聚丙烯添加少量聚乙烯对拉丝的作用

聚丙烯添加少量聚乙烯对拉丝的作用
聚丙烯添加少量聚乙烯对拉丝的作用

聚丙烯添加少量聚乙烯拉丝的作用

节选自《拉丝疑难问题分析及处理》之六十七

王永仁

【湖北来电】我们看到有的塑编企业在拉丝的聚丙烯中添加少量的聚乙烯,请问有何作用?

【答疑参考】拉丝的聚丙烯中添加少量的聚乙烯可以起到改性作用,这一点已经被很多塑编企业所证明。

共混是塑编原料改性的基本手段,共混改性就象在铁中添加不同比例的碳元素一样,按碳元素的含量可使铁改性成为铸铁、钢。塑料共混,也是类同这个道理。聚丙烯的共混改性是塑编的课题之一,尽管我们塑编企业有很多共混的生产经验,但是能从理论上指导生产还是一个难题。聚丙烯PP具有较高的机械强度,优良的耐热性能,较好的耐腐蚀性、电绝缘性、刚性等。但聚丙烯的成型收率大,低温脆性,耐环境应力开裂性等较差,这些可以通过共混改性得到明显的改善。目前聚丙烯和高密度聚乙烯,低密度聚乙烯,线性低密度聚乙烯共混改性的研究和应用得到很大发展,在生产中有了一定的成熟经验。

对于拉丝来讲,聚丙烯中添加少量的聚乙烯有以下几点好处:

1、增加韧性抗冲击

聚乙烯与聚丙烯共混,因为两者极性相近,具有较好的热力学相容性。在PP/HDPE

共混物中,当HDPE的含量在10%时,它在-200C下的落球冲击强度可比聚丙烯提高八倍以上,可见抗低温性能提高很多。塑编企业的实践证明,在PP/HDPE共混物中,当HDPE 的含量在5%时,扁丝的断裂伸长率有所提高,生产的编织袋有明显变软的感觉,抗跌落实验性能有所提高。

2、减少扁丝起毛

在PP/HDPE共混物中,当HDPE的含量在3~8%时,在40倍显微镜下观察,扁丝的起毛现象明显减少,因此粉尘中扁丝的毛刺也明显减少。

3、减少扁丝劈丝

在PP/HDPE共混物中,当HDPE的含量在3~8%时,扁丝劈丝现象有所减少。用手横向拉扁丝时,比没有共混时,可以感觉到有点拉力。也可以发现,冷却的薄膜有点柔软,分丝时不容易断丝。

4、编织断丝率少

由于增加韧性,扁丝抗冲击;由于减少起毛,扁丝通过各个导丝孔顺利;由于扁丝劈丝少,断丝少;这些因素都使编织时断丝率减少。

在PP中添加少量PE,对扁丝拉伸强度影响不大,但是超过10%,扁丝的拉伸强度会明显下降。

拉丝工艺操作流程教案资料

拉丝工艺操作流程

拉丝工艺操作规程 一、各生产班组班长上班后到车间主任处领取当班生产任务单,合理安排当班各设备所对应操作人员及所需原料,严格按照生产工艺进行各项生产安排,坚决杜绝不按要求生产、拉错丝号等严重事故; 二、操作要点 1、开机前检查铝杆型号,选型标准为:拉制单丝直径<3.0mm成品线时选用A6型铝杆,拉制单丝直径≥3.0mm成品线时选用A8型铝杆。 2、收线装置上安全盘具时一定要使盘具两端轴孔与顶锥充分结合,保证盘具安装到位,顶锥装置一定要顶紧、锁死。 3、将原料铝杆的线头轧尖,穿出第一模子35cm左右,并把模子固定在设备油槽内的模座上,用夹钳夹住线头,低速开动设备,使拉丝锅上绕有5—10圈铝线,用以上方法依次将所有模具穿好,并将线头经过排线器固定在收线盘上。 4、根据线径大小调节好收线张力后缓慢开动拉丝机,成品线啦至100米—200米左右停机,通知质检人员到场检查成品线径是否符合要求,合格后方能开机。 5、生产过程中,要不断巡视铝杆的放线情况,防止多圈上吊造成断线;随时检查拉丝油槽内的油位是否正常(以润滑油淹没模具的中心孔为准),防止润滑不够导致断线;坚决避免成品线黑油丝、不光滑、伤丝现象。 6、线盘排线应整齐、平坦,收线张力应适宜,收线不得过满,离盘边不小于2cm。 7、成品盘下机要小心操作,不要碰伤铝线;并按照成品线的不同型号、不同长度依照品字型形状放在不同指定区域,以保证下一道工序操作者使用时按需取料,避免出错。

8、下班时坚持“四不走”:产品不送检不走、设备不清理不走、产品不摆放整齐不走、地面不打扫干净不走。 三、本工序质量问题、产生原因、防止及解决办法:

聚乙烯和聚丙烯原料的区别

聚乙烯和聚丙烯原料的区别 ——由塑米城分享 生产工艺上聚乙烯和聚丙烯原料是比较相似的,都可以用来做塑料薄膜、塑料管材、注塑产品等,很多情况下我们发现两种原料在性质及用途上有很大的相似性。其实,聚丙烯和聚乙烯原料在运用上还是有很多不同点,塑米小编给您分享下聚乙烯和聚丙烯的性能特点。 热性能 从耐热角度来分析,聚丙烯的耐热性要高于聚乙烯,制品能在100℃以上温度进行消毒灭菌,在不受外力的条件下,150℃也不变形。脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。因此如果制品需要在低温环境中使用,还是要尽量选择聚乙烯作为原材料。一般冷藏食品所用托盘都是有聚乙烯原料制作。对于聚丙烯玻璃化温度的报道值有一18qC, 0qC, 5℃等,这也是由于人们采用不同试样,其中所含晶相与无定形相的比例不同,使分子链中无定形部分链长不同所致。聚丙烯的熔融温度比聚乙烯约提高40一50%,约为164一170℃, 100%等规度聚丙烯熔点为176℃。在生活中我们会发现“5”号聚丙烯餐盒常被用于微波炉中加热食品(微波炉加热的一般温度在100-140℃),而聚乙烯因耐热性差是不可以作为微波炉用塑料的,包括餐盒、保鲜膜。同样,在普通包装膜领域,聚乙烯的包装袋更适合于在90℃以下使用,而聚丙烯包装袋在相对高的温度下使用也可以。 力学性能 从刚性、拉伸强度角度分析,聚丙烯的结晶度高,结构规整,因而具有优良的力学性能。聚丙烯主要特点是密度小,力学性能优于聚乙烯,但在塑料材料中仍属于偏低的品种,其拉伸强度仅可达到30 MPa或稍高的水平。聚丙烯已经逐渐展开了与工程塑料(PA/PC)的竞争,广泛运用于电子电器、汽车领域。同时由于聚丙烯拉伸强度高,进而抗弯曲性好,被称为“百折胶”,对折弯曲100万次被弯处不变白,这也为我们辨别聚丙烯制品提供了线索,同时成为制品再回收分类的隐性标志。等规指数较大的聚丙烯具有较高的拉伸强度,但随等规指数的提高,材料的冲击强度有所下降,但下降至某一数值后不再变化。 柔韧性能 从柔韧性角度来分析,聚丙烯虽然强度较高,但是柔韧性较差,技术角度讲也就是抗冲击性能差。所以在用来做膜产品的时候,它的应用领域与聚乙烯的应用领域还是有差别的,聚丙烯薄膜更多的用作表面包装的印刷。而在管材方面,也很少用简单的聚丙烯进行生产,需要用到交联聚丙烯,也就是常见的PPR管。因为普通聚丙烯抗冲击性较差,容易破裂,所以在实际应用在要加入抗冲击改性剂,在保险杆等应用中都要使用助剂来改善抗冲击性。 特点 聚丙烯的耐老化性要弱于聚乙烯,聚丙烯的结构和聚乙烯类似,由于其存在一个甲基构成的侧支链,所以更易在紫外光和热能作用下氧化降解。生活中最容易老化的聚丙烯制品就是编织袋,长时间在太阳下照射编织袋很容易破裂。虽然聚乙烯耐老化性虽然高于聚丙烯,但相较于其它原料,它的这种性能也不是特别的突出,因为在聚乙烯分子中含有少量双键和醚键,其耐候性不好,日晒、雨淋也会引起老化。

聚丙烯材料改性研究

聚丙烯材料改性研究 摘要:利用共混的方法,针对聚丙烯制品在实际应用中出现韧性差,易燃烧的缺点,重点研究了增塑剂POE 不同的量对聚丙烯抗冲击强度的影响,以及氢氧化镁对聚丙烯燃烧性能的影响。本次试验采用了高混机对所用原料进行共混,再将共混的原料放入双螺杆挤出机中挤出造粒,然后将制成的粒料利用注射机制作我们所需的的标准样条,最后对标准样条测试抗冲击强度和氧指数。结果显示,POE 增塑剂的量越多,则对聚丙烯的韧性改善更好,氢氧化镁由于加的量比较少,对聚丙烯的阻燃作用不明显。 关键词:聚丙烯;改性;造粒;增塑;阻燃 1前言 聚丙烯,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规聚丙烯(isotactic polypropylene)、无规聚丙烯(atactic polypropylene)和间规聚丙烯(syndiotactic polypropylene)三种。甲基排列在分子主链的同一侧称等规聚丙烯,若甲基无秩序的排列在分子主链的两侧称无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的聚丙烯树脂中,等规结构含量约为95%,其余为无规或间规聚丙烯。工业产品以等规物为主要成分。聚丙烯也包括丙烯与少量乙烯的共聚物在内。通常为半透明无色固体,无臭无毒。由于结构规整而高度结晶化,故熔点可高达167℃。耐热、耐腐蚀,制品可用蒸汽消毒是其突出优点。密度小,是最轻的通用塑料。缺点是耐低温冲击性差,较易老化,但可分别通过改性予以克服。 采用相容剂技术和反应性共混技术对PP 进行共混改性是当前PP 共混改性发展的主要特点。它能在保证共混材料具有一定的拉伸强度和弯曲强度的前提下大幅度提高PP 耐冲击性。相容剂在共混体系中可以改善两相界面黏结状况,有利于实现微观多相体系的稳定,而宏观上是均匀的结构状态。反应型相容剂除具有一般相容剂的功效外,在共混过程中还能在两相之间产生分子链接,显著提高共混材料性能。 PP/弹性体二元共混体系虽有很好的韧性效果,但往往降低了材料的强度和刚度,耐热性能也有所降低。在二元共混体系中加入有增容作用或协同效应的物质,形成多元共混体系,则其综合性能可得到进一步提高。为了提高增韧PP 的硬度、热变形温度及尺寸稳定性,可使用经偶联剂活化处理的填料或增强材料进行补强。例如采用弹性体/无机刚性粒子/PP 三元复合增韧体系实现PP 的增韧增强,提高材料的综合性能,并且具有较低的成本。 溴系阻燃剂效率高、用量少,对材料的性能影响小,并且溴系阻燃剂价格适中。与其它类型的阻燃剂相比,溴系阻燃剂效能/价格比更具有优越性,我国供出口电子电气类产品中70%~80%都用此类阻燃剂。但是,近年来欧盟一些国家认为溴系阻燃剂燃烧时会产生有毒致癌的多溴代苯并恶瑛(PBDD)和多溴代二苯并呋喃(PBDF)。欧盟出台了禁令,在欧盟国家销售的所有电子电气设备,不能含有多溴联苯及多溴二苯醚。阻燃剂的种类众多,其用量和性能都各自不同,需要在不同的情况下选用不同的阻燃剂。现如今,聚丙烯的阻燃剂正向着高效、低烟、绿色、环保和低成本的方向发展。所以本次实验采用比较绿色的阻燃剂氢氧化镁。 本次实验采用POE 对聚丙烯增韧;氢氧化镁对聚丙烯进行阻燃改性,由于加入氢氧化镁的量太多,挤出机挤出较困难,所以同时加入少量三氧化二锑(Sb 2O 3)来减少氢氧化镁用量, 降低加工难度。 2.实验 2.1配方设计

拉丝机安全操作规程简易版

The Daily Operation Mode, It Includes All The Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify Management Process. 编订:XXXXXXXX 20XX年XX月XX日 拉丝机安全操作规程简易 版

拉丝机安全操作规程简易版 温馨提示:本操作规程文件应用在日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 1、严格执行技术规程,不违章作业,确保 安全生产,做到懂原理、懂结构、懂性能、懂 用途; 2、对各润滑点润滑,每班不少于1次,并 经常检查各传动部位润滑情况; 3、设备试机时,应空载运转2~3分钟, 确信无障碍物、紧固件无松动及不安全隐患, 方可接通电源; 4、进模: (1)将盘材置放在盘材座上,拉出头部, 在砂轮机上磨成圆锥形; (2)将磨成圆锥形的线材头在轧尖机上轧

细(轧到小于拉丝模孔径后),插入1#卷筒拉丝模内,并用牵引链轧住露出拉丝模的线材头部; (3)按动1#卷筒启动按钮,1~3分钟后停机,取下牵引链; (4)将绕在1#卷筒上的线材头绕过导轮架的导线轮后,按以上步骤再进入2#卷筒拉丝模,重复上述工作,以此类推; 5、当拉丝机启动后,若出现有些卷筒上积丝过多或过少时,应及时加以排除,防止设备事故的发生; 6、各卷筒必须在小于最大拉力状态下工作,不得超负荷拉拨;若加工含碳量在0.45%的材料时,原料直径不可超过φ6.5mm ,每个卷筒的拨细量不得超过前道拉丝模直径的20%;

拉丝工艺

拉絲工藝 拉丝可根据装饰需要,制成直纹、乱纹、螺纹、波纹和旋纹等几种。 直纹拉丝是指在铝板表面用机械磨擦的方法加工出直线纹路。它具有刷除铝板表面划痕和装饰铝板表面的双重作用。直纹拉丝有连续丝纹和断续丝纹两种。连续丝纹可用百洁布或不锈钢刷通过对铝板表面进行连续水平直线磨擦(如在有*现装置的条件下手工技磨或用刨床夹住钢丝刷在铝板上磨刷)获取。改变不锈钢刷的钢丝直径,可获得不同粗细的纹路。断续丝纹一般在刷光机或擦纹机上加工制得。制取原理:采用两组同向旋转的差动轮,上组为快速旋转的磨辊,下组为慢速转动的胶辊,铝或铝合金板从两组辊轮中经过,被刷出细腻的断续直纹。 乱纹拉丝是在高速运转的铜丝刷下,使铝板前后左右移动磨擦所获得的一种无规则、无明显纹路的亚光丝纹。这种加工,对铝或铝合金板的表面要求较高。 波纹一般在刷光机或擦纹机上制取。利用上组磨辊的轴向运动,在铝或铝合金板表面磨刷,得出波浪式纹路。 旋纹也称旋光,是采用圆柱状毛毡或研石尼龙轮装在钻床上,用煤油调和抛光油膏,对铝或铝合金板表面进行旋转抛磨所获取的一种丝纹。它多用于圆形标牌和小型装饰性表盘的装饰性加工。 螺纹是用一台在轴上装有圆形毛毡的小电机,将其固定在桌面上,与桌子边沿成60度左右的角度,另外做一个装有固定铝板压茶的拖板,在拖板上贴一条边沿齐直的聚酯薄膜用来限制螺纹竞度。利用毛毡的旋转与拖板的直线移动,在铝板表面旋擦出宽度一致的螺纹纹路。 当然要先拉丝后电镀了。 要在折弯等成型前,一般是平板拉丝。其实表面处理对基材的前处理有很高要求,不然表面处理后反而回放大基材的缺陷 塑胶件的表面拉丝一般是通过烫金来做的,在烫金机的高温高压作用下,将烫金膜上的物质转移到塑胶表面。选用不同的烫金膜,可得到不同光泽和粗细的纹路效果,这种工艺在影碟机面板上用的很多。现在在视听产品上用的很多的魔术镜面装饰件,就是在PMMA板材上烫印的反光膜(也有用电镀的)铝材表面处理除拉丝外,还常用喷沙工艺,同样可以起到掩盖划痕和美化外观的作用另外还有一种“烫金”工艺(电化铝转移),可以在塑料件的表面也做出类似这样的效果来。 1、有关烫印板,即施压头部份的材料选取,以红铜材料为最佳,因为红铜散热性、传热性比较好,在金属中属于中性材料,既不太软也不太硬,不仅便于加工,有一定弹性,耐用性很好;不过实际使用时,很多

聚丙烯纤维研究现状

纤维混凝土是一种新型的复合材料,是当代混凝土改性研究的一个重要领域,近年来,以钢纤维、合成纤维、碳纤维及玻璃纤维为代表的纤维,在混凝土中应用得到了迅速的发展,纤维混凝土是继钢筋混凝土、预应力混凝土之后的又一次重大突破。由于纤维和混凝土的共同作用,使混凝土具有一系列优越的性能,因而受到国内外工程界的极大关注和青睐,并广泛应用于各工程领域。 一、纤维在混凝土中的作用在混凝土中掺入短而细且均匀分布的纤维后,明显具有阻裂、增强和增韧的效果。纤维与水泥基材料复合的主要目的在于克服后者的弱点,以延长其使用寿命,扩大其应用领域。纤维在混凝土中主要起着以下三方面的作用: 1.阻裂作用纤维可阻碍混凝土中微裂缝的产生与扩展,这种阻裂作用既存在于混凝土的未硬化的塑性阶段,也存在于混凝土的硬化阶段。水泥基体在浇注后的24小时内抗拉强度低,若处于约束状态,当其所含水分急剧蒸发时,极易生成大量裂缝,此时,均匀分布于混凝土中的纤维可承受因塑性收缩引起的拉应力,从而阻止或减少裂缝的生成。混凝土硬化后,若仍处于约束状态,因周围环境温度与湿度的变化,而使干缩引起的拉应力超过其抗拉强度时,也极易生成大量裂缝,在此情况下纤维仍可阻止或减少裂缝的生成。 2.增强作用混凝土不仅抗拉强度低,而且因存在内部缺陷而往往难于保证。当混凝土中加入适当的纤维后,可使混凝土的抗拉强度、弯拉强度、抗剪强度及疲劳强度等有一定的提高。 3.增韧作用纤维混凝土在荷载作用下,即使混凝土发生开裂,纤维还可横跨裂缝承受拉应力,并可使混凝土具有良好的韧性。韧性是表征材料抵抗变形性能的重要指标,一般用混凝土的荷载——挠度曲线或拉应力——应变曲线下的面积来表示。另外,还可提高和改善混凝土的抗冻性、抗渗性以及耐久性等性能。 应该强调的是纤维混凝土中纤维的作用,并非所有纤维都能同时起到以上三方面的作用,有时只起到其中两方面或单一方面的作用,这与纤维品种、纤维性能、纤维与混凝土界面间的黏结状况以及基体混凝土的类别和强度等级等因素密切相关。 二、纤维的分类和性能 1.纤维的分类 纤维可以按照不同的原则进行分类。从工程实用观点考虑,可按纤维的材质、弹性模量以及长度分类,见表1. 表1 纤维分类表 分类原则类别

HDPE聚乙烯与PP聚丙烯有什么区别

HDPE 高密度聚乙烯 酵素桶桶底部三角符号2 高密度聚乙烯(High Density Polyethylene,简称为“HDPE”),是一种结晶度 高、非极性的热塑性树脂。原态HDPE的外表呈乳白色,在微薄截面呈一定程度的半透明状。PE具有优良的耐大多数生活用和工业用化学品的特性。某些种类的化学品会产生化学及抗酸化性发酵体。 腐蚀,例如腐蚀性氧化剂(浓硝酸),芳香烃(二甲苯)和卤化烃(四氯化碳),抗酸化发酵。市场上分为工业级HDPE,食品级HDPE及医疗级适用于不同产品等级需求。该 聚合物不吸湿并具有好的防水蒸汽性,可用于抗酸化包装类桶、饮用水管等用途。HDPE具有中到高分子量等级具有极好的抗冲击性, 在常温甚至在-40F低温度下均如此。 HDPE是一种由乙烯共聚生成的热塑性聚烯烃。虽然HDPE在1956年就已推出,这种通用材料还在不断开发其新的用途和市场。 高密度聚乙烯通常使用Ziegler-Natta聚合法制造,其特点是分子链上没有支链, 因此分子链排布规整,具有较高的密度。该过程在管式或釜式低压反应器中以乙烯为原 料,用氧或有机过氧化物为引发剂引发聚合反应。 高密度乙烯属环保材质,加热达到熔点,即可回收再利用。须知塑胶原料可大分为 两大类:“热塑性塑胶”(Thermoplastic)及“热固性塑胶”(Thermosetting),“ 热固性塑胶”是加热到一定温度后变成固化状态,即使继续加热也无法改变其状态,因 此,有环保问题的产品是“热固性塑胶”的产品(如轮胎),并非是“热塑性塑胶”的 产品(如塑胶栈板注:栈板在港澳被称为“夹板”),所以并非所有“塑胶”皆不环保的工业级HDPE 。 主要特性 高密度聚乙烯细节图片HDPE是一种结晶度高、非极性的热塑性树脂。原态HDPE的外表呈乳白色,在微薄截面呈一定程度的半透明状,无味无毒。PE具有优良的耐大多数生活用品和工 业用化学品防酸化的特性。某些种类的化学品会产生化学腐蚀,例如腐蚀性氧化剂(浓硝酸) ,芳香烃(二甲苯)和卤化烃(四氯化碳)抗酸化发酵作用。该聚合物不吸湿并具有好的防水蒸汽性 ,可用于包装用途。HDPE具有很好的电性能,特别是绝缘介电强度高,使其很适用于电 线电缆。中到高分子量等级具有极好的抗冲击性,在常温甚至在-40F低温度下均如此。 各种等级HDPE的独有特性是四种基本变量的适当结合:密度、分子量、分子量分布和添 加剂。不同的催化剂被用于生产定制特殊性能聚合物。这些变量相结合生产出不同用途 的HDPE品级;在性能上达到最佳的平衡。 密度 这是决定HDPE特性的主要变量,虽然被提到的4种变量确实起到相互影响作用。乙 烯是聚乙烯主要原料,少数的其它共聚单体,如1一丁烯、l一己烯或1一辛烯,也经常 用于改进聚合物性能,对HDPE,以上少数单体的含量一般不超过1%-2%。共聚单体的加 入轻微地减小了聚合物的结晶度。这种改变一般由密度来衡量,密度与结晶率呈线性关 系。美国一般分类按ASTM D1248规定,HDPE的密度在0.940g/。C以上;中密度聚乙

聚丙烯合成工艺的研究

聚丙烯合成工艺的研究 摘要中国聚丙烯的工业生产始于20世纪70年代,经过30多年的发展,已经基本上形成了溶剂法、液相本体-气相法、间歇式液相本体法、气相法等多种生产工艺并举,大中小型生产规模共存的生产格局,本文主要介绍了世界5大类聚丙烯生产工艺,着重介绍了液相本体法聚丙烯工艺流程及控制条件。 Abstract Industrial production of polypropylene in China began in the 20th century, 70's, after 30 years of development, has been basically formed a solvent, liquid bulk - Gas Law, intermittent liquid bulk, gas phase, and other production processes simultaneously,the coexistence of large and small scale production patterns, the paper introduces the world's five major categories of polypropylene production process, focusing on the liquid flow Polypropylene and control conditions 中国聚丙烯的工业生产始于20世纪70年代,经过30多年的发展,已经基本上形成了溶剂法、液相本体-气相法、间歇式液相本体法、气相法等多种生产工艺并举,大中小型生产规模共存的生产格局。现在中国的大型聚丙烯生产装置以引进技术为主,中型和小型聚丙烯生产装置以国产化技术为主。 聚丙烯,英文名称:Polypropylene,日文名称:ポリプロピレン分子式:C3H6nCAS 简称:PP由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规聚丙烯(isotaeticPolyProlene)、无规聚丙烯(atacticPolyPropylene)和间规聚丙烯(syndiotatic PolyPropylene)三种。目前,聚丙烯的生产工艺按聚合类型可分为溶液法、淤浆法、本体法和气相法和本体法-气相法组合工艺5大类。具体工艺主要有BP公司的气相Innovene工艺、Chisso公司的气相法工艺、Dow公司的Unipol工艺、Novolene气相工艺、Sumitomo气相工艺、Basell公司 的本体法工艺、三井公司开发的Hypol 工艺以及Borealis公司的Borstar工艺等。 世界5大类聚丙烯生产工艺概述 1 淤浆法工艺 淤浆法工艺(Slurry Process)又称浆液法或溶剂法工艺,是世界上最早用于生产聚丙烯的工艺技术。从1957年第一套工业化装置一直到20世纪80年代中后期,淤浆法工艺在长达30年的时间里一直是最主要的聚丙烯生产工艺。典型工艺主要包括意大利的Montedison 工艺、美国Hercules工艺、日本三井东压化学工艺、美国Amoco工艺、日本三井油化工艺以及索维尔工艺等。这些工艺的开发都基于当时的第一代催化剂,采用立式搅拌釜反应器,需要

拉丝包装、装盒机安全操作规程通用范本

内部编号:AN-QP-HT698 版本/ 修改状态:01 / 00 The Procedures Or Steps Formulated T o Ensure The Safe And Effective Operation Of Daily Production, Which Must Be Followed By Relevant Personnel When Operating Equipment Or Handling Business, Are Usually Systematic Documents, Which Are The Operation Specifications Of Operators. 编辑:__________________ 审核:__________________ 单位:__________________ 拉丝包装、装盒机安全操作规程通用 范本

拉丝包装、装盒机安全操作规程通用范 本 使用指引:本操作规程文件可用于保证本部门的日常生产、工作能够安全、稳定、有效运转而制定的,相关人员在操作设备或办理业务时必须遵循的程序或步骤,通常为系统性的文件,是操作人员的操作规范。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 一、开机前检查 1. 每班开机前必须检查设备电源是否正常,起动、运行、急停开关是否安全可靠。 2. 检查设备安全防护罩、电气箱门是否关闭,完好无损,并用电笔检测电器设备有无漏电现象,如有必须马上报告维修。 3. 各需润滑部位是否加油润滑。 4. 检查清理机台各部位有无工具等杂物。 二、开机 1. 启动机器时必须一人操作,先按点动按钮,确认设备点动正常,无卡动异响后,可按

玻璃纤维池窑拉丝工艺流程

玻璃纤维池窑拉丝工艺流程-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

玻璃纤维池窑拉丝工艺流程 一、池窑拉丝工艺流程 其工艺流程是块状原料进厂,经过破碎、粉碎、筛分成合格粉料,气力输送至大料仓,而后经称量、混合制成配合料,气力输送到窑头料仓,经螺旋投料机将配合料投入单元熔窑中熔化成玻璃液。熔融好的玻璃液经单元熔窑熔化部流出后即进入主通路(或称澄清均化或调节通路)进行进一步澄清均化和温度调理,然后经过过渡通路(或称分配通路)和作业通路(或称成型通路),流至流液槽内,由多排多孔铂金漏板流出,形成纤维。再经冷却器冷却、单丝涂油器涂覆浸润剂后被高速旋转的拉丝机拉制卷绕成原丝饼或直接无捻粗纱纱筒。 二、工艺流程简图 三、主要工艺流程设备 天然气(纯氧燃烧)粉尘、噪 粉尘、噪 池窑废气、噪 废水、硬废丝、噪

(1)合格粉料制备 块状原料进厂都需经过破碎、粉碎、筛分成合格粉料。 主要设备:破碎机、机械振动筛等。 (2)配合料制备 配合料生产线由气力输送上料系统、电子称量系统和气力混合输送系统组成。 主要设备:气力输送上料系统和配合料称重及混合输送系统等。 (3)玻璃熔制 合格配合料经高温加热形成均匀的、无缺陷的并符合成型要求的玻璃液的过程称为玻璃的熔制过程。玻璃熔制是玻璃生产最重要的环节,玻璃制品的产量、质量、成品率、成本、燃料耗量、窑炉寿命等都与玻璃熔制过程密切相关。 主要设备:窑炉及窑炉设备、燃烧系统、电加热系统、窑炉冷却风机、压力传感器等。 (4)纤维成型 纤维成型即将玻璃液制成玻璃纤维原丝的过程。由多排多孔拉丝漏板流出的玻璃液,经丝根冷却器和拉丝机高速牵伸成型为纤维。 主要设备:漏板、纤维成型室、玻璃纤维拉丝机、烘干炉、原丝筒自动搬运装置、络纱机、包装系统等。 (4)浸润剂配制 浸润剂以环氧乳液、聚氨酯乳液、润滑剂及抗静电剂和各种偶联剂为原料并加水配制而成。配制过程需用夹套蒸汽加热,配制用水采用去离子水。配制好的浸润剂存入贮罐,再由贮罐输入循环罐。循环罐输送浸润剂至各炉台单丝涂油器,涂敷后多余的浸润剂经回收、过滤后返回循环罐继续使用。 主要设备:浸润剂配置系统。

聚丙烯纤维的发展特性与生产工艺

聚丙烯纤维的发展:特性与生产工艺 B.Schmenk等著 刘越译 李理校 1定义 根据10.88版DIN 60001第3部分,聚丙烯(polypropylene)纤维属于聚烯烃(poyolefin)纤维一类。聚丙烯适合于纤维纺制是由于丙烯特殊的部位及有规立构聚合作用而成为线性大分子。按照8.91版DIN 60001第4部分以及87版ISO104321标准,聚丙烯的标记符号为PP。 2发明及发展 乙烯,作为聚烯烃的代表,很久以来人们一直认为是难于聚合的,而且只有在高压才可实现聚合。1953年,Karl Ziegler开发出一种在低温常压下借助金属催化剂的转变实现乙烯聚合的方法。与游离基聚合、具有大量分支的高压聚乙烯相比,该法所生产聚乙烯具有高结晶度,类似于聚酰胺。这一发现奠定了聚乙烯聚合的基础。那时,GiulioNatta,当时的米兰工业化学聚合技术研究院的负责人,借助于所谓的Ziegler催化剂成功地进行了α2烯烃和苯乙烯的聚合。最初的全同聚丙烯实验室规模的生产开始于1954年初。不久G.Natta就能解释结晶聚丙烯的结晶结构及其立体结构,而且还引入了“等规”(isotactic)“、无规”(atactic)以及“间规”(syndiotactic)等术语。他成功地证实了从溶剂中萃取出的不溶物碎块主要是全同结构物质,适合于高强度长丝的生产。这种全同结构决定了它对应于好的结晶能力,亦即相应于好的 物理性质。通过挤出以及其后的牵伸所纺制的单丝的截面强度为750 N/mm2。1963年,Giulio Natta和Karl Ziegler因为他们所做的工作而荣获诺贝尔奖。Montecatini早在1957年就开始了聚丙烯的工业化生产。聚丙烯纤维的工业化生产最早是由意大利企业Chimiche公司(意大利Terni)开始的,商标名为Meraklon,该纤维被推向市场之后不久,从那时起,这种新的纤维开始与其他的工业化化学纤维(聚酯、聚酰胺及聚丙烯腈)一道出现在人们面前。由于下述两个原因,这一新型纤维更快的发展受到阻碍:

聚乙烯_聚氯乙烯_聚苯乙烯_聚丙烯_有什么区别

聚乙烯 PE 未着色时呈乳白色半透明,蜡状;用手摸制品有滑腻的感觉,柔而韧;稍能伸长。一般低密度聚乙烯较软,透明度较好;高密度聚乙烯较硬。 常见制品:手提袋、水管、油桶、饮料瓶(钙奶瓶)、日常用品等。 聚丙烯 PP 未着色时呈白色半透明,蜡状;比聚乙烯轻。透明度也较聚乙烯好,比聚乙烯刚硬。 常见制品:盆、桶、家具、薄膜、编织袋、瓶盖、汽车保险杠等。 聚苯乙烯PS 在未着色时透明。制品落地或敲打,有金属似的清脆声,光泽和透明很好,类似于玻璃,性脆易断裂,用手指甲可以在制品表面划出痕迹。改性聚苯乙烯为不透明。 常见制品:文具、杯子、食品容器、家电外壳、电气配件等 聚氯乙烯 PVC 本色为微黄色半透明状,有光泽。透明度胜于聚乙烯、聚苯烯,差于聚苯乙烯,随助剂用量不同,分为软、硬聚氯乙烯,软制品柔而韧,手感粘,硬制品的硬度高于低密度聚乙烯,而低于聚丙烯,在屈折处会出现白化现象。 常见制品:板材、管材、鞋底、玩具、门窗、电线外皮、文具等 聚对苯二甲酸乙二醇酯 PET 透明度很好,强度和韧性优于聚苯乙烯和聚氯乙烯,不易破碎。 常见制品:常为瓶类制品如可乐、矿泉水瓶等 聚乙烯废弃物 聚乙烯是塑料中产量最大、用途极广的热塑性塑料,它是由乙烯聚合而成,是部分结晶材料,可用一般热塑性塑料的成型方法加工。聚乙烯可分为高密度聚乙烯、低密度聚乙烯和线型低密度聚乙烯三大类。 高密度聚乙烯的密度一般高于0.94g/,而低密度聚乙烯和线型低密度聚乙烯的密度在0.91~ 0.94g/cm之间。废旧聚乙烯薄膜主要来源有两方面: 1.薄膜生产中产生的边角料、残次品等。这些废料清洁,品种明确,可粉碎压缩后直接送入挤出机造粒,回收过程较简单。 2.来自化学工业、电气工业、食品与消费品工业等废弃薄膜。这些废膜均已被污染,有的已着色并印有商标,有的还含有砂子、木屑或碎纸等杂质。 聚乙烯由于价廉易得、成型方便,所以其制品应用范围很广,但用得最多的还是包装制品,估计在60%以上。高密度聚乙烯主要用于包装用膜和瓶类、中空容器上;低密度聚乙烯的最主要用途是包装用膜和农用膜;线型低密度聚乙烯主要用于薄膜、膜塑件、管材以及电线电缆上。 聚氯乙烯废弃物 聚氯乙烯历史上曾经是使用量最大的塑料,现在某些领域上以被聚乙烯、PET所代替,但仍然在大量使用,其消耗量仅次于聚乙烯和聚丙烯。聚氯乙烯制品形式十分丰富,可分为硬聚氯乙烯、软聚氯乙烯、聚氯乙烯糊三大类。硬聚氯乙烯主要用于管材、门窗型材、片材等挤出产品,以及管接头、电气零件等注塑件和挤出吹型的瓶类产品,它们约占聚氯乙烯65%以上的消耗。软聚氯乙烯主要用于压延片、汽车内饰品、手袋、薄膜、标签、电线电缆、医用制品等。聚氯乙烯糊约占聚氯乙烯制品的10%,主要用产品有搪塑制品等。 聚甲基丙烯酸甲酯废弃物 聚甲基丙烯酸甲酯(PMMA)俗称有机玻璃。PMMA具有其他塑料所没有的独特性能:极好的透明度(接近于玻璃);韧性、耐化学性、耐候性都很好。因而已大量用于汽车、医疗器械、室内游泳池等地方,随着汽车等相关工业的发展,PMMA的用量也越来越大。PMMA

高熔体强度聚丙烯的研究解析

高熔体强度聚丙烯的研究简介概述1 PP Mont-ecati年由意大利蒙特卡迪尼(万。195710~50聚丙烯(PP),分子量一般为)公司实现工业化生产。聚丙烯为白色蜡状材料,外观与聚乙烯相近,但密度比聚ni℃左右,热性能好,在通用树脂中是唯一能在水165乙烯小,透明度大些,软化点在℃,具有优异的介电性能。溶解性-10~20130℃下消毒的品种,脆点中煮沸,并能在相近。作为一种通用塑料,聚丙烯具有较好的综合性能,聚丙烯的成PE能及渗透性与型收缩率较聚乙烯小,具有良好的耐应力开裂性。因而被广泛应用于制造薄膜、电绝缘体、容器、包装品等,还可用作机械零件如法兰、接头、汽车零部件、管道等,聚丙烯还可以拉丝成纤维。在近年来所举的通用塑料工程塑料化技术中,聚丙烯作为首机械强度和硬度较低以及成PP也存在低温脆性、选材料不断地引起了人们的重视。但型收缩率大、易老化、而热性差等缺点。因此在应用范围上,尤其是作为结构材料和年代中期国内外就采用化学或物理改性方工程塑料应用受到很大的限制。为此,从70的缺口冲击强度和低温韧性方面进PP进行了大量的研究开发特别是针对提高法对PP行了多种增强增韧改性研究开发。常见的改性方法有共聚改性、共混改性和添加成核剂等。 1.1 PP生产方法和种类 中国聚丙烯的工业生产始于20世纪70年代,经过30多年的发展,生产技术、工艺也趋于多样化,已经基本上形成了淤浆法、液相本体-气相法、间歇式液相本体法、气相法等多种生产工艺并举,大中小型生产规模共存的生产格局。中国的大型聚丙烯生产装置以引进技术为主,中型和小型聚丙烯生产装置以国产化技术为主。由最初的浆液工艺发展到目前广泛使用的液相本体法和气相法,液相本体法因其不使用稀释剂、流程短、能耗低,现已显示出后来居上的优势。 (1)淤浆法:在稀释剂(如己烷)中聚合,是最早工业化的方法; (2)液相本体法:在70℃和3MPa的条件下,在液体丙烯中聚合; (3)气相法:在丙烯呈气态条件下聚合。 - 2 - )和间规IPP根据甲基排列位置聚丙烯可分为等规聚丙烯()、无规聚丙烯(APP 聚丙烯(SPP)三种。甲基无秩序的排列在分子主链的两甲基排列在分子主链的同一侧称等规聚丙烯,侧称无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的,其余为无规或间规聚丙烯。工业产品以等规聚丙烯树脂中,等规结构含量约为95%物为主要成分。通常为半透明无色固体,无臭无毒,由于结构规整而高度结晶化,故熔点可高达167℃,耐热、耐腐蚀,制品可用蒸汽消毒,密度小,是最轻的通用塑料。 PP的特点1.2 ℃)、低透明度、低光泽度、低刚性,冲击强100PP材料有较低的热变形温度(℃。由于结晶度较高,这种材料150度随着乙烯含量的增加而增大,维卡软化温度为不存在环境应力开裂问题,无毒、无味、密度小、的表面刚度和抗划痕特性很好。PP℃左右使用。具有良好的介强度、刚度、硬度、耐热性均优于低压聚乙烯,可在100电性能和高频绝缘性且不受湿度影响,但低温时变脆,不耐磨、易老化。

拉丝机操作规程

操作规程 一、开车前的准备 1.操作人员必须穿戴好劳动保护用品,接班时了解上一班生产 和设备运行情况,确保滑轮、辊筒及其他旋转部件可自由旋转,钢丝导向口清洁无阻塞。 2.检查水压、气压、电压、电流与规定值是否符合。 3.检查保护装置,报警装置和停车装置,确保其正常工作。 4.根据生产、工艺通知单规定的炉号进行投料,不得混料。盘 条装上放线架后必须理清,不得紊乱,交叉,头尾要分清。 二、开车 1.在确认上述检查无误后,根据工艺通知单设置工作速度,收线计米器长度,方可开车。 2.调节排线行程,使排线平整。开车后收线若干米,停车对产品进行检查,出线直径、自然圈径、翘头及钢丝外观质量应符合工艺要求,若不合格,必须重新进行调整。 3.根据工艺要求进行配模,每次断丝后,检查相应的拉丝模,必要时更换全部模具。上模后调整密封垫圈,不允许发生漏水现象。同时调整模盒,保证钢丝从模孔出来后,从切线方向进入卷筒,防止出现“8”字线、竹节线、波浪线等缺陷。 4.在钢丝拉拔过程中,卷筒和拉丝模必须保持良好的润滑条件,润滑剂要保持干燥,定时添加少量新鲜润滑剂(2次/班,0.5kg/次)并勤搅拌(1次/30′),及时清理模盒内的焦块和杂物。

三、粗拉操作 1.在操作的过程中,应按从大到小轧辊槽的顺序依次轧尖,否则轧尖机将被卡死。同时两手还要将钢丝转动90°,使扎头均匀,防止钢丝扎扁带毛刺。 2.按工艺要求进行配模,上模时应检查(O)型密封垫圈是否完好,模子上好后是否漏水。 3.调整好各模盒的位置,钢丝从模孔出来后,水平地从切线方向进入卷筒,尽量防止中间道次出现“8”字线、竹节线、裂纹等缺陷。 4.穿模时把扎好尖的盘条穿入模孔,用带线钳夹住,将拉丝机卷筒的选择开关打到“点动”并向左拧(慢速),当钢丝通过模子后,将点动开关向右拧(快速),使接线机工作,待卷筒积线达到一定高度后,调节张力旋转使之最佳,然后卸下带线钳,钢丝通过过线轮绕入下一道模子,用吊线钳带住钢丝,慢速点动,绕在卷筒上几圈后再快速点动,调节张力,以张力感应臂不左右摆动为宜。 5.认真填写跟踪卡片,要求将规格、炉号、生产日期、操作工号、工字轮号填写清楚,同时按要求认真填写操作记录表。 6.在生产过程中,各模盒的润滑剂应该经常添加少量新鲜润滑剂,要勤搅拌,并及时清理模盒内的焦块和杂物。 7.在拉拔过程中,拉拔卷筒和拉丝模必须保持良好的冷却状态。

聚丙烯纤维混凝土的防水性能及应用

聚丙烯纤维混凝土的防水性能及应用 来源:中国论文下载中心[ 06-03-19 08:51:00 ] 作者:龙飞编辑:studa9ngns 摘要:通过分析聚丙烯纤维混凝土的防水机理,说明在混凝土中掺加适量的聚丙烯纤维能有效地提高混凝土材料的抗裂防渗性能。文中还介绍了聚丙烯纤维混凝土在各类防水工程中的应用实例。 关键词:建筑材料纤维混凝土结构防水 1 引言 现代高新混凝土工程中,混凝土的应用向着高强度、大流动度方向发展。随着混凝土强度和坍落度的提高,水泥的和用量不断增加,由此带来的副作用是水化热加剧,混凝土的凝固收缩量加大,收缩应力增大,裂缝数量增多。此外,随着建筑构件向大体积、大面积、形状复杂多样的方向发展,向地下空间的发展,混凝土内的应力大而复杂,裂缝的出现亦较以往多得多。因此,从混凝土防水的角度看,除了注重混凝土抗渗性(密实度)外,更注意由于混凝土抗裂性不足而引起的渗漏,特别是高标号的混凝土。 近年来,国外发展了应用微纤维混凝土进行抗裂防水的新技术。美国于90年代初研制出微纤维混凝土,在随后的几年中得到迅速的发展,其中应用最多的是聚丙烯纤维混凝土。如今,在美国新建筑物中的地下室和屋面混凝土中大多采用了聚丙烯纤维混凝土,国内亦开始在防水工程中得到成功应用。本文主要以美国希尔兄弟化工公司生产的聚丙烯纤维为例,介绍聚丙烯纤维混凝土的防水性能及其工程应用。 2 聚丙烯纤维混凝土的防水性及机理 2.1 聚丙烯纤维的物理性能 聚丙烯纤维的物理性能如下: 材料聚丙烯耐酸碱性极高 相对密度0.91 安全性无毒材料 熔点165℃拉伸极限15% 燃点593℃抗拉强度275MPa 含湿量<0.1% 弹性模量3793Mpa 吸水性无导热低 细度0.048mm 2.2 聚丙烯纤维混凝土的防水机理

聚丙烯改性技术的研究进展

聚丙烯改性技术的研究进展 五大通用塑料中,聚丙烯(PP)发展历史虽短,却是发展最快的一种。与其他通用塑料相比,PP具有较好的综合性能,例如:相对密度小,有较好的耐热性,维卡软化点高于HDPE和ABS,加工性能优良;机械性能如屈服强度、拉伸强度及弹性模量均较高,刚性和耐磨都较优异;具有较小的介电率,电绝缘性良好,耐应力龟裂及耐化学药品性能较佳等。但由于PP成型收缩率大、脆性高、缺口冲击强度低,特别是在低温时尤为严重,这大大限制了PP的推广和应用。为此,从上世纪70年代中期,国内外就对PP改性进行了大量的研究,特别是在提高PP的缺口冲击强度和低温韧性方面,目前已成为国内外研究的重点和热点。 1 橡胶增韧PP 橡胶或热塑性弹性体以弹性微粒状分散结构增韧塑料,已被证实是增韧效果较为明显的一种方法。由于PP具有较大的晶粒,故在加工时球晶界面容易出现裂纹,导致其脆性。通过掺人各种含有柔性高分子链的橡胶或弹性体,可大幅度提高PP的冲击强度,改善低温韧性。传统的PP增韧剂有三元乙丙橡胶(EPDM)、二元乙丙橡胶(EPR)、苯乙烯与丁二烯类热塑性弹性体(SBS)、顺丁橡胶(BR)、丁苯橡胶(SBR)等,其中以EPDM或EPR取效果最好。 1.1 PP/乙丙橡胶共混体系 PP与乙丙橡胶都含有丙基,溶度参数相近,根据相似相容原理,它们之间应具有较好的相容性。由于乙丙橡胶具有高弹性和良好的低温性能,因此与PP 共混可改善PP的冲击性能和低温脆性。 李蕴能等研究了乙丙橡胶心P共混物的性能,得出结论:在相同橡胶含量下,增韧共聚PP的效果远优于增韧均聚PP,且增韧效果与橡胶的种类有关。通常情况下,EPR的增韧效果优于EPDM。通过实验发现,当橡胶含量为30%时,增韧效果最好;不同结晶度的EPR对PP的增韧效果也不一样,结晶度越低,其增韧效果越好。 刘晓辉等对不同PP心Pr)M共混物的力学性能进行了研究。结果表明:(1)随着体系中EPDM加入量的增多,材料的冲击强度明显上升,当EPDM含量为30%左右时,冲击强度出现极值;(2)冲击强度的提高和变化与EPDM在PP中的形态和分布有关;(3)EPDM的加入对共混晶体结构有影响,但晶体结构上的差

拉丝机操作规程

1.0、适用范围 本操作规程规定了拉丝机拉丝的操作方法及工艺要求、使用安全注意事项及日常维护与保养。 2.0上岗要求 2.1 操作人员必须持有拉丝机操作资格证,严禁无证人员上机操作。 2.2 操作人员必须忠于职守,认真负责,熟练掌握拉丝机的操作、维护和保养。 3.0 操作规程 3.1 安全操作 3.1.1 操作人员必须戴手套作业,以防工件烫伤手指和影响产品质量。 3.1.2 开机前认真检查设备供气气压(0.5MPa),供气管路是否漏气,并排出空气过滤器中的积水。 3.1.3 正确安装拉丝砂带(拉丝砂带内侧箭头方向应和拉丝辊上箭头方向一致)。认真检查上下 轴承座及升降丝杠润滑是否良好。 3.1.4 设备启动后应立即检查砂带摆幅是否在要求的范围内,有无其他异常现象。 3.1.5 严禁拉丝机和收尘风机同时启动,严禁开机后操作人员离开操作岗位。 3.1.6 两人作业时,设备后方的操作人员不得正对拉丝机出口,以免工件飞出伤人。 3.1.7 拉丝机压力调整要适中,一般情况下的压力表指示应在35~75之间,严禁超出红线,以 免造成设备或人身事故。 3.1.8 设备在正常运行状态下严禁调整空气压力,以免砂带失控造成设备、人身事故。 3.1.9 设备在运行过程中出现异常现象,应立即关机,以免故障扩大。 3.1.10 设备在检修时应关闭电源,并示牌严禁操作,以免造成事故。 3.1.11 下班或设备长时间待用时应关闭电源及压缩空气,以确保安全和避免浪费。 3.2 加工工艺要求 3.2.1 作业前应认真阅读图纸和技术文件,避免批量质量事故。 3.2.2 加工作业前应按工艺及技术要求认真确认拉丝面、拉丝方向。 3.2.3 根据工艺及技术要求或客户拉丝样板正确选择砂带粒度。 抄送:□总经理□市场部□工艺技术部□计划部□采购部□生产部□品质部□人力资源部□财务部□文控中心 3.2.4 加工作业全过程应戴干净的手套操作,注意工件表面保护,严防划伤、碰伤工件表面。

聚丙烯纤维混凝土性能的研究和应用

聚丙烯纤维混凝土性能的研究和应用 摘要:聚丙烯纤维以其良好技术经济性能,在水泥基材料中得到日益广泛的应用。本文系统介绍了用于改善混凝土缺陷的聚丙烯纤维的特点及主要性能,对聚丙烯纤维对混凝土各种性能的影响以及目前国内的研究概况作了详细的分析和综述。 关键词:聚丙烯纤维;纤维增强混凝土;力学性能;抗渗性;抗裂性 RESEARCH AND APPLIANCE ON THE CAPABILITY OF POLYPROPYLENE FIBRE CONCRETE WANG LONG CHEN LIANG LIU RENGGUAGN (1.QINGDAO TECHNOLOGICAL UNIVERSITY,https://www.360docs.net/doc/c511440855.html,IYANG AGRICULTURAL COLLEGE) Abstract:Polypropylene fibre have good technical and oecumenical capability ,which makes it possible to be widely used in cement.The paper introduces the specialty and capability of polypropylene fibre, and analyzes general situation of influence on concrete of polypropylene fibre. Key words: polypropylene fibre, concrete, mechanical capability, barrier property , crack resistance 前言 混凝土的发展已有100多年的历史,以其可以就地取材,易于成型、成本低廉、适用性强等诸多优点,被广泛地应用于土建工程,是当前最大宗的人造材料。但作为多孔材料,混凝土也有脆性大、抗拉强度低、抗冲击能力差、易开裂等缺点。从混凝土应用的历史来看,实际工程中大量的钢筋混凝土结构由于混凝土的耐久性不足导致建筑物破坏甚至不能使用。国内外大量资料表明,由此而造成的经济损失是非常巨大的[1]。 混凝土的耐久性,是指混凝土在自然环境、使用环境及材料内部因素的作用下,在设计要求的目标使用期内,不需要花费大量资金加固处理而保持其安全、使用功能和外观要求的能力。混凝土抗拉强度低、易开裂的缺点是导致其耐久性降低的一个重要因素。为了提高水泥基材料的耐久性,长期以来研究人员不断研究减少材料中微裂纹的产生及阻止裂缝的发展,包括提高其抗拉性能,增强韧性和延性的各种方法和途径。纤维混凝土技术的应用和开发就较好地改善了混凝土的这些缺点,而聚丙烯纤维是目前建筑市场上应用最为广泛的一种合成纤维。 1 聚丙烯纤维 聚丙烯纤维是以丙烯单体在一定条件下聚合而成的结构规整的结晶型聚合物,属于合成纤维的一种,它的商品名是丙纶。基本特性是:乳白色、无味、无溴、无毒、质轻、不吸湿、不溶于水、耐腐蚀、抗拉强度高。 20世纪60年代中期人们开始研究用合成纤维作水泥砂浆增强材料的可能性,发现尼龙、聚丙烯、聚乙烯等纤维有助于提高砂浆的抗冲击性。随后合成纤维混凝土技术快速发展。Zollo[2]等的实验结果表明,若在混凝土中掺加体积率为0.1-0.3%的聚丙烯纤维时,可使混凝土的塑性收缩减少12-25%。由于聚丙烯纤维生产原料比较丰富,生产过程比较简短,因此生产成本相对于其他品种纤维较低。实践证明,从性能价格比上看, 目前最可行的当属有机纤维中的聚丙烯纤维。 但是普通聚丙烯纤维,在掺入水泥混凝土中拌合的时候,往往出现在水泥浆中难于分散、结团现象严重、纤维与水泥浆的握裹力差、抗老化能力差等缺点。因此土建工程中所用的聚丙烯纤维必须经过改性处理。改性聚丙烯纤维具有良好的工程性能。在生产中经过特殊处理,

相关文档
最新文档