铌酸锂电光调制器应用于低频调制

铌酸锂电光调制器应用于低频调制
铌酸锂电光调制器应用于低频调制

Use of LiNb03 modulators at low frequencies

LiNb03modulators are widely used for their high bandwidth performances that make them favored devices for high data rate optical communications (up to 40 Gb/s) and high frequency (20 GHz) analog transmission. They are less often used at low frequencies under 1 GHz. However LiNb03phase modulators have also strong benefits at low frequencies (compactness, ease of use, low drive voltage) compared to devices based on alternative technologies and are thus components to be considered even for kHz to MHz frequency range applications.

Users searching to implement LiNb03 phase modulators with modulation signals showing low and high frequency components, and the typical case is the one of a pulse signal with sharp rising and fall edges and low repetition rate or long pulse duration, must be very cautious. A “high bandwidth” phase modulator, and here “high bandwidth” means > 1 GHz typically, is not performing extremely well with such a modulation signal.

The reason is that in order to get good high bandwidth performance, the impedance of the microwave line of the modulator is matched near to 50 ohms and a load resistance termination is connected at the end of the RF line to reduce or avoid electrical RF reflection. Thus, a significant level of current is traveling in the RF electrodes, leading to local temperature increases by Joule effect. Heating and thermal dissipation becomes a problem when the repetition period or the pulse duration becomes longer than the time constant of the thermal effects (in the range of 1kHz or below). Then the physical properties of the electrodes and waveguide are changing during the heat-on and cool-down periods, leading to unwanted phase drifts. Standard 5, 10 or 20 GHz phase modulators are not suitable for such applications involving very low repletion rate.

To suppress that phenomenon, a solution is to use a modulator with a high input impedance load (typ 10 kΩ) or directly an opened electrode line (MΩ). The useful E-O bandwidth is then reduced to several hundred MHz which is sufficient for a large range of applications in particular for sensing applications, but the thermal effects are significantly reduced since the Joule effect becomes negligible. Photline has developed a family of phase modulators whose performances are optimized for low repetition rate modulation signals (MPX-LN-0.1 series are available at 800 nm, 1000 nm, 1300 nm, 1550 nm).

MPX-LN-0.1 modulators has been tested in temperature and it has been demonstrated that they keep their performance in operating conditions covering a large temperature range (-40°C +85°C) and during temperature variations.

Example : Birefringent phase modulator.

A titanium in-diffused phase modulator can support both TE and TM states of polarization. By orienting the input polarization at 45° from the main axes of the waveguide, it is hence possible to illuminates simultaneously the TE and TM modes of the phase modulator. Phase modulation occurs differentially for the two modes. An output analyzer parallel or perpendicular to the input polarizer converts the relative phase variations into intensity variations that are detected with a photodiode.

Fig.1 and Fig.2 below show the modulation obtained when a rectangular modulation signal is applied to the high frequency phase modulator (MPZ-LN-20 type) at 50 Hz and at 50 kHz. The effect of thermal effect is clearly visible in fig.1 at very low frequency. At 50 kHz the thermal effect totally vanishes.

Fig1: up : modulation signal; down : resulting intensity signal. Response at 50 Hz : thermal effect in the impedance matched line translates in

phase

transients after the sharp edges

Fig. 2: up : modulation signal; down : resulting intensity signal.

Response at 50 kHz : phase transients have disappeared

For operation at lower frequencies (<1 GHz) with electrical signals involving very low frequency components, a lumped electrode modulator (MPX-LN-0.1 type) can be efficiently used. In such modulators, no load resistor terminates the electrodes. Fig. 3 and Fig.4 below show the same modulation signal applied to a MX-LN-0.1 phase modulator The modulation is obtained with purely capacitive electrodes involving no thermal effect.

Fig3 : up : modulation signal; down : resulting

intensity signal.

Response at 50Hz. No thermal effect thanks to

unloaded capacitive electrodes

Fig4 : up : modulation signal; down : resulting

intensity signal.

Response at 50 kHz. The fast edges are well

transmitted

Conclusion : for operation with modulation signals exhibiting low frequency components, it is necessary to use specific modulators. Photline MX-LN-0.1 series are specially designed to operate in such conditions and they keep their operating performance over a large temperature range.

电光效应和电光调制

电光效应和电光调制 当给晶体或液体加上电场后,该晶体或液体的折射率发生变化,这种现象成为电光效应。1875年克尔(Kerr)发现了第一个电光效应。即某些各向同性的透明介质在外电场作用下变为各向异性,表现出双折射现象,介质具有单轴晶体的特性,并且其光轴在电场的方向上,人们称这种光电效应为克尔效应。1893年普克尔斯(Pokells)发现,有些晶体,特别是压电晶体,在加了外电场后,也能改变它们的各向异性性质,人们称此种电光效应为普克尔斯效应。电光效应在工程技术和科学研究中有许多重要应用,它有很短的响应时间(可以跟上频率为1010Hz的电场变化),因此被广泛用于高速摄影中的快门,光速测量中的光束斩波器等。由于激光的出现,电光效应的应用和研究得到了迅速发展,如激光通信、激光测量、激光数据处理等。 一.实验目的 1.掌握晶体电光效应和电光调制的原理和实验方法。 2.观察电光效应所引起的晶体光性的变化和会聚偏振光的干涉现象。 3.学会用简单的实验装置测量LN(LiNbO3铌酸锂)晶体半波电压。观察电光调制的工作性质。 二.仪器用具 电光效应实验仪,电光调制电源,LN晶体横向电光调制器,接收放大器,He-Ne激光器,二踪示波器和万用表。 三.实验装置与原理 (一)实验装置 (1)电光效应实验仪面板如图所示。 (2)晶体电光调制电源:调制电源由-200V—+200V之间连续可调的直流电源、单一频率振荡器(振荡频率约为1kHz)、音乐片和放大器组成,电源面板上有三位半数字面板表,可显示直流电压值。晶体上加的直流电压的极性可以通过面板上的“极性”键改变,直流电压的大小用“偏压”旋钮调节。调制信号可由机内振荡器或音乐片提供,此调制信号是用装在面板上的“信号选择”键来选择三个信号中的任意一个信

电光调制实验实验报告

广东第二师范学院学生实验报告 院(系)名称物理系班 别11物理 本四B 姓名 专业名称物理教育学号 实验课程名称近代物理实验(2) 实验项目名称电光调制实验 实验时间2014年12月 18日实验地点物理楼五楼 实验成绩指导老师签名 内容包含:实验目的、实验使用仪器与材料、实验步骤、实验数据整理与归纳(数据、图表、计算等)、实验 结果与分析、实验心得 【实验目的】 1. 掌握晶体电光调制的原理和实验方法 2. 学会利用实验装置测量晶体的半波电压,计算晶体的电光系数 3. 观察晶体电光效应引起的晶体会聚偏振光的干涉现象 【实验仪器】 铌酸锂晶体,电光调制电源,半导体激光器,偏振器,四分之一波片,接收放大器,双踪示波器 【实验内容及步骤】 一、调整光路系统 1. 调节三角导轨底角螺丝,使其稳定于调节台上。在导轨上放置好半导体光源部分滑块,将小孔光栏置于导轨上,在整个导轨上拉动滑块,近场远场都保证整个光路基 本处于一条直线,即使光束通过小孔。 放上起偏振器,使其表面与激光束垂直,且使光束在元件中心穿过。再放上检偏器,使其表面也与激光束垂直,转动检偏器,使其与起偏器正交,即,使检偏器的主 截面与起偏器的主截面垂直,这时光点消失,即所谓的消光状态。 2. 将铌酸锂晶体置于导轨上,调节晶体使其x轴在铅直方向,使其通光表面垂直于激光束(这时晶体的光轴与入射方向平行,呈正入射),这时观察晶体前后表面查看 光束是否在晶体中心,若没有,则精细调节晶体的二维调整架,保证使光束都通过晶体,且从晶体出来的反射像与半导体的出射光束重合。 3. 拿掉四分之一波片,在晶体盒前端插入毛玻璃片,检偏器后放上像屏。光强调到 最大,此时晶体偏压为零。这时可观察到晶体的单轴锥光干涉图,即一个清楚的暗十字线,它将整个光场分成均匀的四瓣,如果不均匀可调节晶体上的调整架。如图四所示 4. 旋转起偏器和检偏器,使其两个相互平行,此时所出现的单轴锥光图与偏振片垂

电光调制实验实验报告

电光调制实验实验报告 【实验目的】 1、掌握晶体电光调制的原理和实验方法 2、学会利用实验装置测量晶体的半波电压,计算晶体的电光系数 3、观察晶体电光效应引起的晶体会聚偏振光的干涉现象 【实验仪器】 铌酸锂晶体,电光调制电源,半导体激光器,偏振器,四分之一波片,接收放大器,双踪示波器 【实验内容及步骤】 一、调整光路系统 1、调节三角导轨底角螺丝,使其稳定于调节台上。在导轨上放置好半导体光源部分滑块,将小孔光栏置于导轨上,在整个导轨上拉动滑块,近场远场都保证整个光路基本处于一条直线,即使光束通过小孔。放上起偏振器,使其表面与激光束垂直,且使光束在元件中心穿过。再放上检偏器,使其表面也与激光束垂直,转动检偏器,使其与起偏器正交,即,使检偏器的主截面与起偏器的主截面垂直,这时光点消失,即所谓的消光状态。 2、将铌酸锂晶体置于导轨上,调节晶体使其x轴在铅直方向,使其通光表面垂直于激光束(这时晶体的光轴与入射方向平行,呈正入射),这时观察晶体前后表面查看光束是否在晶体中

心,若没有,则精细调节晶体的二维调整架,保证使光束都通过晶体,且从晶体出来的反射像与半导体的出射光束重合。 3、拿掉四分之一波片,在晶体盒前端插入毛玻璃片,检偏器后放上像屏。光强调到最大,此时晶体偏压为零。这时可观察到晶体的单轴锥光干涉图,即一个清楚的暗字线,它将整个光场分成均匀的四瓣,如果不均匀可调节晶体上的调整架。如图四所示 4、旋转起偏器和检偏器,使其两个相互平行,此时所出现的单轴锥光图与偏振片垂直时是互补的。如图五所示图四图五 6、晶体加上偏压时呈现双轴锥光干涉图,说明单轴晶体在电场作用下变成双轴晶体,即电致双折射。如图六所示 7、改变晶体所加偏压极性,锥光图旋转90度。如图七所示图六图七8 只改变偏压大小时,干涉图形不旋转,只是双曲线分开的距离发生变化。这一现象说明,外加电场只改变感应主轴方向的主折射率的大小、折射率椭球旋转的角度和电场大小无关。 二、依据晶体的透过率曲线(即T-V曲线),选择工作点。测出半波电压,算出电光系数,并和理论值比较。我们用两种测量方法: 1、极值法晶体上只加直流电压,不加交流信号,并把直流偏压从小到大逐渐改变时,示波器上可看到输出光强出现极小值和极大值。

10电光调制器解析

第10课:电光调制器(光学BPM) 本课介绍如何制作一个3D模拟的线性电光效应(Pockels效应)改性的材料。参考波导设计[1]如图1所示。本节中,该波导被创建时,电位被施加到电极上,并将结果进行比较,参考文献[1]。 图1:这是参考1图2,绘制倒挂。该波导是一个“底- 删除”的设计,使包层是BCB,用胶水波导到另一个基板,未显示的聚合物。这种安装暴露AlGaAs敷层在空气中,并在背面电极蒸发那里。 所有的长度都在微米。

OptiBPM中有另一个,老年人,电光模块。此遗留功能是专门三个共面的电极上扩散电极在铌酸锂中使用时。参见第14课:马赫-曾德尔干涉仪开关。如果不需要你想要的符合模型,以这种特定的情况下,系统,以及有关电极阻抗的信息,你可能要考虑所描述的电极区域功能第14课:马赫-曾德尔干涉仪开关。对于所有其他电光模拟,在本教程中所描述的功能应该被使用。 在这个例子中的材料系统是砷化铝镓。脊结构形成波导和支持TE 和TM波,虽然只有TE模式被激发在我们的例子。电极是金属和不显著相交的引导模式。当电极有电势差时,大多垂直电场出现在支持光模的材料。的材料的折射率由electo光效应略有修改。的影响小,但它可以使在光学波的相位的显著差异传播很长的距离后,1厘米的顺序。根据文献[1],采用17.8 V该顶面和背面电极之间的电位差应在波导的基本模式1厘米传播后,引起皮的相位变化。

为了使模拟电压依赖性光学相移项目,请按照下列步骤。一个完成的项目可以在教程Samples目录中找到名为 Lesson10_ElectroOptic.bpd。 建议您已经完成了第1课:入门。这也是一个好主意,已经完成了第9课:创建一个芯片到光纤对接耦合器为好,以熟悉无电光效果的3D BPM模拟问题。 定义介质材料 步行动 1 在新的项目中,打开配置文件设计,并在科材料/绝缘创建砷化镓一种新材料。命名材料GaAs155,并在新材料的二维和三维各向同性选项卡中输入的3.421076的折射率。折射率的这个值是从参考文献2。砷化镓电光张量具有非零分量R41 = R5 2 = R63在晶体中的坐标系。但是,该设备的波导轴旋转时在XZ平面上由45°相对于晶轴,使垂直(平行于Y)的静电场由电光系数等于R41影响到在TE模式。在这个项目中,我们将模拟一个TE模式,因此进入R41系数为RV,垂直电光系数。(选择的电子光学效应的复选框)的电场的水平部分不影响水平偏振的TE模式,所以相对湿度应该被设置为零。

铌酸锂晶体电光调制器的性能测试_OK

铌酸锂(LiNb03)晶体电光调制器的性能测试 铌酸锂(LiNbO3)晶体是目前用途最广泛的新型无机材料之一,它是很好的压电换能材料,铁电材料,电光材料,非线性光学材料及表面波基质材料。电光效应是指对晶体施加电场时,晶体的折射率发生变化的效应。有些晶体部由于自发极化存在着固有电偶极矩,当对这种晶体施加电场时,外电场使晶体中的固有偶极矩的取向倾向于一致或某种优势取向,因此,必然改变晶体的折射率,即外电场使晶体的光率体发生变化。铌酸锂调制器,应具有损耗低、消光比高、半波电压低、电反射小的高可靠性的性能。 【实验目的】 1.了解晶体的电光效应及电光调制器的基本原理性能. 2. 掌握电光调制器的主要性能消光比和半波电压的测试方法 3. 观察电光调制现象 【实验仪器】 1.激光器及电源 2.电光调制器(铌酸锂) 3.电光调制器驱动源 4. 检流计 5.示波器 6.音频输出的装置 7.光具台及光学元件 【实验原理】 1.电光效应原理 某些晶体在外电场作用下,构成晶体的原子、分子的排列和它们之间的相互作用随外电场E 的改变发生相应的变化,因而某些原来各向同性的晶体,在电场作用下,显示出折射率的改变。这种由于外电场作用而引起晶体折射率改变的现象称为电光效应。折射率N 和外电场E 的关系如下: ΛΛ++=-2 20 211RE rE n n (1) 式中,0n 为晶体未加外电场时某一方向的折射率,r 是线性电光系数,R 是二次电光系数。通常把电场一次项引起的电光效应叫线性电光效应,又称泡克尔斯效应;把二次项引起的电光效应叫做二次电光效应,又称克尔效应。其中,泡克尔斯效应只在无对称中心的晶体中才有,而克尔效应没有这个限制。只有在无对称中心的晶体中,与泡克尔斯效应相比,克尔效应较小,通常可忽略。 目前普遍采用线性电光效应做电光调制器,这样就不再考虑(1)式中电场E 的二次项和高次项。因此(1)式为:

晶体电光调制实验

晶体电光调制与光通信实验 实验人: 合作人: (物理科学与工程技术学院,光信息科学与技术 2011 级 1 班,学号11343026) 一.实验目的 1.掌握晶体电光调制的原理和实验方法。 2.学会用简单的实验装置测量晶体半波电压、电光常数的实验方法。 3.观察电光效应所引起的晶体光学特性的变化和会聚偏振光的干涉现象。 二.实验原理 1.电光效应 当给晶体或液体加上电场后,该晶体或液体的折射率发生变化,这种现象成为电光效应。 电场引起的折射率的变化: +++=2 00bE aE n n 其中a 和b 为常数, 0n 为0E =0时的折射率。 光在各向异性晶体中传播时,因光的传播方向不同或者是电矢量的振动方向不同,光的 折射率也不同。在主轴坐标中,折射率椭球及其方程为: 1 2 3 22 2 22 1 2 =+ + n z n y n x 式中1n 、2n 、3n 为椭球三个主轴方向上的折射率,称为主折射率。当晶体加上电场后,折射率椭球的形状、大小、方位都发生变化,椭球方程变成: 1 222212 213 223 233 2 222 2 211 2 =+ + + + + n xy n xz n yz n z n y n x 晶体的一次电光效应分为纵向电光效应和横向电光效应两种。纵向电光效应是加在晶体上的电场方向与光在晶体里传播的方向平行时产生的电光效应;横向电光效应是加在晶体上的电场方向与光在晶体里传播方向垂直时产生的电光效应,本实验研究铌酸锂晶体的一次电光效应。铌酸锂晶体属于三角晶系,3m 晶类,主轴z 方向有一个三次旋转轴,光轴与z 轴重合,是单轴晶体,折射率椭球是旋转椭球,其表达式为 1 22 20 2 2=+ +e n z n y x 加上电场后折射率椭球发生畸变,当x 轴方向加电场,光沿z 轴方向传播时,晶体由单轴晶变为双轴晶,垂直于光轴z 轴方向的折射率椭球截面由圆变为椭圆,此椭圆方程为 1 2)1 ( )1 ( 222 2220 2 2220 =-++-xy E y E n x E n x x x γγγ 2.电光调制原理

电光调制实验报告(1)

光电工程学院 2013 / 2014学年第 2 学期 实验报告 课程名称:光电子基础实验 实验名称:电光调制实验 班级学号 1213032809 学生姓名丁毅 指导教师孙晓芸 日期:2014年 5 月07 日

电光调制实验 【实验目的】 1、掌握晶体电光调制的原理和实验方法; 2、学会用实验装置测量晶体的半波电压,绘制晶体特性曲线,计算电光晶体的消光比和透射 率。 【实验仪器及装置】 电光调制实验仪(半导体激光器、起偏器、电光晶体、检偏器、光电接收组件等)、示波器。 实验系统由光路与电路两大单元组成,如图3.1所示: 图3.1 电光调制实验系统结构 一、光路系统 由激光管(L)、起偏器(P)、电光晶体(LN)、检偏器(A)与光电接收组件(R)以及附加的减光器(P1)和λ/4波片(P2)等组装在精密光具座上,组成电光调制器的光路系统。 注:?本系统仅提供半导体激光管(包括电源)作为光源,如使用氦氖激光管或其他激光源时,需另加与其配套的电源。 ?激光强度可由半导体激光器后背的电位器加以调节,故本系统 未提供减光器(P 1 )。 ?本系统未提供λ/4波片(P 2 )即可进行实验,如有必要可自行配置。

二、电路系统 除光电转换接收部件外,其余包括激光电源、晶体偏置高压电源、交流调制信号发生、偏压与光电流指示表等电路单元均组装在同一主控单元之中。 图3.2 电路主控单元前面板 图3.2为电路单元的仪器面板图,其中各控制部件的作用如下: ?电源开关用于控制主电源,接通时开关指示灯亮,同时对半导体激光器供电。 ?晶体偏压开关用于控制电光晶体的直流电场。(仅在打开电源开关后有效) ?偏压调节旋钮调节直流偏置电压,用以改变晶体外加直流电场的大小。 ?偏压极性开关改变晶体的直流电场极性。 ?偏压指示数字显示晶体的直流偏置电压。 ?指示方式开关用于保持光强与偏压指示值,以便于读数。 ?调制加载开关用于对电光晶体施加内部的交流调制信号。(内置1KHz的正弦波) ?外调输入插座用于对电光晶体施加外接的调制信号的插座。(插入外来信号时内置信号自动断开) ?调制幅度旋钮用于调节交流调制信号的幅度。 ?调制监视插座将调制信号输出送到示波器显示的插座。 ?解调监视插座将光电接收放大后的信号输出到示波器显示的插座,可与调制信号进行比较。 ?光强指示数字显示经光电转换后的光电流相对值,可反映接收光强大小。?解调幅度旋钮用于调节解调监视或解调输出信号的幅度。

《光纤通信》原荣 第三版 第3章 复习思考题参考答案

第3章 复习思考题 参考答案 3-1 连接器和跳线的作用是什么接头的作用又是什么 答:连接器是把两个光纤端面结合在一起,以实现光纤与光纤之间可拆卸(活动)连接的器件。跳线用于终端设备和光缆线路及各种光无源器件之间的互连,以构成光纤传输系统。接头是把两个光纤端面结合在一起,以实现光纤与光纤之间的永久性(固定)连接。接头用于相邻两根光缆(纤)之间的连接,以形成长距离光缆线路。 3-2 耦合器的作用是什么它有哪几种 耦合器的功能是把一个或多个光输入分配给多个或一个光输出。耦合器有T 形耦合器、星形耦合器、方向耦合器和波分耦合器。 3-3 简述波导光栅解复用器的工作原理 阵列波导光栅由N 个输入波导、N 个输出波导、两个具有相同结构的N N 平板波导星形耦合器以及一个平板阵列波导光栅组成,如图3.4.4所示。这种光栅相邻波导间具有恒定的路径长度差L ,由式()可知,其相邻波导间的相位差为 λ φL n ?= ?eff π2 (3.4.6) 式中,是信号波长,?L 是路径长度差,通常为几十微米,eff n 为信道波导的有效折射率,它与包层的折射率差相对较大,使波导有大的数值孔径,以便提高与光纤的耦合效率。 ? 输入光从第一个星形耦合器输入,在输入平板波导区(即自由空间耦合区)模式场发散,把光功率几乎平均地分配到波导阵列输入端中的每一个波导,由阵列波导光栅的输入孔阑捕捉。由于阵列波导中的波导长度不等,由式(3.4.6)可知,不同波长的输入信号产生的相位延迟也不等。AWG 光栅工作原理是基于马赫-曾德尔干涉仪的原理,即两个相干单色光经过不同的光程传输后的干涉理论,所以输出端口与波长有一一对应的关系,也就是说,由不同波长组成的入射光束经阵列波导光栅传输后,依波长的不同就出现在不同的波导出口上。此处设计采用对称结构,根据互易性,同样也能实现合波的功能。 星形耦合器 星形耦合器 输入输出 1 2 N ... . . .?L =常数 n eff λ1λ2λN ...λN λ1 λ2 R /2 R 光栅圆 罗兰圆o Q 自由 空间区 图3.4.3 由阵列波导光栅(AWG )组成的解复用器/路由器 简述介质薄膜干涉滤波器解复用器的作用(见原荣编著《光纤通信(第2版)》3.4.3节) 答:介质薄膜光滤波器解复用器利用光的干涉效应选择波长。可以将每层厚度为1/4波长,高、低折射率材料(例如TiO 2 和SiO 2)相间组成的多层介质薄膜,用作干涉滤波器,如图3.4.5所示。在高折射率层反射光的相位不变,而在低折射率层反射光的相位改变180O 。连续反射光在前表面相长干涉复合,在一定的波长范围内产生高能量的反射光束,在这一范围之外,则反射很小。这样通过多层介质膜的干涉,就使一些波长的光通过,而另一些波长的光透射。用多层介质膜可构成高通滤波器和低通滤波器。两层的折射率差应该足够大,以便获得陡峭的滤波器特性。()4.2~2.2TiO 2=n 和()46.1S iO 2=n 通常用于介质薄膜的材料。30层以上的干涉滤波器已经制造出来,因此1.55 m 波长时的通带宽度可窄至1 THz 。用介质薄膜 滤波器可构成WDM 解复用器,如图和图所示。

铌酸锂晶体电光调制器的性能考试OK

铌酸锂晶体电光调制器的性能测试---OK

————————————————————————————————作者:————————————————————————————————日期:

铌酸锂(LiNb03)晶体电光调制器的性能测试 铌酸锂(LiNbO3)晶体是目前用途最广泛的新型无机材料之一,它是很好的压电换能材料,铁电材料,电光材料,非线性光学材料及表面波基质材料。电光效应是指对晶体施加电场时,晶体的折射率发生变化的效应。有些晶体内部由于自发极化存在着固有电偶极矩,当对这种晶体施加电场时,外电场使晶体中的固有偶极矩的取向倾向于一致或某种优势取向,因此,必然改变晶体的折射率,即外电场使晶体的光率体发生变化。铌酸锂调制器,应具有损耗低、消光比高、半波电压低、电反射小的高可靠性的性能。 【实验目的】 1.了解晶体的电光效应及电光调制器的基本原理性能. 2. 掌握电光调制器的主要性能消光比和半波电压的测试方法 3. 观察电光调制现象 【实验仪器】 1.激光器及电源 2.电光调制器(铌酸锂) 3.电光调制器驱动源 4. 检流计 5.示波器 6.音频输出的装置 7.光具台及光学元件 【实验原理】 1.电光效应原理 某些晶体在外电场作用下,构成晶体的原子、分子的排列和它们之间的相互作用随外电场E 的改变发生相应的变化,因而某些原来各向同性的晶体,在电场作用下,显示出折射率的改变。这种由于外电场作用而引起晶体折射率改变的现象称为电光效应。折射率N 和外电场E 的关系如下: ++=-2 20 211RE rE n n (1) 式中,0n 为晶体未加外电场时某一方向的折射率,r 是线性电光系数,R 是二次电光系数。通常把电场一次项引起的电光效应叫线性电光效应,又称泡克尔斯效应;把二次项引起的电光效应叫做二次电光效应,又称克尔效应。其中,泡克尔斯效应只在无对称中心的晶体中才有,而克尔效应没有这个限制。只有在无对称中心的晶体中,与泡克尔斯效应相比,克尔效应较小,通常可忽略。 目前普遍采用线性电光效应做电光调制器,这样就不再考虑(1)式中电场E 的二次项和高次项。因此(1)式为:

基于电吸收调制(EAM)的波长变换器的研究和实现

https://www.360docs.net/doc/c412439203.html, 基于电吸收调制(EAM)的波长变换器的研究和实现 蒋超,魏立华,林鹏 北京邮电大学 摘要: 全光波长变换器(AOWC)技术是实现波分复用(WDM)光网络的关键技术之一,其主要作用是防止WDM光网络中交叉连接(OXC)时可能遇到的波长阻塞现象或作为全光WDM网络的波长适配器,便于WDM网络之间的互连,使波分复用(WDM)光网络具有灵活性,可扩性和自愈性。而基于电吸收调制(EAM)的波长变换器由于其突出的优点而备受关注。本文就对EAM(电吸收调制)的原理和我们所实现的基于EAM波长变换器的软硬件进行了介绍。 关键字:电吸收调制(EAM),全光波长变换器(AOWC) 1.简介: 随着通信领域各种业务特别是多媒体、高清晰度电视、IP业务的高速发展, 对传送网的容量要求越来越高, 国内外已普遍把WDM 技术投入商用,并且对光传送网络(OTN)进行了深入的研究。引入波长变换技术,可以实现波长的再利用,解决OXC中的波长竞争问题,可以有效地进行路有的选择,降低网络阻塞率,从而提高WDM网的灵活性和可行性。同时,也有利于网络的运行,管理和控制,以及光通道保护倒换。全光波长转换器(AOWC:All-optical Wavelength

https://www.360docs.net/doc/c412439203.html, Converter)是光纤通信系统中的一个关键部件,它的主要特点是,把带有信号的 光从一个波长(λin)转换为另一波长(λout),实现波长的再利用和再分配,避免了波长争用,提高了网络系统的容量。 全光的波长转换技术的基本要求是:转换速度快;对光信息流的各种传输格式透明;有较宽的转换范围;对输入信号光功率要求不太高;偏振敏感度小;啁啾噪声低等。 上世纪九十年代以来,电吸收调制器由于其低啁啾,高速率,大消光化,低驱动电压,稳定性好,体积小,以及偏振不敏感等特性,引起了人们的关注。集成了电吸收调制的分布反馈激光器,作为在高质量、高速率脉冲源,获得了商业应用。同时,在波长转换、光交叉连接、冲整形和再生方面,电吸收调制器也有很好的应用前景。 近几年来,基于电吸收调制器中交叉吸收调制效应的波长变换技术得到了广泛的研究。和基于SOA中的交叉增益调制、交叉相位调制以及四波混频效应比起来,该方案具有自己的优势,具有很大的潜力。 2.电吸收调制(EAM)的原理: 波长转换主要应用了电吸收调制器的饱和吸收特性以及交叉损耗效应。实验原理如图1[1]所示。信号光(λ1) 和连续光(λ2) 共同入射到某一偏置电压下的电吸收调制器。当信号光功率较低时(即为低电平“0”时),电吸收调制器的吸收还未饱和,连续光和信号光均被电吸收调制器很好地吸收,则出射信号光和连续光功率均较低(均为低电平“0”);当信号光功率较高时(为高电平“1”时),电吸收调制器的吸收达到饱和,对波长为λ2的连续光吸收将会变得较小,则出射的连续光(λ2) 功率较强(即连续光的电平为“1”),这样,连续光(λ2) 将会受信号光(λ1) 强度的调制,即实现了波长变换,通过优化电吸收调制器的偏置电压、信号光和连续光的光功率,则可以实现高质量的波长变换。 图1:实验原理图(同向传输)[1] 下面我们通过量子阱电吸收调制器(QW—EAM)给出电吸收调制(EAM)较为详细的数学分析: 我们一下的分析都是基于这种结构的EAM:反向偏压的PIN二极管。光信号进入PN结,被内部P区和n区(双异质结)的不同折射率所导引。量子阱(QW)在内部和连接部分相平行。通过PN结的光激发出了载流子,然后载流子填充了QW,从而减小了自由态的电子数,这样使吸收也减小了。然后,它们逃逸出了量子阱,在反向偏压下漂移。我们假设电子和空穴在量子阱中按指数分布[3]。 因为通常导带的载流子的浓度要小于价带,受激饱和主要是由电子的状态控制的,而不是空穴状态。在时间t沿着传播方向z上的电子数的动态变化是由从量子阱中逃逸出来的载流子和光生电子的平衡来决定的。所以这现象可以有以下的等式表示:

电光调制器

第三章电光调制器

内容 ?电光调制的基本原理 ?铌酸锂(LiNbO3)电光调制器?半导体电吸收调制器(EAM)

电光调制 电光调制:将电信息加载到光载波上,使光参量随着电参 量的改变而改变。光波作为信息的载波。 强度调制的方式 作为信息载体的光载波是一种电磁场:()() 0cos E t eA t ωφ=+r r 对光场的幅度、频率、相位等参数,均可进行调制。在模拟信号的调制中称为AM 、FM 和PM ;在数字信号的调制中称为ASK 、FSK 和PSK 。调制器:将连续的光波转换为光信号,使光信号随电信号的变化而变化。性能优良的调制器必须具备:高消光比、大带宽、低啁啾、低的偏置电 压。

电光调制的主要方式 直接调制:电信号直接改变半导体激光器的偏置电流,使输出激光强度随电信号而改变。 优点:采用单一器件 成本低廉 附件损耗小 缺点:调制频率受限,与激光器弛豫振荡有关 产生强的频率啁啾,限制传输距离 光波长随驱动电流而改变 光脉冲前沿、后沿产生大的波长漂移 适用于短距离、低速率的传输系统

电光调制的主要方式 外调制:调制信号作用于激光器外的调制器上,产生电光、热光或声光等物理效应,从而使通过调制器的激光束的光参量随信号 而改变。 优点:不干扰激光器工作,波长稳定 可对信号实现多种编码格式 高速率、大的消光比 低啁啾、低的调制信号劣化 缺点:额外增加了光学器件、成本增加 增加了光纤线路的损耗 目前主要的外调制器种类有:电光调制器、电吸收调制器

调制器调制器连续光源 光传输 NRZ 调制格式 其他调制格式: ?相位调制 ?偏振调制 ?相位与强度调制想结合光传输RZ 调制格式 脉冲光源电光调制 折射率的改变通过 电介质晶体Pockels 效应和半导体材料 中的电光效应 光吸收的改变通过半导体材料中的Franz-Keldysh效应量子阱半导体材料中的量子限制的Stark 效应光与物质相互作用 相位调制 偏振调制 (双折射材料) 强度调制强度调制通过-干涉仪结构-定向耦合

3晶体的电光效应与电光调制_实验报告

晶体的电光效应与光电调制 实验目的: 1) 研究铌酸锂晶体的横向电光效应,观察锥光干涉图样,测量半波电压; 2) 学习电光调制的原理和试验方法,掌握调试技能; 3) 了解利用电光调制模拟音频通信的一种实验方法。 实验仪器: 1) 晶体电光调制电源 2) 调制器 3) 接收放大器 实验原理简述: 某些晶体在外加电场的作用下,其折射率将随着外加电场的变化而变化,这种现象称为光电效应。晶体外加电场后,如果折射率变化与外加电场的一次方成正比,则称为一次电光效应,如果折射率变化与外加电场的二次方成正比,则称为二次电光效应。晶体的一次光电效应分为纵向电光效应和横向电光效应 1、 电光调制原理 1) 横向光电调制 如图 入射光经过起偏器后变为振动方向平行于x 轴的线偏振光,他在晶体感应轴x ’,y’上的投影的振幅和相位均相等,分别设为 wt A e x cos 0'=wt A e y cos 0'= 用复振幅表示,将位于晶体表面(z=0)的光波表示为A E x =)0('A E y =)0(' 所以入射光的强度为22 '2 '2)0()0(A E E E E I y x i =+=?∝ 当光通过长为l 的电光晶体后,x’,y’两分量之间产生相位差A l E x =)('δi y Ae l E -=)(' 通过检偏器出射的光,是这两个分量在y 轴上的投影之和

() 12 45cos )()('0-= ?=-δ δi i y y e A e l E E 其对应的输出光强I t 可写为()()[] 2 sin 2*2200δ A E E I y y t =?∝ 由以上可知光强透过率为2 sin 2δ==i t I I T 相位差的表达式()d l V r n l n n y x 223 0'' 22λ π λ π δ= -= 当相位差为π时?? ? ??= l d r n V n 223 02λ 由以上各式可将透过率改写为()wt V V V V V T m sin 2sin 2sin 02 2 +==π π π π可以看出改变V0或 Vm ,输出特性将相应变化。 1) 改变直流电压对输出特性的影响 把V0=Vπ/2带入上式可得 ()?? ???? ???? ??+=+==wt V V wt V V V V V T m m sin sin 121sin 2sin 2sin 02 2 πππππ π 做近似计算得?? ???????? ??+≈ wt V V T m sin 121ππ 即T ∝Vmsinwt 时,调制器的输出波形和调制信号的波形频率相同,即线性调制 如果Vm >Vπ,不满足小信号调制的要求,所以不能近似计算,此时展开为贝塞尔函数,即输出的光束中除了包含交流信号的基波外,还有含有奇次谐波。由于调制信号幅度比较大,奇次波不能忽略,这时,虽然工作点在线性区域,但输出波形依然会失真。

电光调制器

电光调制器的原理 要用激光作为传递信息的工具,首先要解决如何将传输信号加到激光 辐射上去的问题,我们把信息加载于激光辐射的过程称为激光调制,把完成这一过程的装置称为激光调制器.由已调制的激光辐射还原出所加载信息 的过程则称为解调.因为激光实际上只起到了"携带"低频信号的作用,所以称为载波,而起控制作用的低频信号是我们所需要的,称为调制信号,被调 制的载波称为已调波或调制光.按调制的性质而言,激光调制与无线电波调制相类似,可以采用连续的调幅,调频,调相以及脉冲调制等形式,但激光调制多采用强度调制.强度调制是根据光载波电场振幅的平方比例于调制信号,使输出的激光辐射的强度按照调制信号的规律变化.激光调制之所以常采用强度调制形式,主要是因为光接收器一般都是直接地响应其所接受的 光强度变化的缘故. 激光调制的方法很多,如机械调制,电光调制,声光调制,磁光调制和电源调制等.其中电光调制器开关速度快,结构简单.因此,在激光调制技术及混合型光学双稳器件等方面有广泛的应用.电光调制根据所施加的电场方 向的不同,可分为纵向电光调制和横向电光调制.利用纵向电光效应的调制,叫做纵向电光调制,利用横向电光效应的调制,叫做横向电光调制编辑本段电光调制器的应用 在电通信系统中,原始率数字信号电平的峰-峰值只有0.8V。因为数据率大于2.5Gb/s的铌酸锂调制器的半波电压(Vp)较高,故都需要用驱动器来推动调制器。驱动器不仅要有很宽的工作频带,并且要能提供足够大的微波输出功率。例如:对于10Gb/s、Vp=5.5V的调制器,需要驱动器具有75KHz 到8GHz的工作频带及20dBm(100mW)的1dB输出功率。制作率的驱动器是非常困难的,因此制作具有低Vp的调制器是很受欢迎的。 当然,也要求调制器有良好的其他性能,如低的光插入损耗、大的消光比、小的光反射损耗、弱的电反射损耗和合适的啁啾(chirp)参量。 电光调制器有很多用途。相位调制器可用于相干光纤通信系统,在密集波分复用光纤系统中用于产生多光频的梳形发生器,也能用作激光束的电光移频器。 电光调制器有良好的特性,可用于光纤有线电视(CATV)系统、无线通信系统中基站与中继站之间的光链路和其他的光纤模拟系统。 电光调制器除了用于上述的系统中用于产生高重复频率、极窄的光脉冲或光孤子(Soliton),在先进雷达的欺骗系统中用作为光子宽带微波移相器和移频器,在微波相控阵雷达中用作光子时间延迟器,用于光波元件分析仪,测量微弱的微波电场等。

浅议铌酸锂电光调制器的应用差异

浅议铌酸锂电光调制器的应用差异目前市面上常见的10G调制带宽的铌酸锂调制器按结构可大致分为2种, 分别是相位调制器和强度调制器. 其中强度调制器的细分种类又更多, 按应用类型划分其中用于数字光通信的可以分为固定啁啾和零啁啾的类型; 而用于光载微波通信的又有模拟强度调制器;在传感领域为了获得极窄和极高的消光比光脉冲, 又有专门工作于脉冲模式下的调制器. 一般我们在对调制器进行选型, 主要考虑应用场景(模拟or数字系统), 调制速率, 调制格式, 半波电压, 啁啾特性, ON/OFF消光比等. 因诺尔可提供远比Thorlabs更为丰富类型的铌酸锂调制器, 欢迎联系咨询. 以下是Thorlabs对数字光通信的强度调制器的关于固定啁啾和零啁啾详细描述,最后是相位调制器的细节阐述. 10 GHz强度调制器,固定啁啾 Parameter Value Operating Rangea1525 –1605 nm Optical Loss 4.0 dB (Typical) Bit Rate Frequency9.953 Gb/s Electro-optic Bandwidth(-3 dB)10 GHz PRBSb Optical Extinction Ratio13 dB 该调制器设计用于1550 nm窗口。将该调制器使用于另一波长下(例如,可见光)会导致损耗临时增大,而且不在保修范围内。例如,由更短的波长引起的损耗增大可通过将调制器加热到70 °C并维持一小时来恢复。 伪随机二进制序列 特性 C波段和L波段工作范围 低光学损耗:0 dB(典型) 钛扩散Z切面铌酸锂 驱动电压低

长期偏置稳定 Telcordia GR-468兼容 集成的光电探测器 LN82S-FC是10 GHz的LiNbO3强度调制器,0.7固定啁啾,集成光电二极管。它带有PM输入光纤尾纤和SM输出尾纤,终端为FC/PC接头。PM光纤与慢轴对齐,慢轴与e光模式对齐。集成的光电探测器可用于光学功率监测和调制器偏置控制,消除对外部光纤分路器的需要。RF输入通过一个GPO?接头输入调制器。 这些调制器是由钛扩散Z切面LiNbO3制成的,在马赫-曾德尔干涉仪的两个臂之间产生不同的推-拉相移。除了强度调制,这也导致输出信号的相位/频率(线性调频)的偏移。这种固定啁啾调频的调制器将脉冲啁啾降低,当光纤所在的网络的分散系数为正时很有用。啁啾降低的脉冲通过具有正分散系数的光纤时将被压缩,直到达到最小值。超过该点色散项将占主导。因为啁啾脉冲会增加脉冲的谱宽,所以穿过同一段光纤后,线性调频的脉冲最终会比未线性调频的脉冲宽。相比零线性调频设备,这些固定线性调频强度调制器是要求提高功率损耗(对于+1600ps/nm小于2 dB)性能的应用的理想选择。对于电信应用,该LN82S-FC 易于集成到300引脚的兼容MSA的应答器中。 10 GHz强度调制器,零啁啾 Parameter Value Operating Rangea1525 –1605 nm Optical Loss 4.0 dB(Typical) Bit Rate Frequency12.5 Gb/s Electro-optic Bandwidth(-3 dB)10 GHz PRBSb Optical Extinction Ratio13 dB 该调制器设计用于1550 nm窗口。将该调制器使用于另一波长下(例如,可见光)会导致损耗临时增大,而且不在保修范围内。例如,由更短的波长引起的损耗增大可通过将调制器加热到70 °C并维持一小时来恢复。

10Gbs电吸收调制器的微波封装设计

文章编号:025827025(2005)1121495204 10G b /s 电吸收调制器的微波封装设计 刘 宇1,谢 亮1,袁海庆1,张家宝1,祝宁华1,孙长征2,熊 兵2,罗 毅 2 1 中国科学院半导体研究所集成光电子学国家重点实验室,北京100083 2 清华大学电子工程系集成光电子学国家重点实验室,北京100084 摘要 在高速光电子器件的微波封装过程中,需要综合考虑封装寄生参数和芯片寄生参数对器件高频性能的影响。利用封装寄生参数对芯片寄生参数的补偿作用,成功实现了10Gb/s 电吸收调制激光器(EML )的高频封装。通过封装前后芯片和器件的小信号频率响应测试结果对比,器件的反射参数和传输参数有所改善,3dB 带宽达到 10GHz ;并进行了10Gb/s 速率的光纤传输实验,经过40km 光纤传输后通道代价不到1dBm (误码率为10-12), 满足10Gb/s 长距离光纤传输系统的要求。 关键词 光电子学;电吸收调制器;微波封装;频率响应中图分类号 TN 365 文献标识码 A Microw ave Packaging for 10G b/s EML Modulators L IU Yu 1,XIE Liang 1,YUAN Hai 2qing 1,ZHAN G Jia 2bao 1,ZHU Ning 2hua 1,SUN Chang 2zheng 2,XON G Bing 2,L UO Y i 2 1 S tate Key L aboratory on I nteg rated O ptoelect ronics ,I nstitute of S emiconductors , T he Chinese A cadem y of S ciences ,B ei j ing 100083,China 2 S tate Key L aboratory on I nteg rated O ptoelect ronics ,De partment of Elect ronic Engineering , Tsinghua Universit y ,B ei j ing 100084,China Abstract A novel microwave packaging technique for 10Gb/s electro 2absorption modulator integrated with distributed feedback laser (EML )is presented.The packaging parasitic and intrinsic parasitic are both well considered ,and the packaging circuit is synthetically designed to compensate the intrinsic parasitic of the chip.A butterfly packaged EML module has been successf ully developed to approve that.The small 2signal modulation bandwidth of the butterfly 2packaged module is about 10GHz.Optical fiber transmission experiments at a data rate of 10Gb/s show that the module can be used for long 2haul transmission.After transmission through 40km ,the power penalty is less than 1dBm at a bit 2error 2rate of 10-12.K ey w ords optoelectronic ;electro 2absorption modulators ;microwave packaging ;frequency response 收稿日期:2005201211;收到修改稿日期:2005204212 基金项目:国家973计划(G 2000036601)和国家863计划(2001AA312030,2001AA312290)资助项目。 作者简介:刘 宇(1976— )男,湖南常德人,中国科学院半导体研究所工程师,硕士,主要从事高速光电子器件的微波测试与封装设计方面的研究。E 2mail :yliu @https://www.360docs.net/doc/c412439203.html, 1 引 言 近年来随着光电子器件不断向高速率发展,光电子器件的高频封装形式也多样化,例如同轴(TO )、微型双列直插(mini 2DIL )、蝶型等,但是无论何种形式,封装引入的寄生参数都会对器件的高频性能产生一定影响。在Park 等[1~3]和我们以前的工作[4,5]中已经发现,封装中金丝引入的寄生电感 效应会对器件的反射和传输参数产生明显影响。因 此,在提高芯片高频性能的同时,也必须不断改进芯片的微波封装技术。 电吸收调制激光器(EML )作为现代高速光通信系统中常用的关键器件,具有低啁啾、高调制度、结构紧凑等特点,适合于长距离的光纤通信系统,因此一直是人们研究的热点之一。本文对10Gb/s 电吸收调制器和分布反馈(DFB )激光器集成光源芯片   第32卷 第11期2005年11月 中 国 激 光 C H IN ESE J OU RNAL O F L ASERS Vol.32,No.11 November ,2005

电光调制器工作基本知识是什么

电光强度调制器的设计 一、电光强度调制 利用晶体的电光效应,即某些晶体在外加电场的作用下,其折射率将发生变化,当光波通过此介质时,其传输特性就受到影响而改变,可控制光在传播过程中的强度。 强度调制是使光载波的强度(光强)随调制信号规律变化的激光振荡,如图下图所示。光束调制多采用强度调制形式,这是因为接收器一般都是直接响应其所接收的光强变化。 1、电光强度调制装置示意图及原理 它由两块偏振方向垂直的偏正片及其间放置的一块单轴电光晶体组成,偏振片的通振方向分别与x,y轴平行。

根据晶体光学原理,在电光晶体上沿z 轴方向加电场后,由电光效应产生的感应双折射轴'x 和'y 分别与x,y 轴成45°角。设'x 为快轴,'y 为慢轴,若某时刻加在电光晶体上的电压为V ,入射到晶体的在x 方向上的线偏振激光电矢量振幅为E ,则分解到快轴'x 和慢轴'y 上的电矢量振幅为'x E ='y E =E/2。同时,沿'x 和'y 方向振动的两线偏振光之间产生如下式表示的相位差 V 6330 2γμλ δπ = 0μ-晶体在未加电场之前的折射率 63γ-单轴晶体的线性电光系数,又称泡克尔系数

从晶体中出射的两线偏振光在通过通振方向与y 轴平行的偏振片检偏,产生的光振幅如下图分别为y E x'、y E y',则有y E x'=y E y'=E/2,其相互间的相位差为()πδ+。此二振动的合振幅为 () () ()δδπδcos 121 cos 21 41cos 22222''2 '2'2'-=-+= +++=E E E E E E E E E y y y x y y y x 因光强与振幅的平方成正比,所以通过检偏器的光强可以写成 令比例系数为1: 2 sin 2 sin 2 02 22'δ δ I E E I === 即 V I I λ γπμ63 302 0sin = 显然,当晶体所加电压V 是一个变化的信号电压时,通过检偏器的光强也随之变化。如下图I/0I -V 曲线的一部分及光强调制的工作情形。

相关文档
最新文档