高中数学奇偶性练习题及答案

高中数学奇偶性练习题及答案
高中数学奇偶性练习题及答案

函数的奇偶性与周期性 一、填空题

1.已知函数f(x)=1+m

ex -1是奇函数,则m 的值为________.

解析:∵f(-x)=-f(x),即f(-x)+f(x)=0,∴1+m e -x -1+1+m

ex -1=0,

∴2-

mex ex -1+m ex -1=0,∴2+m

ex -1

(1-ex)=0,∴2-m =0,∴m =2. 答案:2

2.设f(x)是定义在R 上的奇函数,且当x >0时,f(x)=2x -3,则f(-2)=________. 解析:设x <0,则-x >0,f(-x)=2-x -3=-f(x),故f(x)=3-2-x ,所以f(-2)=3 -22=-1. 答案:-1

3.已知函数f(x)=a -1

2x +1,若f(x)为奇函数,则a =________.

解析:解法一:∵f(x)为奇函数,定义域为R ,∴f(0)=0?a -120+1=0?a =1

2.

经检验,当a =1

2

时,f(x)为奇函数.

解法二:∵f(x)为奇函数,∴f(-x)=-f(x),即a -12-x +1=-

????a -12x +1. ∴2a =

12x +1+2x 1+2x

=1,∴a =1

2.

答案:1

2

4.若f(x)=ax2+bx +3a +b 是定义在[a -1,2a]上的偶函数,则a =________,b = ________. 解析:由a -1=-2a 及f(-x)=f(x),可得a =1

3,b =0.

答案:13

5.设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时,f(x)的图象如图所示,则不等式 f(x)<0的解集是________.

解析:由奇函数的定义画出函数y=f(x),x ∈[-5,5]的图象.由图象可知f(x)<0的解集 为:{x|-2<x <0或2<x <5}. 答案:{x|-2<x <0或2<x <5}

6.

(2010·全国大联考三江苏卷)定义在[-2,2]上的偶函数f(x),它在[0,2]上的图象是一 条如图所示的线段,则不等式f(x)+f(-x)>x 的解集为________. 解析:f(x)+f(-x)>x 即f(x)>x

2,如图,由数形结合法可知不等式的解集为

[-2,1).

答案:[-2,1) 二、解答题

7.已知f(x)是R 上的奇函数,且当x >0时,f(x)=x3+x +1,求f(x)的解析式. 解:设x <0,则-x >0,∴f(-x)=(-x)3-x +1=-x3-x +1. 由f(x)为奇函数,∴f(-x)=-f(x).∴-x3-x +1=-f(x),即f(x)=x3+x -1.

∴x <0时,f(x)=x3+x -1,又f(x)是奇函数.∴f(0)=0,∴f(x)=????

?

x3+x +1 (x >0)0 (x =0)

x3+x -1 (x <0).

8.f(x)是定义在R 上的奇函数,且满足f(x +2)=f(x),又当x ∈(0,1)时,f(x)=2x -1, 求f(log 1

2

6)的值.

解:∵x ∈(0,1)时,f(x)=2x -1.∴x ∈(-1,0)时,f(x)=-f(-x)=-2-x +1, ∵4<6<8,∴-3<log 1

26<-2.又f(x +2)=f(x),知f(x)是周期为2的函数.

∵-1<log 126+2<0,∴f(log 126)=f(log 1

2

6+2)=

=-2-log 1232+1=-32+1=-1

2

.

2.设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间

[0,7]上只有f(1)=f(3)=0. (1)试判断函数y =f(x)的奇偶性; (2)试求方程f(x)=0在闭区间[-2 005,2 005]上的根的个数,并证明你的结论. 解:(1)∵f(1)=0,且f(x)在[0,7]上只有f(1)=f(3)=0,且f(2-x)=f(2+x), 令x =-3,f(-1)=f(5)≠0,∴f(-1)≠f(1),且f(-1)≠-f(1). ∴f(x)既不是奇函数,也不是偶函数. (2)f(10+x)=f[2+(8+x)]=f[2-(8+x)]=f(-6-x)=f[7-(13+x)]=f[7+(13+x)] =f(20+x),∴f(x)以10为周期.又f(x)的图象关于x =7对称知,f(x)=0在(0,10)上有 两个根,则f(x)=0在(0,2 005]上有201×2=402个根;在[-2 005,0]上有200×2=400 个根;因此f(x)=0在闭区间上共有802个根. 同步练习g3.1012函数的奇偶性和周期性

1—13、DAA BD B DD D C AAC. 14、2()2(0)f x x x x =--< 15、0;0 16(1)偶函数 (2)奇函数 17(1)偶函数

18、333?-+???

19(1)4

11()2,()224f f ==

函数的奇偶性与周期性

1、若)(x f )(R x ∈是奇函数,则下列各点中,在曲线)(x f y =上的点是

(A )))(,(a f a - (B )))sin (,sin (α--α-f (C )))1

(lg ,lg (a

f a -- (D )))(,(a f a --

3.已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+, 则)25(f 的值是( ) A. 0 B.

21 C. 1 D. 2

5 4、)(x f 是定义在R 上的以3为周期的偶函数,且0)2(=f ,则方程)(x f =0在区间(0,6)内解的个数的最小值是

A .5

B .4

C .3

D .2 6、已知函数=-=+-=)(.)(.11lg )(a f b a f x

x

x f 则若

A .b

B .-b

C .b 1

D .-b

1

8.函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )

(A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数 9.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( ).

A.(25)(11)(80)f f f -<<

B. (80)(11)(25)f f f <<-

C. (11)(80)(25)f f f <<-

D. (25)(80)(11)f f f -<<

10.已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,

2()log (1f x x =+),则(2008)(2009)f f -+的值为 ( )

A .2-

B .1-

C .1

D .2

11.已知函数()f x 满足:x ≥4,则()f x =1

()2

x ;当x <4时()f x =(1)f x +,则2(2log 3)f +=( )

(A )124 (B )112 (C )18 (D )38

12已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1

()3

f 的x 取值范围是( )

(A )(

13,23) (B) [13,23) (C)(12,23) (D) [12,23

) 14、已知函数)(x f y =在R 是奇函数,且当0≥x 时,x x x f 2)(2-=,则0

15、定义在)1,1(-上的奇函数1

)(2+++=nx x m

x x f ,则常数=m ____,=n _____

18、定义在]11

[,-上的函数)(x f y =是减函数,且是奇函数,若0)54()1(2>-+--a f a a f ,求实数a 的范围.

高一函数单调性奇偶性经典练习题

函数单调性奇偶性经典练习 一、单调性题型 高考中函数单调性在高中函数知识模块里面主要作为工具或条件使用,也有很多题会以判断单调性单独出题或有的题会要求先判断函数单调性才能进行下一步骤解答,另有部分以函数单调性质的运用为主. (一)函数单调性的判断 函数单调性判断常用方法: 121212121212()()0()()()()0()()()()()()()()()()()()f x f x f x f x x x x x f x f x f x f x f x g x f x f x g x f x g x g x g x f x ->>??>Q 210x x ∴->,1(4)0x ->,2(4)0x -> 12()()f x f x ∴> 故函数()f x 在区间(4)+∞,上为减函数. 练习1 证明函数21 ()3 x f x x -=+在区间(3)-+∞,上为减函数(定义法) 练习2 证明函数2()f x x =2()3 -∞,上为增函数(定义法、快速判断法) 练习3 求函数3 ()2 x f x x -=+定义域,并求函数的单调增区间(定义法) 练习4 求函数()f x x =定义域,并求函数的单调减区间(定义法)

(完整版)函数奇偶性知识点和经典题型归纳

函数奇偶性 知识梳理 1. 奇函数、偶函数的定义 (1)奇函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=-, 则这个函数叫奇函数. (2)偶函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=, 则这个函数叫做偶函数. (3)奇偶性:如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性. (4)非奇非偶函数:无奇偶性的函数是非奇非偶函数. 注意:(1)奇函数若在0x =时有定义,则(0)0f =. (2)若()0f x =且()f x 的定义域关于原点对称,则()f x 既是奇函数又是偶函数. 2.奇(偶)函数的基本性质 (1)对称性:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)单调性:奇函数在其对称区间上的单调性相同,偶函数在其对称区间上的单调性相反. 3. 判断函数奇偶性的方法 (1)图像法 (2)定义法 ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f(-x)与f(x)的关系; ○ 3 作出相应结论: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 例题精讲 【例1】若函数2()f x ax bx =+是偶函数,求b 的值. 解:∵函数 f (x )=ax 2+bx 是偶函数, ∴f (-x )=f (x ).∴ax 2+bx= ax 2-bx. ∴2bx=0. ∴b =0. 【例3】已知函数21()f x x =在y 轴左边的图象如下图所示,画出它右边的图象. 题型一 判断函数的奇偶性 【例4】判断下列函数的奇偶性. (1)2()||(1)f x x x =+; (2)1()f x x x =;

(新)高中数学奇偶性练习题及答案

函数的奇偶性与周期性 一、填空题 1.已知函数f(x)=1+m ex -1是奇函数,则m 的值为________. 解析:∵f(-x)=-f(x),即f(-x)+f(x)=0,∴1+m e -x -1+1+m ex -1=0, ∴2- mex ex -1+m ex -1=0,∴2+m ex -1 (1-ex)=0,∴2-m =0,∴m =2. 答案:2 2.设f(x)是定义在R 上的奇函数,且当x >0时,f(x)=2x -3,则f(-2)=________. 解析:设x <0,则-x >0,f(-x)=2-x -3=-f(x),故f(x)=3-2-x ,所以f(-2)=3 -22=-1. 答案:-1 3.已知函数f(x)=a -12x +1,若f(x)为奇函数,则a =________. 解析:解法一:∵f(x)为奇函数,定义域为R ,∴f(0)=0?a -120+1=0?a =1 2. 经检验,当a =1 2 时,f(x)为奇函数. 解法二:∵f(x)为奇函数,∴f(-x)=-f(x),即a -1 2-x +1=-????a -12x +1. ∴2a = 12x +1+2x 1+2x =1,∴a =1 2. 答案:1 2 4.若f(x)=ax2+bx +3a +b 是定义在[a -1,2a]上的偶函数,则a =________,b = ________. 解析:由a -1=-2a 及f(-x)=f(x),可得a =1 3,b =0. 答案:13 5.设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时,f(x)的图象如图所示,则不等式 f(x)<0的解集是________. 解析:由奇函数的定义画出函数y=f(x),x ∈[-5,5]的图象.由图象可知f(x)<0的解集 为:{x|-2<x <0或2<x <5}. 答案:{x|-2<x <0或2<x <5}

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

高一数学--奇偶性

高一数学第四讲 函数的奇偶性 一、知识要点: 1、函数奇偶性定义: 如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数; 如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )既不是奇函数也不是偶函数 如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 2、函数奇偶性的判定方法:定义法、图像法 (1)利用定义判断函数奇偶性的格式步骤: ①首先确定函数的定义域是否关于原点对称;②确定f (-x )与f (x )的关系;③作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 ①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,定义域关于原点对称。 (2) 利用图像判断函数奇偶性的方法: 图像关于原点对称的函数为奇函数,图像关于y 轴对称的函数为偶函数, (3)简单性质: 设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 二、基础练习: 1. f (x ),g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则f (x ),g (x )均为偶函数,h (x )一定为偶函数吗? 反之是否成立? 2.已知函数y =f (x )是定义在R 上的奇函数,则下列函数中是奇函数的是 ①y =f (|x |); ②y =f (-x ); ③y =x ·f (x ); ④y =f (x )+x . 3.设函数若函数2 ()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 4.已知y =f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2 -2x ,则在x<0上f (x )的表达式为 5. 设f (x )是R 上的偶函数,且在(0,+∞)上是减函数,若x 1<0,且x 1+x 2>0,则 f (x 1)与f (-x 2)的大小关系是 三、例题精讲: 题型1: 函数奇偶性的判定 例1. 判断下列函数的奇偶性: ① x x x x f -+-=11)1()(,②y =,③22 (0)()(0) x x x f x x x x ?+??④2 211)(x x x f --= 变式:设函数f (x )在(-∞,+∞)内有定义,下列函数: ① y =-|f (x )|; ②y =xf (x 2); ③y =-f (-x ); ④y =f (x )-f (-x )。 必为奇函数的有_ __(要求填写正确答案的序号)

奇偶性的典型例题

函数的奇偶性 一、关于函数的奇偶性的定义 定义说明:对于函数)(x f 的定义域内任意一个x : ⑴)()(x f x f =- ?)(x f 是偶函数; ⑵)()(x f x f -=-?)(x f 奇函数; 函数的定义域关于原点对称是函数为奇(偶)函数的必要不充分条件。 二、函数的奇偶性的几个性质 ①、对称性:奇(偶)函数的定义域关于原点对称; ②、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; ③、可逆性: )()(x f x f =- ?)(x f 是偶函数; )()(x f x f -=-?)(x f 奇函数; ④、等价性:)()(x f x f =-?0)()(=--x f x f )()(x f x f -=-?0)()(=+-x f x f ⑤、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称; ⑥、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、 非奇非偶函数。 三、函数的奇偶性的判断 判断函数的奇偶性大致有下列两种方法: 第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①、定义域是否关于原点对称; ②、数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性 ⑴、x x x f 2)(3+= ⑵、2 432)(x x x f += ⑶、1 )(2 3--=x x x x f ⑷、2)(x x f = []2,1-∈x

⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-= 解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数 ⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数 注:教材中的解答过程中对定义域的判断忽略了。 例2:判断函数???<≥-=)0()0()(22x x x x x f 的奇偶性。 .)(),()() ()()()(,0,0) ()()(,0,0) (0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-== 第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。 四、关于函数的奇偶性的几个命题的判定。 命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分 条件。 此命题正确。如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出。 命题2 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。 此命题错误。一方面,如果这两个函数的定义域的交集是空集,那么它们的和或差没有定义;另一方面,两个奇函数的差或两个偶函数的差可能既是奇函数又是偶函数,如f(x)=x(x ∈〔-1,1〕),g(x)=x(x ∈〔-2,2〕),可以看出函数f(x)与g(x)都是定义域上的函数,它们的差只在区间〔-1,1〕上有定义且f(x)-g(x)=0,而在此区间上函数f(x)-g(x)既是奇函数又是偶函数。 命题3 f(x)是任意函数,那么|f(x)|与f(|x|)都是偶函数。 此命题错误。一方面,对于函数|f(x)|=? ??<-≥),0)((),(0)((),(x f x f x f x f 不能保证f(-x)=f(x)或f(-x)=-f(x);另一方面,对于一个任意函数f(x)而言,不能保证它的定义域关于原点对称。如果所给函数的定义域关于原点对称,那么函数f(|x|)是偶函数。 命题4 如果函数f(x)满足:|f(x)|=|f(-x)|,那么函数f(x)是奇函数或偶 函数。

奇偶性与单调性及典型例题

奇偶性与单调性及典型例题 函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象. 难点磁场 (★★★★)设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明:f(x)在(0,+∞)上是增函数. 案例探究 [例1]已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当00,1-x1x2>0,∴>0, 又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0 ∴x2-x1<1-x2x1, ∴0<<1,由题意知f()<0, 即f(x2)3a2-2a+1.解之,得0

北京四中高中数学 奇偶性基础知识讲解 新人教A版必修1

函数的奇偶性 【学习目标】 1.理解函数的奇偶性定义; 2.会利用图象和定义判断函数的奇偶性; 3.掌握利用函数性质在解决有关综合问题方面的应用. 【要点梳理】 要点一、函数的奇偶性概念及判断步骤 1.函数奇偶性的概念 偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: (1)奇偶性是整体性质; (2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; (3)f(-x)=f(x)的等价形式为:()()()0,1(()0)() f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:()()()01(()0)()f x f x f x f x f x -+-==-≠, ; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0; (5)若f(x)既是奇函数又是偶函数,则必有f(x)=0. 2.奇偶函数的图象与性质 (1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. (2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数. 3.用定义判断函数奇偶性的步骤 (1)求函数()f x 的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; (2)结合函数()f x 的定义域,化简函数()f x 的解析式; (3)求()f x -,可根据()f x -与()f x 之间的关系,判断函数()f x 的奇偶性. 若()f x -=-()f x ,则()f x 是奇函数; 若()f x -=()f x ,则()f x 是偶函数; 若()f x -()f x ≠±,则()f x 既不是奇函数,也不是偶函数; 若()f x -()f x =且()f x -=-()f x ,则()f x 既是奇函数,又是偶函数

函数的奇偶性的典型例题

函数的奇偶性的典型例题 函数的奇偶性的判断 判断函数的奇偶性大致有下列两种方法: 第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①、定义域是否关于原点对称; ②、数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性 ⑴、x x x f 2)(3+= ⑵、2 432)(x x x f += ⑶、1 )(2 3--=x x x x f ⑷、2)(x x f = []2,1-∈x ⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-= 解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数 ⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数 注:教材中的解答过程中对定义域的判断忽略了。 例2:判断函数???<≥-=)0()0()(22x x x x x f 的奇偶性。 .)(),()() ()()()(,0,0) ()()(,0,0) (0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-== 第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。 四、关于函数的奇偶性的几个命题的判定。 命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分

高中数学人教版必修奇偶性教案(系列五)

1.3.2 奇偶性 整体设计 教学分析 本节讨论函数的奇偶性是描述函数整体性质的.教材沿用了处理函数单调性的方法,即先给出几个特殊函数的图象,让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的“任意”值都成立,最后在这个基础上建立了奇(偶)函数的概念.因此教学时,充分利用信息技术创设教学情景,会使数与形的结合更加自然. 值得注意的问题:对于奇函数,教材在给出的表格中留出大部分空格,旨在让学生自己动手计算填写数据,仿照偶函数概念建立的过程,独立地去经历发现、猜想与证明的全过程,从而建立奇函数的概念.教学时,可以通过具体例子引导学生认识,并不是所有的函数都具有奇偶性,如函数y=x与y=2x1既不是奇函数也不是偶函数,可以通过图象看出也可以用定义去说明. 三维目标 1.理解函数的奇偶性及其几何意义,培养学生观察、抽象的能力,以及从特殊到一般的概括、归纳问题的能力. 2.学会运用函数图象理解和研究函数的性质,掌握判断函数的奇偶性的方法,渗透数形结合的数学思想. 重点难点 教学重点:函数的奇偶性及其几何意义. 教学难点:判断函数的奇偶性的方法与格式. 安排 1 教学过程 导入新课 思路1.同学们,我们生活在美的世界中,有过许多对美的感受,请大家想一下有哪些美呢?(学生回答可能有和谐美、自然美、对称美……)今天,我们就来讨论对称美,请大家想一下哪些事物给过你对称美的感觉呢?(学生举例,再在屏幕上给出一组图片:喜字、蝴蝶、建筑物、麦当劳的标志)生活中的美引入我们的数学领域中,它又是怎样的情况呢?下面,

我们以麦当劳的标志为例,给它适当地建立直角坐标系,那么大家发现了什么特点呢?(学生发现:图象关于y 轴对称.)数学中对称的形式也很多,这节课我们就同学们谈到的与y 轴对称的函数展开研究. 思路2.结合轴对称与中心对称图形的定义,请同学们观察图形,说出函数y=x 2和y=x 3的图象各有怎样的对称性?引出课题:函数的奇偶性. 推进新课 新知探究 提出问题 ①如图1-3-21所示,观察下列函数的图象,总结各函数之间的共性. 图1-3-21 ②那么如何利用函数的解析式描述函数的图象关于y 轴对称呢?填写表1和表2,你发现这两个函数的解析式具有什么共同特征? x 3 2 1 0 1 2 3 f(x)=x 2 表1 x 3 2 1 0 1 2 3 f(x)=|x| 表2 ③请给出偶函数的定义? ④偶函数的图象有什么特征? ⑤函数f(x)=x 2,x ∈[1,2]是偶函数吗? ⑥偶函数的定义域有什么特征? ⑦观察函数f(x)=x 和f(x)= x 1 的图象,类比偶函数的推导过程,给出奇函数的定义和性质? 活动:教师从以下几点引导学生: ①观察图象的对称性.

函数奇偶性经典例题

函数的奇偶性 一、典型例题 例1 判断下列函数的奇偶性 (1)1()(1)1x f x x x +=-- (2)2lg(1) ()|2|2 x f x x -=-- (3)2 2(0)()(0)x x x f x x x x ?+?? (4)22 ()11f x x x =-- (5)()11f x x x =-+- (6)22 11()11 x x f x x x ++-= +++ 例2 已知()f x 是R 上的奇函数,且当(0,)x ∈+∞时,3 ()(1)f x x x =+,则()f x 的解析 式为________________. 例 3 ①已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有 )()1()1(x f x x xf +=+,则)2 5 (f 的值是________________. ②已知()f x 是奇函数,满足()()2f x f x += ,当[]0,1x ∈时,()21x f x =- ,则 =)2(f _____,21log 24f ? ? ?? ?的值是_________ . 例 4 ()f x 和()g x 的定义域都是非零实数,()f x 是偶函数,()g x 是奇函数,且 21 ()()1 f x g x x x += -+,求()()f x g x 的取值范围。 二、课后练习 1、判断下列函数的奇偶性

(1)x x y a a -=+ (2)x x y a a -=- (3)x x x x a a y a a ---=+ (4)1 1 x x a y a -=+ (5)1log 1a x y x -=+ (6)2 log (1)a y x x =+- (7)若0,1,()a a F x >≠是一个奇函数,讨论11()()12x G x F x a ??=+ ?-?? 的奇偶性。 2、设()f x 为定义在R 上的奇函数,当0x ≥时,()22x f x x b =++ (b 为常数),则 (1)f -=( ) (A) 3 (B) 1 (C)-1 (D)-3 3、已知函数()f x 对一切,x y R ∈,都有()()()f x y f x f y +=+, (1)求证:()f x 是奇函数; (2)若(3)f a -=,用a 表示(12)f 4、已知3()sin 4f x a x b x =++(,a b 为实数)且3(lg log 10)5f =,则(lglg3)f =____ 5、函数1 (1)1 y x x = ≠±-可以表示成一个偶函数()f x 与一个奇函数()g x 的和,则()f x =____ 6、已知)(x f y =是偶函数,当0>x 时,2 )1()(-=x x f ;若当? ? ??? ?--∈2 1,2x 时,m x f n ≤≤)(恒成立,则n m -的最小值为( ) A.1 B. 21 C. 31 D. 4 3

函数单调性奇偶性经典例题

函数的性质的运用 1.若函数y f x x R =∈()()是奇函数,则下列坐标表示的点一定在函数 y f x =()图象上的是( ) A.(())a f a ,- B.(())--a f a , C.(())---a f a , D.(())a f a ,- 2. 已知函数)(1 22 2)(R x a a x f x x ∈+-+?= 是奇函数,则a 的值为( ) A .1- B .2- C .1 D .2 3.已知f (x )是偶函数,g (x )是奇函数,若1 1)()(-= +x x g x f ,则f (x ) 的解析式为_______. 4.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有 实根之和为________. 5.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数; (2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立, 求实数k 的取值范围. 6.已知定义在区间(0,+∞)上的函数f(x)满足f()2 1 x x =f(x 1)-f(x 2),且当x >1时,f(x)<0. (1)求f(1)的值; (2)判断f(x )的单调性; (3)若f(3)=-1,解不等式f(|x|)<-2.

7.函数f(x)对任意的a 、b ∈R,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)>1. (1)求证:f(x)是R 上的增函数; (2)若f(4)=5,解不等式f(3m 2 -m-2)<3. 8.设f (x )的定义域为(0,+∞),且在(0,+∞)是递增的,)()()(y f x f y x f -= (1)求证:f (1)=0,f (xy )=f (x )+f (y ); (2)设f (2)=1,解不等式2)3 1 ( )(≤--x f x f 。 9.设函数()f x 对x R ∈都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同 的实数根,则这6个实根的和为( ) A . 0 B .9 C .12 D .18 10.关于x 的方程 22(28)160x m x m --+-=的两个实根 1x 、2x 满足 123 2 x x <<, 则实数m 的取值范围 11.已知函数()()y f x x R =∈满足(3)(1)f x f x +=+,且x ∈[-1,1]时,()||f x x =, 则()y f x =与5log y x =的图象交点的个数是( ) A .3 B .4 C .5 D .6 12.已知函数()f x 满足:4x ≥,则()f x =1()2 x ;当4x <时()f x =(1)f x +,则 2(2log 3)f += A 124 B 112 C 18 D 38 13.已知函数f (x )在(-1,1)上有定义,f ( 2 1 )=-1,当且仅当0

高中数学必修1教案14:函数的奇偶性

高中数学必修1教案14 课题:函数的奇偶性 课 型:新授课 教学要求:理解奇函数、偶函数的概念及几何意义,能熟练判别函数的奇偶性。 教学重点:熟练判别函数的奇偶性。 教学难点:理解奇偶性。 教学过程: 一、复习准备: 1.提问:什么叫增函数、减函数? 2.指出f(x )=2x 2-1的单调区间及单调性。 →变题:|2x 2-1|的单调区间 3.对于f(x )=x 、f(x )=x 2、f(x )=x 3、f(x )=x 4,分别比较f(x )与f(-x )。 二、讲授新课: 1.教学奇函数、偶函数的概念: ①给出两组图象:()f x x =、1()f x x = 、3()f x x =;2()f x x =、()||f x x =. 发现各组图象的共同特征 → 探究函数解析式在函数值方面的特征 ② 定义偶函数:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even fun c tion ). ③ 探究:仿照偶函数的定义给出奇函数(o dd fun c tion )的定义. (如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数。 ④ 讨论:定义域特点?与单调性定义的区别?图象特点?(定义域关于原点对称;整体性) ⑤ 练习:已知f(x )是偶函数,它在y 轴左边的图像如图所示,画出它右边的图像。 (假如f(x )是奇函数呢?) 1. 教学奇偶性判别: 例1.判断下列函数是否是偶函数. (1)2 ()[1,2]f x x x =∈- (2)32 ()1 x x f x x -= - 例2.判断下列函数的奇偶性 (1)4()f x x = (2)5 ()f x x = (3)1()f x x x =+ (4)2 1()f x x = . (5) 2 211(0)2 ()11(0)2 x x g x x x ?+>??=??--

《函数的单调性和奇偶性》经典例题解析

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 1)f(x)在[5,10]上单增,; 2); (2)画出草图 1)y∈[f(1),f(-1)]即[2,6];2). 举一反三: 【变式1】已知函数. (1)判断函数f(x)的单调区间;

(2)当x∈[1,3]时,求函数f(x)的值域. 解:(1) 上单调递增,在上单调递增; (2)故函数f(x)在[1,3]上单调递增 ∴x=1时f(x)有最小值,f(1)=-2 x=3时f(x)有最大值 ∴x∈[1,3]时f(x)的值域为. 5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围. 解:(1)∵对称轴是决定f(x)单调性的关键,联系图象可知 只需; (2)∵f(2)=22-2(a-1)+5=-2a+11又∵a≤2,∴-2a≥-4 ∴f(2)=-2a+11≥-4+11=7 . 举一反三: 【变式1】(2011 北京理13)已知函数,若关于x的方程有两个不同的实根,则实数k的取值范围是________. 解:单调递减且值域(0,1],单调递增且值域为,由图象知,若有两个不同的实根,则实数k的取值范围是(0,1). 类型四、判断函数的奇偶性

函数的单调性和奇偶性-典型例题

函数的单调性和奇偶性 例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间. 解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数. 评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上. (2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围. 分析要充分运用函数的单调性是以对称轴为界线这一特征. 解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x =1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3. 评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合. 例2判断下列函数的奇偶性: (1)f(x)=- (2)f(x)=(x-1). 解:(1)f(x)的定义域为R.因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-f(x). 所以f(x)为奇函数. (2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数. 评析用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性.

函数的奇偶性知识点及经典例题

函数基本性质——奇偶性知识点及经典例题 一、函数奇偶性的概念: ①设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有x D -∈, 且()()f x f x -=-,则这个函数叫奇函数。 (如果已知函数是奇函数,当函数的定义域中有0时,我们可以得出()00f =) ②设函数()y g x =的定义域为D ,如果对D 内的任意一个x ,都有x D -∈, 若()()g x g x -=,则这个函数叫偶函数。 从定义我们可以看出,讨论一个函数的奇、偶性应先对函数的定义域进行判断,看其定义域是否关于原点对称。也就是说当x 在其定义域内时,x -也应在其定义域内有意义。 ③图像特征 如果一个函数是奇函数?这个函数的图象关于坐标原点对称。 如果一个函数是偶函数?这个函数的图象关于y 轴对称。 ④复合函数的奇偶性:同偶异奇。 ⑤对概念的理解: (1)必要条件:定义域关于原点成中心对称。 (2))(x f 与)(x f -的关系: 当)()(x f x f =-或0)()(=--x f x f 或 1)() (=-x f x f 时为偶函数; 当)()(x f x f -=-或0)()(=+-x f x f 或 1) () (-=-x f x f 时为奇函数。 二、函数的奇偶性与图象间的关系: ①偶函数的图象关于y 轴成轴对称,反之也成立; ②奇函数的图象关于原点成中心对称,反之也成立。 三、关于函数奇偶性的几个结论:

①若)(x f 是奇函数且在0=x 处有意义,则(0)0f = ②偶函数± 偶函数=偶函数;奇函数±奇函数=奇函数; 偶函数?偶函数=偶函数;奇函数?奇函数=偶函数; 偶函数?奇函数=奇函数 ③奇函数在对称的单调区间内有相同的单调性, 偶函数在对称的单调区间内具有相反的单调性. 四.典型问题 (一)、关于函数奇偶性的判定 方法: ()1定义法:首先判断其定义域是否关于原点中心对称. 若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式; ()2图象法:观察图像是否符合奇、偶函数的对称性 说明: (1)分段函数的奇偶性的判定和分类讨论思想密切相关,要注意自变量在不同情况下表达式的不同形式以及它们之间的相互利用。 (2)判断函数的奇偶性,首先要考查定义域是否对称。 (3)若判断函数不具备奇偶性,只需举出一个反例即可。 (4)函数就奇、偶性来划分可以分成奇函数、偶函数、非奇非偶函数、既是奇函数也是偶函数。 1.判断下列函数的奇偶性: 1)x x x x f ++=1)(2; 2)()( 1f x x =- 3)()0f x = 4)()???≤+>+-=)0()0(2 2x x x x x x x f 5)()2 212-+-=x x x f

高中数学必修一:单调性与奇偶性典型例题(教师版)

必修一:函数的单调性与奇偶性总结 一、单调性 1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x <时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。 例1、讨论函数0)(>+=a x a x x f ,的单调性。 解:由)(x f 为奇函数,令0>x 任取021>>x x ,()()21212121)()(x x a x x x x x f x f --=-,令a x a x >?>2 单调递增区间为:()+∞,a ,()a --,∞ 单调递减区间为:(]a ,0,[) 0,-a 小结:(1)要证明函数的单调性,只能用定义的方法,但它也可用来求函数的单调性;(2)使用定义法判断单调性时,要注意格式,设元、作差、变形、定号、下结论,其中最难的一步为变形,需将作差式整理为多项连乘,方便定号;(4)判断a x x -21的符号时,可令x x x ==11,即a x -2;(5)当多个同增或同减区间不在一起时,单调区间之间不能用“或”字连接,只能用“逗号”。当多个同增或同减区间连在一起时,要注意判断其单调区间是否能合并;(6)单调性是研究函数图像在某段区间内的变化情况,在某点处研究单调性无意义,故单调区间端点处一般可开可闭,均正确。但若端点处不在定义域内,则必须为开;(7)对于复杂题型,先通过奇偶性得图像对称性,从而只需讨论一半的范围,会降低解题难度;(8)当已知函数值为正时,还可以通过作商实现比大小;(9)记住两个特殊函数的图像。其中x b ax x g + =)(与x b ax x h -=)(,0,0>>b a 时,图像轮廓相同。 2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。) 例2、下列函数中,在(0,2)上为增函数的是( B ) A.13+-=x y B.2+=x y C.x y 4= D.342+-=x x y 小结:熟练掌握常见函数的图像,是研究函数性质的关键。如:2+=x y 、22++=x y 、342+-=x x y 、 342+-=x x y 等,一般先判断奇偶性得图像对称性,从而先画0>x 的图像,再通过对称性得另外一半的图像;

相关文档
最新文档