇宙物质在围绕它转。对于牛顿来说,相对于绝对空间的旋转产生离心力。这种离心力完全不同于万有引力。对于马赫来说,离心力也是引力。它是由物质与物质之间的作用引起的。 爱因斯坦在走向广义相对论的进程中,曾经推测牛顿的平方反比理论可能与完全的引力理论存在许多差异。1953年,夏马(D.W.Sciama)复活并推广了19世纪天体力学家、勒维烈的学生提泽兰(F.Tisserand,1845~1896)的一种麦克斯韦式的引力理论。并且发现,它大大地包括了马赫原理:惯性力对应于宇宙的引力“辐射场”,并与距离的一次方成反比。然而,不幸的是,这种理论在其他方面严重违背相对论。比如,在狭义相对论中,质量是随速度变化的;在麦克斯韦理论中,电荷却是不变的。还有,因为E=mc2的关系式,物体的引力束缚能具有(负的)质量;这样,系统的总质量不可能等于部分的质量之和;而麦克斯韦理论中电荷(类比于质量)却是严格增加的。爱因斯坦的广义相对论对惯性问题的解决,比麦克斯韦理论要复杂得多。然而,在“一级近似”上,它可化为牛顿理论;在“二级近似”上它则具有麦克斯韦特征。

相关文档
最新文档