控制器的参数

控制器的参数
控制器的参数

安徽合肥赛光电源

https://www.360docs.net/doc/c27279403.html,

我公司生产的风光互补路灯控制器,是集太阳能、风能控制和输出控制于一体的智能路灯控制器。即设备可控制太阳能电池和风力发电机同时对蓄电池进行智能充电,并带有两路光控开直流输出,即在晚上自动启动直流输出,点亮路灯。

·产品有电子刹车和卸载功能,也有手动刹车功能。

·自我运行LED显示

·恒压充电模式(在快充和浮充状态下能够自动切换)

·保护功能:放反接,过充和过放,超负载,短路

·PWM智能卸载:在风机高速运转的情况下,自动识别充电和卸载工作模式

·系统需要时,提供双路输出

·体积小,重量轻的设计为安装和运输提供了方便

参数:

太阳能节能照明路灯工作原理剖析及探究

太阳能节能照明路灯工作原理剖析及探究/太阳能灯具问题

解析

随着光伏发电技术的发展,太阳能照明灯具已经在太阳能应用产品中显露头角,并正在引起更多人的关注。太阳能照明灯具通常分为:太阳能草坪灯、太阳能庭院灯、太阳能路灯等。虽然受成本、稳定性等因素制约,尚未大规模推广,但它的前途是非常光明的。太阳能灯具的核心技术:一是低功耗、高亮度、长寿命的光源技术;二是太阳电池为蓄电池最佳充放电技术。这两个方向性的问题解决好了,很多问题也就应刃而解了。

光源问题

光源问题主要是:高压电路中振流器容易损坏,灯具寿命短,可*性不高;光源功率大,但亮度低,大功率光源导致大的系统配臵,使系统成本翻番。

举例估算如下:

如果普通太阳能灯具用光源80W,组件为240W。若用新型25W光源代替,达到相同亮度,约需组件100W。假如系统成本按60元/W计算,则普通太阳能灯具成本为240W×60元 W=1.44万元;新型太阳能灯具为100W×60元/W=0.6万元。

单纯一盏灯就相差了8400元,还没有考虑系统缩小以后,故障率、安装维护费用等降低的有利影响。

很多厂家一直在寻找更合适的光源,然而,市场上此类产品

却非常少。市场上没有或产品不过关,换一个角度看也未必是一件坏事,没有且需要,就意味着一种商机,在这方面投入并有所成果就掌握了太阳能灯具的核心技术之一,占了市场先机。如果想大规模投入太阳能灯具市场,并引领潮流,就必须掌握太阳能灯具的核心技术,否则将臵后于人。

控制器充电方法和参数设臵问题

常规充电法

1.恒流充电法

恒流充电法是用调整充电装臵输出电压或改变与蓄电池串联的电阻,保持充电电流强度不变的充电方法。其控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,所以到充电后期,充电电流多用于电解水产生气体,使出气过多。

2. 阶段充电法

1)阶段法。首先以恒电流充电至预定的电压值,然后,改为恒电压完成剩余的充电。

2)三阶段充电法。在充电开始和结束时采用恒电流充电,中间用恒电压充电。当电流衰减到预定值时,由第二阶段转换到第三阶段。这种方法可以将出气量减到最少,但作为一种快速充电方法使用,仍受到一定的限制。

3.恒压充电法

充电电源的电压在全部充电时间里保持恒定的数值,随

着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。这种充电方法电解水很少,避免了蓄电池过充。但在充电初期电流过大,对蓄电池寿命造成很大影响,且容易使蓄电池极板弯曲,造成报废。

快速充电法

1.脉冲式充电法

脉冲充电方式首先是用脉冲电流对电池充电,然后让电池停充一段时间后再充,如此循环充电脉;中使蓄电池充满电量,间歇期使蓄电池经化学反应产生的氧气和氢气有时间重新化合而被吸收掉,使浓差极化和欧姆极化自然而然地得到消除,从而减轻了蓄电池的内压,使下一轮的恒流充电能够更加顺利地进行,使蓄电池可以吸收更多的电量。间歇脉;中使蓄电池有较充分的反应时间,减少了析气量,提高了蓄电池对充电电流的接受率。

2.变电流间歇充电法

变电流间歇充电法为一种限压变电流间歇充电方法。充电前期的各段采用变电流间歇充电,使蓄电池获得绝大部分充电量。充电后期采用定电压充电段,获得过充电量。通过间歇停充,使蓄电池经化学反应产生的氧气和氢气有时间重新化合而被吸收掉,使浓差极化和欧姆极化自然而然地得到消除,从而减轻了蓄电池的内压,使下一轮的恒流充电能够

更加川页利地进行并使蓄电池可以吸收更多的电量。

3. 变电压间歇充电法

与变电流间歇充电方法不同之处在于第一阶段采用的不是间歇恒流,而是间歇恒压。在每个恒电压充电阶段,充电电流自然按照指数规律下降,具有符合电池电流可接受率随着充电的进行逐渐下降的特点。

4.变电压变电流波浪式间歇正负零脉冲快速充电法

脉冲电流幅值和PWM信号的频率均固定,PWM占空比可调,在此基础上加入间歇停充阶段,能够在较短的时间内充进更多的电量,提高蓄电池的充电接受能力。

参数设臵

浮充电压参数的设臵对蓄电池的寿命具有相当重要的影响,浮充电压产生的电流量应达到补偿自放电及日常负载用电和维持氧循环的需要。不合理的浮充电压主要在两个方面影响电池,即正极板栅腐蚀速率和电池内气体的排放。当电池的浮充电压超过一定值时,板栅腐蚀现象会进一步加剧,电池内的氧气和氢气产生较高气压,通过排气阀排放,从而造成电池失水。正极腐蚀则意味着蓄电池失水,进一步加剧电池劣化、寿命缩短。若将浮充电压值超过一定幅度,增大的浮充电流会产生更多的盈余气体,这样便使氧在负极的复合受阻,从而削弱了氧的循环机能。

均衡充电是为了防止某些蓄电池因容量、端压的不一致

而进行的补充电。一般做法是将浮充电压提高0.05~0.07V ℃,但最高不得超过2.35V。由于在均衡充电时气体的产生量比浮充充电时多几十倍,所以充电时间不能太长,以避免盈余气体影响氧的再复合效率,使失水量增加,进而使板栅腐蚀速度增快,损坏电池。对于新电池或状态较好的电池,一般均衡充电时电压应相对较低,而对于使用时间较长或者性能较差的电池,均充电压可适当升高。

现在一般12V的灯具系统控制器,过放点电压值设臵在10.8V(蓄电池在0.1C的电流下放电到80%DOD0寸的终止电压),但实际灯具系统中,放电电流一般在0.01C~0.02C左右,有的甚至更小,在这种放电情况下,当放电达到终止电压10.8VB寸,蓄电池已经100%放电了,这将严重影响蓄电池寿命。

国内外大量的研究结果表明,充放电方式决定了蓄电池使用的寿命,有一些蓄电池与其说是使用坏的,不如说是充电方式不妥而损坏的。

负载工作时间问题

太阳能灯具从经济性和可*性角度综合考虑,一般以全年平均日照时数设计计算灯具配臵,而实际工作时,往往都是由控制器时控功能设定一个工作时数,如6小时、8小时、10小时等,这样就造成了一年[FS:PAGE]里每天工作时间都一样,即每天耗电量一样,但太阳能灯具是*太阳工作的,

而太阳辐射量随不同的季节是有很大差异的,即每个灯具(太阳电池组件一定)各个季节的平均日发电量是大不相同的。

以山东德州为例,月均峰值日照时数情况如图1。例如负载为10W,平均每天工作8小时,需电池组件约为40Wp,则一年中各月发电量与负载耗电量的关系如图2。

德州地区全年平均峰值日照时数约为 4.44h,春季:4.43h、夏季:6.17h、秋季:4.47h、冬季:2.65h。因平均每天发电量是和平均峰值日照实数成正比的,所以可得春季和秋季发电量和耗电量基本达到一个平衡,夏季电量富裕(6.17~4.44) 4.44约为39%;冬季电量缺少(4.44~2.65) 0.44约为40.3%。

这样夏季造成了一定的浪费,而冬季却严重不足,很容易造成蓄电池过放电,影响蓄电池寿命。鉴于此现状,一个理想的做法就是把夏天多余的电量给冬天用,那样好是好,但需要一个大的储能系统,出于自放电、系统匹配、成本等因素是极其不经济和不实用的。所以控制负载时间不失为一种解决办法,根据德州峰值日照时数可得:

夏季平均峰值日照时数比全年平均峰值日照时数比冬季平均峰值日照时数=6.17:4.44:2.65=7:5:3,则按全年峰值日照时数设计每天工作10小时的太阳能灯具根据7:5:3这个比值可得出夏季最多允许工作14小时,冬季最多允

许工作6小时(注意:未考虑季节不同温度等的影响)。鉴于此,为了使蓄电池在冬季不至于过放电,可调整负载工作时间为小于或等于6小时。

太阳能路灯系统匹配问题

现在做太阳能灯具的厂家往往过多的追求造型设计,而把最重要的系统匹配研究忽略了,不经过深入考虑,简单计算了事,最后导致灯具出现大量问题;还有些厂家为了营造自己产品的价格优势,不惜牺牲系统稳定性,这些作法都是不可取的。

匹配设计是关系到系统可*性和稳定性的重要因素,要引起重视,主要应考虑以下几个方面:

(1)太阳电池发电量和负载耗电量配比合理。

(2)耗电量和蓄电池容量配比应满足持续阴雨天数要求且放电深度合理。

(3)太阳电池充电电流和蓄电池容量配比合理。

(4)负载放电电流与蓄电池容量配比合理。

防雨问题

主要现象为充放电控制器受淋、受潮,造成电路板短路,烧坏控制器件(三极管),严重的造成电路板被腐蚀变质,不可再修复。进水途径主要有两个方面:一是从灯杆顶端的预留孔顺太阳电池组件和光源引线进入灯杆内;二是从灯杆仓门缝隙处浸入;再加上仓内温度较高,致使仓内湿度很大,

导致控制器损坏。因此,做好防雨,避免控制器受潮、损坏,同样不可忽视。

蓄电池散热问题

现在灯具上大部分采用12V阀控免维护铅酸蓄电池,它采用的是紧装配结构,散热性能较差,它又属于贫液电池,充电时电解液温度过高,会加快蒸发造成电池失水,也会使极板因过热膨胀损坏和外壳变形,更重要的是由于热量积累使电池热失控。

蓄电池是灯具系统中的重要部件,一般占总成本的10%~20%,其性能直接影响着系统的可*性和寿命。太阳能灯具一般安装在室外,环境温度超过25℃,温度每升高10℃,寿命将减少一半。所以,保持适宜的温度对蓄电池寿命是非常重要的。

蓄电池耐候性考验

一般灯具设计寿命在15年[FS:PAGE]左右,而蓄电池在其中是一个薄弱环节。12V阀控免维护铅酸蓄电池,其设计寿命一般为五六年,但实际应用中,一般两三年就需要更换,有的甚至不到一年寿命就终结了。

对于一设计寿命为15年的庭院灯,蓄电池为12V 36Ah,按0.6元 VAh,若寿命为两年,每次更换费用按200元算,则在寿命期内至少需更换6次蓄电池,仅蓄电池一项就要追加成本2755.2元。若蓄电池寿命能达到5年,则在寿命期

内需更换3次,追加成本则为1377.6元,仅蓄电池一项就可节省1377.6元。

colo(u)r temperature

表示光源光谱质量最通用的指标。色温是按绝对黑体来定义的,光源的辐射在可见区和绝对黑体的辐射完全相同时,此时黑体的温度就称此光源的色温。低色温光源的特征是能量分布中,红辐射相对说要多些,通常称为“暖光”;色温提高后,能量分布中,蓝辐射的比例增加,通常称为“冷光”。一些常用光源的色温为:标准烛光为1930K(开尔文温度单位);钨丝灯为2760-2900K;荧光灯为3000K;闪光灯为3800K;中午阳光为5400K;电子闪光灯为6000K;蓝天为12000-18000K。

在讨论彩色摄影用光问题时,摄影家经常提到“色温”的概念。色温究竟是指什么? 我们知道,通常人眼所见到的光线,是由7种色光的光谱所组成。但其中有些光线偏蓝,有些则偏红,色温就是专门用来量度和计算光线的颜色成分的方法,是19世纪末由英国物理学家洛德?开尔文所创立的,他制定出了一整套色温计算法,而其具体确定的标准是基于以一黑体辐射器所发出来的波长。

开尔文认为,假定某一纯黑物体,能够将落在其上的所有热量吸收,而没有损失,同时又能够将热量生成的能量全部以“光”的形式释放出来的话,它产生辐射最大强度的波

长随温度变化而变化。例如,当黑体受到的热力相当于500—550摄氏度时,就会变成暗红色(某红色波长的辐射强度最大),达到1050一1150摄氏度时,就变成黄色……因而,光源的颜色成分是与该黑体所受的温度相对应的。色温通常用开尔文温度(K)来表示,而不是用摄氏温度单位。打铁过程中,黑色的铁在炉温中逐渐变成红色,这便是黑体理论的最好例子。通常我们所用灯泡内的钨丝就相当于这个黑体。色温计算法就是根据以上原理,用K来对应表示物体在特定温度辐射时最大波长的颜色。

I控制器参数整定经验总结

PID控制器的参数整定 (1)PID是比例,积分,微分的缩写. 比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。 积分调节作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。反之Ti大,则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。 微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用对噪声干扰有放大作用,因此过强的加微分调节,

对系统抗干扰不利。此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。 (2) PID具体调节方法 ①方法一 确定控制器参数 数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。 在选择数字PID参数之前,首先应该确定控制器结构。对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。一般来说,PI、PID和P控制器应用较多。对于有滞后的对象,往往都加入微分控制。 选择参数 控制器结构确定后,即可开始选择参数。参数的选择,要根据受控对象的具体特性和对控制系统的性能要求进行。工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定,等等。这些要求,对控制系统自身性能来说,有些是矛盾的。我们必须满足主要的方面的要求,兼顾其他方面,适当地折衷处理。 PID控制器的参数整定,可以不依赖于受控对象的数学模型。工程上,PID控制器的参数常常是通过实验来确定,通过试凑,或者通过实验经验公式来确定。 常用的方法,采样周期选择, 实验凑试法 实验凑试法是通过闭环运行或模拟,观察系统的响应曲线,然后根据各参数对系统的影响,反复凑试参数,直至出现满意的响应,从而确定PID控制参数。 整定步骤 实验凑试法的整定步骤为"先比例,再积分,最后微分"。 (1)整定比例控制 将比例控制作用由小变到大,观察各次响应,直至得到反应快、超调小的响应曲线。 (2)整定积分环节 若在比例控制下稳态误差不能满足要求,需加入积分控制。 先将步骤(1)中选择的比例系数减小为原来的50~80%,再将积分时间置一个较大值,观测响应曲线。然后减小积分时间,加大积分作用,并相应调整比例系数,反复试凑至得到较满意的响应,确定比例和积分的参数。 (3)整定微分环节 若经过步骤(2),PI控制只能消除稳态误差,而动态过程不能令人满意,则应加入微分控制,构成PID控制。 先置微分时间TD=0,逐渐加大TD,同时相应地改变比例系数和积分时间,反复试凑至获得满意的控制效果和PID控制参数。 实验经验法 扩充临界比例度法

参数整定方法

1. 临界比例度法 先在纯比例作用下(把积分时间放到最大,微分时间放到零),在闭合的调节系统中,从大到小地逐渐地改变调节器的比例度,就会得到一个临界振荡过程。这时的比例度叫临界比例度δk,周期为临界振荡周期Tk。记下δk和Tk,然后按经验公式来确定调节器的各参数值。 2. 衰减曲线法 临界比例度法是要系统等幅振荡,还要多次试凑,而用衰减曲线法较简单,一般又有两种方法。 1)4:1衰减曲线法 使系统处于纯比例作用下,在达到稳定时,用改变给定值的办法加入阶跃干扰,观察记录曲线的衰减比,然后逐渐从大到小改变比例度,使出现4:1的衰减比为止。记下此时的比例度δs和振荡周期T s。再按经验公式来确定PID数值。 2)10:1衰减曲线法 有的过程,4:1衰减仍嫌振荡过强,可采用10:1衰减曲线法。方法同上,得到10:1衰减曲线,记下此时的比例度δ's和上升时间T's,再按经验公式来确定PID的数值。 (四)PID参数确定的方法 在选择了调节规律及相应的调节器后,就要进行PID初始参数的确定。常采用的方法有临界比例度法(又称稳定边界法)、反应曲线法、衰减曲线法、仪表参数自整定法。 1、临界比例度法: 调节规律采用纯比例,不断增加K,使调节系统的被调参数作等幅振荡(即达到稳定边界)时,测量出比例放大系数Km或临界比例度Pm以及振荡周期Tm,然后,按经验数据求出初始参数。 临界比例度法的调节器经验数据表 调节规律P(%)T I T D P2P m PI 2.2 P m0.85T m PID 1.7 P m0.5T m0.13 T m 2、反应曲线法: 反应曲线法:要确定调节器的参数应先测定对象的动态特性,即对象输入量作单位阶跃变化时被调量的反应曲线,即飞升曲线。根据飞升曲线可得到等效滞后时间τ、等效时间常数T、

PID控制器设计及其参数整定

一、绪论 PID 参数的整定就是合理的选取PID 三个参数。从系统的稳定性、响应速度、超调量和稳态误差等方面考虑问题,三参数作用如下: 比例调节作用:成比例地反映系统的偏差信号,系统一旦出现了偏差,比例调节立即产生与其成比例的调节作用,以减小偏差。随着P K 增大,系统的响应速度加快,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大P K 只能减小稳态误差,却不能消除稳态误差。比例调节的显著特点是有差调节。 积分调节作用:消除系统的稳态误差,提高系统的误差度。积分作用的强弱取决于积分时间常数i T ,i T 越小,积分速度越快,积分作用就越强,系统震荡次数较多。当然i T 也不能过小。积分调节的特点是误差调节。 微分调节作用:微分作用参数d T 的作用是改善系统的动态性能,在d T 选择合适情况下,可以减小超调,减小调节时间,允许加大比例控制,使稳态误差减小,提高控制精度。因此,可以改善系统的动态性能,得到比较满意的过渡过程。微分作用特点是不能单独使用,通常与另外两种调节规律相结合组成PD 或PID 控制器。 二、设计内容 1. 设计P 控制器 控制器为P 控制器时,改变比例系数p K 大小。 P 控制器的传递函数为:()P P K s G =,改变比例系数p K 大小,得到系统的阶跃响应曲线

当 K=1时, P 当 K=10时, P K=50时,当 P

当P K =100时, p K 超调量σ% 峰值时间p T 上升时间r T 稳定时间s T 稳态误差ss e 1 49.8044 0.5582 0.2702 3.7870 0.9615 10 56.5638 0.5809 0.1229 3.6983 0.7143 50 66.4205 0.3317 0.1689 3.6652 0.3333 100 70.7148 0.2506 0.0744 3.6410 0.2002 仿真结果表明:随着P K 值的增大,系统响应超调量加大,动作灵敏,系统的响应速度加快。P K 偏大,则振荡次数加多,调节时间加长。随着P K 增大,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大P K 只能减小稳态误差,却不能消除稳态误差。 2. 设计PI 控制器 控制器为PI 控制器时,改变积分时间常数i T 大小(50=P K 为定值) PI 控制器的传递函数为: 11 ()PI P I G s K T s =+? ,改变积分时间常数i T 大小,得到系统的阶跃响应曲线

PID控制器参数整定的方法,口诀

PID控制器参数整定的方法,口诀 P proportion 比例 I integration 积分 D differentiation 微分 PID用于控制精度比例是必须的,它直接影响精度,影响控制的结果 积分它相当于力学的惯性能使震荡趋于平缓 微分控制提前量它相当于力学的加速度影响控制的反应速度.太大会导致大的超调量使系统极不稳定.太小会使反应缓慢. 一般而言 PID调节是一个整体的说法在实际中 PID的比例积分微分并非总是同时使用 PI调节和PD调节使用较多. . PID调试步骤 没有一种控制算法比PID调节规律更有效、更方便的了。现在一些时髦点的调节器基本源自PID。甚至可以这样说:PID调节器是其它控制调节算法的妈。 为什么PID应用如此广泛、又长久不衰? 因为PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。 由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。这就给使用者带来相当的麻烦,特别是对初学者。下面简单介绍一下调试PID参数的一般步骤: 1.负反馈 自动控制理论也被称为负反馈控制理论。首先检查系统接线,确定系统的反馈为负反馈。例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。其余系统同此方法。 2.PID调试一般原则 a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。 3.一般步骤 a.确定比例增益P 确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此

单容水箱液位定值控制实验

实验上水箱液位定值控制系统 一. 实验目的 1.了解闭环控制系统的结构与组成。 2.了解单闭环液位控制系统调节器参数的整定。 3.观察阶跃扰动对系统动态性能的影响。 二. 实验设备 1. THJ-2型高级过程控制系统装置 2. 计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根 三. 实验原理 单回路控制系统的结构/方框图: 它是由被控对象、执行器、调节器和测量变送器组成一个单闭环控制系统。系统的给定量是某一定值,要求系统的被控制量稳定至给定量。由于这种系统结构简单,性能较好,调试方便等优点,故在工业生产中已被广泛应用。 本实验系统的被控对象为上水箱,其液位高度作为系统的被控制量。系统的给定信号为一定值,它要求被控制量上水箱液位在稳定时等于给定值。由反馈控制的原理可知,应把上水箱的液位经传感检测作为反馈信号。其实验图如下:

过程:储水箱的水被抽出后经过电动调节阀调节进水量送给上水箱,经过LT1的测量变送使上水箱的液位反馈给LC1,LC1控制电动调节阀的开度进而控制入水流量,达到所需要的液位并保持稳定。 四.实验接线 其接线图为:图中LT2改接为LT1 五.实验内容及步骤 1.按图要求,完成系统的接线。 2.接通总电源和相关仪表的电源。 3.打开阀F1-1、F1-2、F1-6和F1-9,且把F1-9控制在适当的开度。 4.设置好系统的给定值后,用手动操作调节器的输出,使电动调节阀给上水箱打水,待其液位达到给定量所要求的值,且基本稳定不变时,把调节器切换为自动,使系统投入自动运行状态。 5.启动计算机,运行MCGS组态软件软件,并进行下列实验: 设定其智能调节仪的参考参数为:SV=8cm;P=20;I=40;D=0;CF=0;ADDR=1;Sn=33;diH=50;dil=0;上水箱出水阀开度:45%。运行MCGS组态软件软件,并进行实验当实验数据稳定的同时记录的实验曲线如下图:

实验 系统 PID 控制器设计及其相应参数整定集合供参考

实验五 系统 PID 控制器设计及其参数整定 一、实验目的 (1) 掌握 PID 控制规律及控制器实现。 (2) 对给定系统合理地设计 PID 控制器。 (3) 掌握对给定控制系统进行 PID 控制器参数在线实验工程整定的方法。 二、实验原理 在串联校正中,比例控制可提高系统开环增益,减小系统稳态误差,提高系统的控制 精度,但会降低系统的相对稳定性,甚至可能造成系统闭环系统不稳定;积分控制可以提 高系统的型别(无差度),有利于提高系统稳态性能,但积分控制增加了一个位于原点的 开环极点。使信号产生 90°的相位滞后,于系统的稳定不利,故不宜采用单一的积分控制 器;微分控制规律能反映输入信号的变化趋势,产生有效的早期修正信号,以增加系统的 阻尼程度,从而改善系统的稳定性,但微分控制增加了一个-1/τ 的开环零点,使系统的相 角裕度提高,因此有助于系统稳态性能的改善。 在串联校正中,PI 控制器增加了一个位于原点的开环极点,同时也增加了一个位于 s 左半平面的开环零点。位于原点的开环极点可以提高系统的型别(无差度),减小稳态误 差,有利于提高系统稳态性能;负的开环零点可以减小系统的阻尼,缓和 PI 极点对系统产 生的不利影响。只要积分时间常数 T i 足够大,PI 控制器对系统的不利影响可大为减小。PI 控制器主要用来改善控制系统的稳态性能。 在串联校正中,PID 控制器增加了一个位于原点的开环极点,和两个位于 s 左半平面 的开环零点。除了具有 PI 控制器的优点外,还多了一个负实零点,动态性能比 PI 更具有 优越性。通常应使积分发生在低频段,以提高系统的稳态性能,而使微分发生在中频段, 以改善系统的动态性能。 PID 控制器传递函数为 G e (s )=K p (1+1/T i s +T d s ),注意工程 PID 控制器仪表中比 例参数整定常用比例度 δ%,δ% =1/K p *100%. 三、实验内容 (1)Ziegler-Nichols ——反应曲线法 反应曲线法适用于对象传递函数可以近似为 e -Ls 的场合。先测出系统处于开环状态 下 的对象动态特性(即先输入阶跃信号,测得控制对象输出的阶跃响应曲线),如图 6-25 所 示,然后根据动态特性估算出对象特性参数,控制对象的增益 K 、等效滞后时间 L 和等效 时间常数 T ,然后根据表 5-4 中的经验值选取控制器参数。 图 5-1 控制对象开环动态特性 表 5-1反应曲线法 PID 控制器参数整定 控制器类型 比例度 δ% 比例系数 K p 积分时间 T i 微分时间 T d P KL/T T/KL ∞ 0 PI 1.1KL/T 0.9T/KL L/0.3 0 PID 0.85KL/T 1.2T/KL 2L 0.5L 【范例 5-1】已知控制对象的传递函数模型为: G(s)= ) 5)(3)(1(10 +++s s s

实验三 PID控制器设计及其参数整定---已完成

实验三 PID 控制器设计及其参数整定 一、实验目的 1) 通过本实验,掌握使用Simulink 仿真设计连续和离散PID 控制器的方法。 2) 掌握对给定控制系统进行PID 控制器参数在线实验工程整定的方法。 二、实验原理 PID 控制是最经典、应用最广泛的控制方法,是单回路控制系统主要的控制方法,是其他控制思想的基础。本实验针对被控对象,选定控制器的调节规律,在控制器的调节规律已经确定的情况下,控制系统的品质主要决定于控制器参数的整定。 1. 连续PID 控制器 本实验采用的PID 控制器传递函数为: 111()(1)(1)C p d d i i G s K T S T S T S T S δ=+ +=++ 或写成: ()i C p d K G s K K S S =+ + 有 ,p i d p d i K K K K T T = = 其中K p 、K i 、K d 分别为比例系数、积分系数和微分系数;T i 、T d 分别为积分时间常数和微分时间常数;δ为比例度。 控制系统的Simulink 仿真图如图1所示。连续PID 控制器如图2所示。 根据不同的参数设置,可以得到单纯的比例控制、比例积分控制、比例微分控制以及比例积分微分控制等不同的控制系统。 控制器参数的工程整定实验法,是通过对典型输入响应曲线所得到的特征量,按照动态特性参数法、衰减曲线法、临界比例度法、或经验法中的某一种方法,求得控制器的各个参数,进行工程整定,使系统的性能达到最佳。

图1 控制系统Simulink 仿真图 图2 连续PID 控制器Simulink 仿真图 2. 离散PID 控制器 将描述模拟PID 控制器的微分方程式化为差分方程,即为数字PID 控制算法。 1 ()(1) ()()()k p i d i e k e k u k K e k K T e i K T =--=++∑ 因为上式包含的数字积分项,需要存储过去全部偏差量,而且累加运算编程不太方便,计算量也较大,所以在应用中,通常都是将上式改为增量算法。 ()()(1) ()2(1)(2)[()(1)]()p I D u k u k u k e k e k e k K e k e k K Te k K T ?=----+-=--++ 即 ()(1)()u k u k u k =-+?

控制回路PID参数整定方法精

Honeywell DCS 控制回路PID参数整定方法 鉴于目前一联合装置仪表回路自控率比较低,大部分的回路都是手动操作,这样不但增加了操作员的工作量,而且对产品质量也有一定的影响,特编制了此PID参数整定方法。 一、修改PID参数必须有“SUPPERVISOR”及以上权限权限,用键盘钥匙可以切换权限,钥匙已送交一联合主任陈胜手中; 二、打开要修改的控制回路细目画面,翻到下图所示的页面,修改PID控制回路整定的三个参数K,T1,T2; 三、PID参数代表的含义 K:比例增益(放大倍数),范围为0.0~240.0; T1:积分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有积分作用; T2:微分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有微分作用。 四、PID参数的作用 (1)比例调节的特点:1、调节作用快,系统一出现偏差,调节器立即将偏差放大K倍输出; 2、系统存在余差。 K越小,过渡过程越平稳,但余差越大;K增大,余差将减小,但是不能完

全消除余差,只能起到粗调作用,但是K过大,过渡过程易振荡,K太大时,就可能出现发散振荡。 (2)积分调节的特点:积分调节作用的输出变化与输入偏差的积分成正比,积分作用能消除余差,但降低了系统的稳定性,T1由大变小时,积分作用由弱到强,消除余差的能力由弱到强,只有消除偏差,输出才停止变化。 (3)微分调节的特点:微分调节的输出是与被调量的变化率成正比,在引入微分作用后能全面提高控制质量,但是微分作用太强,会引起控制阀时而全开时而全关,因此不能把T2取的太大,当T2由小到大变化时,微分作用由弱到强,对容量滞后有明显的作用,但是对纯滞后没有效果。 五、如果要知道控制回路的作用方式,可以进入控制回路的细目画面,进入下图所示页面: 其中“CTLACTN”代表控制器作用方式,“REVERSE”表示反作用,“DIRECT”代表正作用。 六、控制器的选择方法 (1)P控制器的选择:它适用于控制通道滞后较小,负荷变化不大,允许被控量在一定范围内变化的系统; (2)PI控制器的选择:它适用于滞后较小,负荷变化不大,被控量不允许有余差的控制系统;

数字PID控制器设计制作(附答案)

数字PID控制器设计 设计任务: 设单位反馈系统的开环传递函数为: 设计数字PID控制器,使系统的稳态误差不大于0.1,超调量不大于20%,调节时间不大于0.5s。采用增量算法实现该PID控制器。 具体要求: 1.采用Matlab完成控制系统的建立、分析和模拟仿真,给出仿真结果。 2.设计报告内容包含数字PID控制器的设计步骤、Matlab仿真的性能曲线、采样周期T的选择、数字控制器脉冲传递函数和差分方程形式。 3.设计工作小结和心得体会。 4.列出所查阅的参考资料。

数字PID控制器设计报告 一、设计目的 1 了解数字PID控制算法的实现; 2 掌握PID控制器参数对控制系统性能的影响; 3 能够运用MATLAB/Simulink 软件对控制系统进行正确建模并对模块进行正确的参数设置; 4 加深对理论知识的理解和掌握; 5 掌握计算机控制系统分析与设计方法。 二、设计要求 1采用增量算法实现该PID控制器。 2熟练掌握PID设计方法及MATLAB设计仿真。 三、设计任务 设单位反馈系统的开环传递函数为: 设计数字PID控制器,使系统的稳态误差不大于0.1,超调量不大于20%,调节时间不大于0.5s。采用增量算法实现该PID控制器。 四、设计原理 1.数字PID原理结构框图

2. 增量式PID 控制算法 ()()()()()01P I D i u k K e k K e i K e k e k ∞ ==++--????∑ =u(k-1)+Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)-2e(k-1)+e(k-2)] =u(k-1)+(Kp+Ki+Kd)e(k)-(Kp+2Kd)e(k-1)+Kde(k-2) 所以Δu(k)=u(k)-u(k-1) =Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)-2e(k-1)+e(k-2)] =(Kp+Ki+Kd)e(k)-(Kp+2Kd)e(k-1)+Kde(k-2) 整理: Δu(k)= Ae(k)-Be(k-1)+Ce(k-2) A= Kp+Ki+Kd B=-(Kp+2Kd ) C=Kd 五、Matlab 仿真选择数字PID 参数 (扩充临界比例度法/扩充响应曲线法 具体整定步骤) 利用扩充临界比例带法选择数字PID 参数,扩充临界比例带法是 以模拟PID 调节器中使用的临界比例带法为基础的一种数字 PID 参数的整定方法。其整定步骤如下:;

Ziegler-Nichols参数整定控制器步骤与方法

Ziegler-Nichols参数整定控制器步骤与方法: 对于控制系统的一个开环传递函数: 试采用Z-N整定公式计算系统的P、PI、PID控制器的参数,绘制整定后的系统单位阶跃响应。 建立如下图所示的Simulink模型。 开环 最小二乘法的曲线拟合:(只对前30秒求出直线方程) 选定相应的时间序列找到相应的值记录需要拟合的点 时间序列:xout'0 Columns 1 through 9 0 0.6000 1.2000 1.8000 2.4000 3.0000 3.6000 4.2000 4.8000 Columns 10 through 18 5.4000 6.0000 6.6000 7.2000 7.8000 8.4000 9.0000 9.6000 10.2000 Columns 19 through 26 10.8000 11.4000 12.0000 12.6000 13.2000 13.8000 14.4000 15.0000 输出序列:yout' Columns 1 through 9 0 0 0 0 0 0.4200 1.4416 2.6924 3.9721 Columns 10 through 18 5.1850 6.2904 7.2759 8.1434 8.9010 9.5594 10.1300 10.6236 11.0501 Columns 19 through 26 11.4182 11.7359 12.0100 12.2465 12.4504 12.6262 12.7778 12.9086 线性拟合: cftool工具箱得出一个合适的直线,画出S曲线得到: 最后编写m文件,得到L=2.2,T=9.8-2.2=7,K=13.727 % %分别用单纯的比例控制、比例积分、比例积分微分控制 L=2.2;T=7;K=13.727 KP=T/(K*L)%纯比例控制 %simulink_P仿真开始 yP=y.data; save yP %PI控制 KPi=0.9*KP%积分的比例系数 TI=L/0.3;Ki=1/TI

PID控制器参数整定的一般方法

PID控制器参数整定的一般方法: PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改; 二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。 现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。 PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P、I、D的大小。书上的常用口诀: 参数整定找最佳,从小到大顺序查; 先是比例后积分,最后再把微分加; 曲线振荡很频繁,比例度盘要放大; 曲线漂浮绕大湾,比例度盘往小扳; 曲线偏离回复慢,积分时间往下降; 曲线波动周期长,积分时间再加长; 曲线振荡频率快,先把微分降下来; 动差大来波动慢。微分时间应加长; 理想曲线两个波,前高后低4比1; 一看二调多分析,调节质量不会低。 个人认为PID参数的设置的大小,一方面是要根据控制对象的具体情况而定;另一方面是经验。P是解决幅值震荡,P大了会出现幅值震荡的幅度大,但震荡频率小,系统达到稳定时间长;I是解决动作响应的速度快慢的,I大了响应速度慢,反之则快;D是消除静态误差的,一般D设置都比较小,而且对系统影响比较小。 PID控制原理: 1、比例(P)控制:比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。 2、积分(I)控制:在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 3、微分(D)控制:在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控

控制器的参数整定

简单控制系统的参数整定:(摘自化学工业出版社《过程控制技术》)表7-1 控制规律选择参考表: 表7-2 控制器参数的大致范围: 当控制系统已经构成“负反馈”,并且控制器的控制规律也已经正确选定,那么控制系统的品质主要决定于控制器参数的整定值。即如何确定最合适的比例度δ、积分时间Ti和微分时间Td。控制器参数的整定方法很多,现介绍几种工程上常用的方法。 1.经验试凑法 这是一种在实践中很常用的方法。具体做法是:在闭环控制系统中,根据被控对象情况,先将控制器参数设在一个常见的范围内,如表7-2所示。然后施加一定的干扰, 以δ、Ti、Td对过程的影响为指导,对δ、Ti、Td逐个整定,直到满意为止,凑试的 顺序有两种。 (1)先凑试比例度,直到取得两个完整的波形的过渡过程为止。然后,把δ稍放大10%到20%,再把积分时间Ti由大到小不断凑试,直到取得满意波形为止。最后再加微分, 进一步提高质量。 在整定中,若观察到曲线振荡频繁,应当加大比例度(目的是减小比例作用)以减小振荡;曲线最大偏差大且趋于非周期时,说明比例控制作用小了,应当加强,即应减 小比例度;当曲线偏离设定值,长时间不回复,应减小积分时间;如果曲线总是波动, 说明振荡严重,应当加长积分时间以减弱积分作用;如果曲线振荡的频率快,很可能是 微分作用强了,应当减小微分时间;如果曲线波动大而且衰减慢,说明微分作用小了, 未能抑制住波动,应加长微分时间。总之,一面看曲线,一面分析和调整,直到满意为 止。

(2)是从表7-2中取Ti的某个值。如果需要微分,则取Td=(1/3~1/4)Ti。然后对δ进行凑试,也能较快达到要求。实践证明,在一定范围内适当组合δ与Ti的数值,可以获得相同的衰减比曲线。也就是说,δ的减小可用增加Ti的办法来补偿,而基本上不影响控制过程的质量。所以,先确定Ti、Td再确定δ也是可以的。 2.衰减曲线法 衰减曲线法比较简单,可分两种方法。 (1)4:1衰减曲线法 当系统稳定时,在纯比例作用下,用改变设定值的办法加入阶跃扰动,观察记录曲线的衰减比。然后逐次从大到小地改变比例度,直到出现4:1的衰减比为止。如图7-3所示。 记下此时的比例度δs(称4:1衰减比例度)和衰减周期Ts,再按表7-3的经验数据来确定PID值。 有的过渡过程,4:1衰减仍嫌振荡过强,可采用10:1衰减曲线法。如图7-4所示,方法同上。得到10:1衰减曲线,记下此时的比例度δs′上升时间Ts′,再按表7-4的经验公式来确定PID值。 阶跃干扰加得幅度过小则过程的衰减比不易判断,过大又为工艺条件所限制。所以一般在设定值的5%左右。扰动必需在工艺稳定时再加,否则得不到正确的δs、Ts或δs′、Ts′值。

8 控制器参数整定

习题8 控制器参数设定 1 简单控制系统各环节的参数如何确定? 2 串级控制系统各环节的参数如何确定? 3 某控制系统中的Pi 控制器采用经验凑试法整定控制器参数,如果发现在扰动情况下 的被控变量记录曲线最大偏差过大,变化很慢且长时间偏离给定值,试问在这种情况下应怎 怎改变比例度与积分时间? 4 某控制器采用DDZ—Ⅲ型控制器,用临界比例法度法整定参数。已测得k δ=30%、 k T =3min 。试确定PI 作用和PID 作用的控制器参数。 习题8解答: 1 当控制系统已经构成“负反馈”,并且控制器的控制规律也已经正确选定,那么控制系 统的品质主要决定于控制器参数的整定值。即如何确定最合适的比例度度δ、积分时间Ti 和 微分时间Td ,控制器参数的整定方法很多,现介绍几种工程上常用的方法。 (1)经验试凑法 这是一种在实践中很常用的方法。具体做法是:在闭环控制系统中,根据被控对象的情 况,先将控制器参数设在一个常见的范围内。然后施加一定的扰动,以δ、Ti 、Td 对过程的影响为指导,对δ 、Ti 、Td 逐个整定,直到满意为止。试凑的顺序有两种。 1) 先试凑比例度,直到取得两个完整的波形的过渡过程为止,然后,把δ稍放大10%到20%,再把Ti 由大到小凑试,直到取得满意的波形,最后再加微分,进一步提高质量。 2)从下表中取Ti 的某个值,如果需要微分,则取Td=(1/3---1/4)Ti ,然后再对δ进行试凑。实践证明,这些经验数据基本上也能达到满意的效果。 (2)衰减曲线法 衰减曲线法比较简单,也分为两种。 1) 4:1衰减曲线法 2)10:1衰减曲线法 这两种方法都是在系统稳定时在纯比例作用下,用改变设定值的办法加入阶跃扰动,观察曲线的衰减比,然后由大到小改变比例度,直到出现4:1或10:1衰减比为止,记下此时的δ和振荡周期T ,再按经验数据确定PID 的值。 3 临界比例法 当整个闭环系统稳定后,把Ti 放到最大,Td 设为零使系统在纯比例下作用。然后从小

PID控制器参数整定设计

PID控制器参数整定设计

1 前言 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器 (intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连。还有可以实现PID 控制功能的控制器,如Rockwell 的Logix产品系列,可以直接与ControlNet相连,利用网络实现其远程控制功能。 控制系统的性能指标通常包括稳态和动态两个方面。稳态性能指标是指系统的稳态误差,它表征系统的控制精度。动态性能指标表片系统瞬态响应的品质。为使系统能同时满足动态和稳态性能指标的要求,就需要在系统中引入一个专门用于改善性能的附加装置,这个附加装置就是校正装置。当控制系的开环增益增大到满足其稳定性态性能所要求的数值时,系统有可能为不稳定,或者即使能稳定性定,其动态性能一般也不会满足设计要求,为此需要在系统的前向通首中加一个超前校正装置,以实现在开环增益不变的前提下,使系统的动态性能也能满足设计的要求。当系统的动态性能满足要求,而其稳定性态性能不好时,就要求所加的校正装置要使系统的开环增益有较大的增大,使系统的动态性能不发生明显的变化,因此要加入滞后校正装置。若要将两种校正结合起来应用,必然会同时改善系统的动态和稳态性能,这就是滞后——超前校正。而PID控制器能够满足这两方面的要求,但根据系统性能指标的要求,正确地调整PID的三个参数是非常重要的。本次设计就主要围绕调节PID的参数进行。

PID控制器参数整定设计

1 前言 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器 (intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连。还有可以实现PID控制功能的控制器,如Rockwell 的Logix产品系列,可以直接与Con trolNet相连,利用网络实现其远程控制功能。 控制系统的性能指标通常包括稳态和动态两个方面。稳态性能指标是指系统的稳态误差,它表征系统的控制精度。动态性能指标表片系统瞬态响应的品质。为使系统能同时满足动态和稳态性能指标的要求,就需要在系统中引入一个专门用于改善性能的附加装置,这个附加装置就是校正装置。当控制系的开环增益增大到满足其稳定性态性能所要求的数值时,系统有可能为不稳定,或者即使能稳定性定,其动态性能一般也不会满足设计要求,为此需要在系统的前向通首中加一个超前校正装置,以实现在开环增益不变的前提下,使系统的动态性能也能满足设计的要求。当系统的动态性能满足要求,而其稳定性态性能不好时,就要求所加的校正装置要使系统的开环增益有较大的增大,使系统的动态性能不发生明显的变化,因此要加入滞后校正装置。若要将两种校正结合起来应用,必然会同时改善系统的动态和稳态性能,这就是滞后——超前校正。而PID控制器能够满足这两方面的要求,但根据系统性能指标的要求,正确地调整PID的三个参数是非常重要的。本次设计就主要围绕调节PID的参数进行。

PID参数的工程整定方法

PID参数的工程整定方法 班级: 姓名:侯泉宇 学号:52 PI D 调节器从问世至今已历经了半个多世纪, 在这几十年中, 人们为它的发展和推广作出了巨大的努力, 使之成为工业过程控制中主要的和可靠的技术工具。即使在微处理技术迅速发展的今天, 过程控制中大部分控制规律都未能离开 PI D, 这充分说明 P I D 控制仍具有很强的生命力。PI D 控制中一个至关重要的问题, 就是控制器三参数( 比例系数、积分时间、微分时间) 的整定。整定的好坏不但会影响到控制质量, 而且还会影响到控制器的鲁棒性。此外, 现代工业控制系统中存在着名目繁多的不确定性, 这些不确定性能造成模型参数变化甚至模型结构突变, 使得原整定参数无法保证系统继续良好的工作, 这时就要求 PI D 控制器具有在线修正参数的功能, 这是自从使用 PI D 控制以来人们始终关注的重要问题之一。本文在介绍 PI D 参数自整定概念的基础上, 对 P I D 参数自整定方法的发展作一综述。 PID 参数自整定概念PI D 参数自整定概念中应包括参数自动整定(auto tuning) 和参数在线自校正( self tuning onli ne) 。具有自动整定功能的控制器, 能通过一按键就由控制器自身来完成控制参数的整定, 不需要人工干预,它既可用于简单系统投运, 也可用于复杂系统预整定。运用自动整定的方法与人工整定法相比, 无论是在时间节省方面还是在整定精度上都得以大幅度提高, 这同时也就增进了经济效益。目前, 自动整定技术在国外已被许多控制产品所采用, 如 Lee d s &N or th r o p 的 El ec t r o ma x V、 Sa tt Con tr ol r 的 ECA40 等等, 对其研究的文章则更多。 自校正控制则为解决控制器参数的在线实时校正提供了很有吸引力的技术方案。自校正的基本观点是力争在系统全部运行期间保持优良的控制性能, 使控制器能够根据运行环境的变化, 适时地改变其自身的参数整定值, 以求达到预期的正常闭环运行, 并有效地提高系统的鲁棒性。 早在 20 世纪 7 0 年代, As tr o m 等人首先提出了自校正调节器, 以周期性地辨识过程模型参数为基础, 并和以最小方差为控制性能指标的控制律结合起来, 在每一采样周期内根据被控过程特性的变化, 自动计算出一组新的控制器参数。20 世纪 80 年代, Fo x bo r o 公司发表了它的 EX AC T 自校正控制器, 使用模式识别技术了解被控过程特性的变化, 然后使用专家系统方法去确定适当的控制器参数。这是一种基于启发式规则推理的自校正技术。20 世纪 90 年代, 神经网络的概念开始应用于自校正领域。具有自动整定功能和具有在线自校正功能的控制器被统称为自整定控制器。一般而言, 如果过程的动态特性是固定的, 则可以选用固定参数的控制器, 控制器参数的整定由自动整定完成。对动态特性时变的过程, 控制器的参数应具有在线自校正的能力, 以补偿过程时变。 2 P ID 参数自整定方法 要实现 PI D 参数的自整定, 首先要对被控制的对象有一个了解, 然后选择相应的参数计算方法完成控制器参数的设计。据此, 可将 PI D 参数自整定分成两大类: 辨识法和规则法。基于辨识法的 PI D 参数自整定,被控对象的特性通过对被控对象数学模型的分析来得到, 在对象数学模型的基础上用基于模型的一类整定法计算 PI D 参数。基于规则的 PI D 参数自整定, 则是运用系统临界点信息或系统响应曲线上的一些特征值来表征对象特性, 控制器参数由基于规则的整定法得到。 2. 1 辨识法 这类方法的本质是自适应控制理论与系统辨识的结合。为解决被控对象模型获取问题,

水箱液位控制系统

过程控制综合训练 课程报告 16 — 17 学年第二学期课题名称基于PLC和组态王的 系统 姓名 学号 班级 成绩

水箱液位控制系统 [摘要] 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽内的液位需维持在给定值上下,或在某一小范围内变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。 关键词:过程控制液位控制 PID控制 Abstract:In the process of industrial production, liquid storage tank such as product cans, buffer, tanks and other equipments are widely used. In order to ensure the normal production,material supply and demand must be balanced to guarantee the process of the production. So, the process requires that the liquid level in the tank should be maintained at a given value, or change in a small range,and ensure that the material does not overflow,forinstance,system of boiler drum level control, level control of filter pool and clarification pool of self-flowing water production system and so on. According to the requirement of project, we need design a liquid level process control system for a single tank which make the liquid level on the constant height. Key words: Process Control Liquid Level Control PID Control

相关文档
最新文档