齿轮失效分析论文分解

齿轮失效分析论文分解
齿轮失效分析论文分解

毕业论文题目:齿轮的失效分析

姓名:杨新源

学号:2010053105

专业:矿山机电

班级:10-03

指导教师:刘霞

2011年9月20日

目录

目录 (2)

引言 (3)

一、齿轮传动的特点、类型 (3)

二、齿轮传动的基本要求 (4)

三、齿轮的失效形式以及解决措施 (4)

(一)轮齿断齿 (4)

(二)齿面磨损 (5)

(三)齿面点蚀 (6)

(四)齿面胶合 (7)

(五)齿面塑性变形 (7)

四、常规齿轮损伤和失效的主要原因探究 (7)

五、齿轮的常用材料的基本要求 (8)

六、齿轮的常用材料及热处理 (9)

七、小结 (10)

致谢 (11)

参考文献 (12)

摘要:在现代社会工业发展中,齿轮是传动件中应用最广的重要工具,齿轮的类型很多,工况条件较为复杂。因此失效形式及影响因素也较多。尽管如此,从齿轮的基本特征特征产生原因和对策等方面都有其基本规律。并且齿轮失效常发生在轮齿部分,因此运用基本规律对具体齿轮的损伤作用具体分析,便不难查。这对机械传动齿轮质量,延长机械设备的使用寿命,具有非常重要的参考价值.

关键词:磨损失效分析齿轮损伤材料热处理

引言

在机械工程中,齿轮传动应用甚为广泛,齿轮传动是机械传动中一种重要的传动方式,并且往往处于极为重要的部位,因此齿轮的损伤和失效倍受人们的关注。齿轮的失效可分为轮体失效和轮齿失效两大类。由于轮体失效在一般情况下很少出现,因此齿轮的失效通常是指轮齿失效。所谓轮齿失效,就是齿轮在运转过程中,由于某种原因,使轮齿在尺寸、形状或材料性能上发生改变而导致整体设备不能正常工作。

要知道齿轮的失效形式,我们就应该先了解齿轮的传动类型、齿轮的特点、工作环境、只有清楚的知道了它的工作原理,才能更好的分析出它的失效形式

一、齿轮传动的特点、类型

齿轮的传动是目前最重要也是应用最广泛的一种传动形式。与其他机械传动相比。齿轮传动具有以下特点

优点:效率高,传动比稳定,工作可靠,寿命长,结构紧凑;适用的功率和速度范围广;可实现空间任意两轴间的传动。

缺点:制造成本高,安装精度要求高,当齿轮精度低,且速度较大时噪声大;不宜用于中心距较大的传动。

齿轮的传动类型:

(一)按照齿轮的传动比是否恒定,可将齿轮传动分为

1.非圆齿轮传动,(传动比变化)

2.圆形齿轮传动(传动比恒定)两大类,

在这里只研究圆形齿轮。

(二)根据两轴的相对位置和轮齿的方向,可分为以下类型

1.圆柱齿轮传动;

2.锥齿轮传动;

3.交错轴斜齿轮传动。

(三)根据齿轮的工作条件,可分为

1.开式齿轮传动,齿轮暴露在外,不能保证良好的润滑;

2.半开式齿轮传动,齿轮浸入油池,有护罩,但不封闭;

3.闭式齿轮传动,齿轮、轴和轴承等都装在封闭箱体内,润滑条件良好,灰沙不易进入,安装精确,齿轮传动有良好的工作条件,是应用最广泛的齿轮传动。(四)按齿面硬度分

1.软齿面齿轮轮齿工作面的硬度小于或等于350HBS。

2.硬齿面齿轮轮齿工作面的硬度大于350HBS。

(五)按照齿廓曲线形状不同,齿轮传动又可分为

1.渐开线齿轮传动

2.摆线齿轮传动

3.圆弧齿轮传动

二、齿轮传动的基本要求

齿轮在传动过程中应满足两项基本要求

1.传动平稳

即要求齿轮传动时传动比恒定,以尽量减小冲击、震动和噪声。

2.承载能力高

即要求齿轮具有足够的强度和刚度,能传递较大的动力,并有较长的使用寿命和较小的尺寸。

对齿轮传动在设计生产领域中的一切研究,都是围绕上述两个基本要求进行的。

三、齿轮的失效形式以及解决措施

齿轮失效的主要形式有:断齿、磨损、齿面点蚀、齿面胶合和齿面塑性变形等。

(一)轮齿断齿:轮齿折断是一种危险很大的最终失效形式,它可以细分为以下几个

1.过载折断

轮齿受到一次或很少几次严重过载时,就可能发生过载折断。过载折断的断口一般都在齿根部位。断口比较平直,并且具有很粗糙的特征。

2.疲劳折断

轮齿经高循环次数的作用,在齿根产生疲劳裂纹,导致轮齿疲劳折断。疲劳折断的断口分为疲劳断口面和最终(静断)断口面两个不同区域,在疲劳区域内看不到塑性变形重偏载的直齿轮,疲劳折断可能发生在轮齿的端部。3)随机折断轮齿的折断通常发生在齿根部位,但是某些偶然的因素,例如齿面点蚀、剥落。提高轮齿抗折断嫩里的措施很多,如增大齿根圆角半径,消除该处的加工刀痕以减低齿根的应力集中;增大轴及支撑物的刚度以减轻局部的的程度;对轮齿进行喷丸、碾压等冷作处理以提高齿面。

(二)齿面磨损

齿轮传动过程中,齿面上的相对滑动肯定会引起磨损;齿面磨损:分为粘着磨损、磨粒磨损、擦伤、腐蚀磨损和烧伤。

1.粘着磨损

润滑对粘着磨损影响很大,如润滑油层完整且有相当厚度就不会发生金属间的接触,也就不会发生磨损。在相同油膜温度和压力下,油的粘度高,有利于防止磨损发生,在低速、重载、极端温度、相对比较粗糙不规则的表面、供油不足和油的粘度太低的情况下,油膜可能被破坏而发生磨损。此时的磨损在除节圆的大部分轮齿面上发生。

在实际中采用提高齿面硬度、降低齿面粗糙度、限制油温、增加油的粘度、选用加有抗交合添加剂的合成润滑油等方法,可以防止交合的产生。

2.磨粒磨损与擦伤

当润滑剂不干净含有杂质颗粒或在敞开式的吃轮船顶中的外来磨粒,或者在摩擦过程中金属相互作用产生的磨屑,都可以产生磨粒磨损。严重的磨粒磨损会产生表面擦伤现象。此时齿根和齿尖磨损的最严重,然而节线区域保持原状,这是因为在节线处主要存在滚动方式的接触,只有很小的或者根本不存在的滑移作用。如果齿轮的对中好,且擦伤又不是由于齿面上孤立的微凸体引起的,那么擦伤会扩展到整个齿宽。

3.腐蚀磨损

由于润滑剂中的一些物质,诸如水和酸等污染物与齿面的化学反应造成金属的腐蚀,这样就形成了腐蚀磨损。活性的极压添加剂也是造成腐蚀磨损的一个原因,特别是齿轮在重载时更是严重;过分过热,极压添加剂将加速腐蚀磨损;零件表面保留一层紧密的热处理造成的氧化物膜对抗腐蚀磨损有利,这种作用甚至在碱溶液洗涤剂去油处理后仍能保持。如果在稀磷酸溶液中进行去游处理,那么氧化物膜变为磷酸锰和磷酸铁镀层,则对抗腐蚀磨损更好。如齿轮在热处理后进行磨削或喷丸处理,则具有活性表面对锈蚀敏感,降低了抗腐蚀磨损性能。

4.烧伤

尽管烧伤本身不是一种磨损形式,但它是由于磨损造成而反过来造成严重的磨损失效和表面变质。烧伤是由于过载、超速或不充分的润滑引起的过分摩擦所产生的局部过热到高温,这种高温足以引起变色和过时效,或使钢的几微米厚表面层重新淬火,出现白层。烧伤还对疲劳性能有不利影响,损伤的表面容易产生疲劳裂纹。

(三)齿面点蚀

齿轮传动过程中,齿轮接触面上各点的接触应力呈脉动循环变化,经过一段时间后,会由于接触面上金属的疲劳而形成细小的疲劳裂纹,裂纹的扩展造成金属剥落,形成点蚀。为防止过早出现点蚀,可采用提高齿面硬度、降低表面粗糙度值、增加润滑油粘度等措施。而对于开始齿轮传动,由于磨损严重,一般不出现点蚀。

(四)齿面胶合

当齿轮在高速、大载荷或润滑失效的情况下,两齿面直接接触形成局部高温,接触区出现较大面积粘连现象,称为胶合。提高齿面硬度和减小粗糙度可增强抗胶合能力,为了防止胶合作用,应适当提高齿面硬度和光洁度,大小齿轮采用不同钢种,低速传动采用粘度大的润滑油(或润滑脂),高速传动时,设法降低油温,并采用活化性润滑油(如硫化油及加有其他化学添加剂的抗胶合润滑油),设计上采取措施提高制造精度和装配质量。

总之,正确选用润滑油和润滑方式使得轮齿啮合区得到充分润滑;合理选择选择润滑油添加剂,主要润滑油的清洁和更换,以改善润滑条件;适当提高齿面硬度和光洁度;以及采用合适的正变位齿轮传动,以降低齿面滑动率和比压等,均有利于减轻吃面的磨损。为了解决在恶劣环境工作中的齿轮的严重磨粒磨损,可采用闭式结构。

对于低速传动采用粘度较大的润滑油,对于高速传动采用混入抗胶合添加剂的润滑油。

(五)齿面塑性变形

在高速重载齿轮传动时,由于齿轮材料较软而产生的沿摩擦力方向的金属流动。齿轮齿的塑性有三种主要表现类型:碾压与锤击变形、起波纹和脊状延伸。

此外,齿轮工作环境中的温度、湿度变化;水分含量;粉尘、颗粒漂浮物等等,都是影响齿轮失效的原因(由于影响较小,在这里不过多介绍。)

为防止齿面的塑性变形,可采用提高齿面硬度、选用粘度较高的润滑油等方法。

四、常规齿轮损伤和失效的主要原因探究

诱发轮齿损伤和失效的主要原因由于轮齿工况不同,材质各异,环境条件也有差别,因此产生上述轮齿主要失效形式的诱因往往很复杂,但可以从以下几个方面进行分析、查找。

(一)设计方面的失误齿轮装置的设计,技术上要求较高,并且要有一定的经验。因此,由于齿轮设计的失误而造成齿轮失效的事故时有发生

例如:对作用在轮齿上载荷估计不足轮齿上所受的载荷一般可分三部分,即

1.名义载荷,可视为齿轮传递的名义功率。

2.外部动载荷,它取决于原动机、从动机的特性、轴和联轴器系统的质量、刚度能及运行状态。

3.内部动载荷,这是由于齿轮本身制造误差、轮齿刚度等因素产生的载荷。通常精确确定轮齿上的载荷是非常困难的较好的办法是进行实测或对传动系统进行全面分析。但是,这种复杂的方法不是处处可以采用的,因此在齿轮设计中,对载荷估计不足是常见的。

(二)齿轮装置结构的设计不合理

例如轴承安装方式或安装位置不合适,轴或齿轮箱的刚度太差,密封不可靠等,都可能使轮齿失效。

(三)确定齿轮参数不合适

例如齿轮的模数、齿宽系数、侧隙、顶隙、齿根圆角的形状、齿廓修缘、齿向修形等确定得不合适,从而影响齿轮的寿命。

(四)材料选用不合适

齿轮材料种类、牌号应根据齿轮的具体使用条件来选定;特别是大小齿轮不同材料的匹配,更值得设计者注意,否则容易引起齿轮失效。

(五)润滑系统设计有误

齿轮装置的润滑方法、润滑油性能和油量等如果处理不好,可能使齿面产生胶合、过热和过度磨损等失效。

(六)材料和热加工方面的失误齿轮材料化学成分和力学性能不合格,内部有缺陷等是诱发齿轮失效的重要原因之一

齿轮材料的热加工是指毛坯的锻造和齿轮的热处理。其常见的失误有:金相组织不良,齿面或齿心硬度不合适,硬化层深度不适当,表面有脱碳和晶界氧化现象,残余应力不良,有热处理裂纹等。

五、齿轮的常用材料的基本要求

(一)轮齿表面应有较高的硬度和抗磨损、抗点蚀、抗胶合、抗塑性变形的能力。(二)轮齿芯部应有足够的强度和韧性有较高的抗折断能力和抗冲击能力。(三)有良好的加工工艺性能及热处理性能,使之易于达到所需要的加工精度及机械性能的要求。

六、齿轮的常用材料及热处理

(一)锻钢

是制造齿轮的主要材料,一般采用含碳量为0.1%—0.6%的碳素钢或合金钢。按轮齿表面硬度要求又可分为:HBS≤350和HBS>350两类。

(二)铸钢

通常用于尺寸较大(一般直径d>400~600㎜)、轮坯不宜锻出的齿轮,可采用铸钢铸钢的耐磨性及强度均较好。

(三)铸铁

常用于工作稳定,低速和功率不大的场合。如:(灰铸铁其性质较脆,抗冲击及耐磨性都较差,但抗胶合及抗点蚀能力较好,工艺性好,成本较低。在润滑不良的情况下,灰铸铁本身所含石墨能起润滑作用,所以开式传动中常采用铸铁齿轮。闭式传动中可用球墨铸铁代替铸钢。)

(四)非金属材料

为消除噪声,对高速、承载小的齿轮,可采用塑料、尼龙、皮革等非金属材料制造,并与金属齿轮相匹配使用。

(五)常用的热处理工艺有:

调质、正火(软齿面);表面淬火、渗碳淬火、渗氮(硬齿面)

七、小结

通过近期对齿轮的综合了解、学习,我们更加系统的了解了齿轮的工作原理、环境状况,知道了齿轮传动用来传递任意两轴之间的运动和动力,其圆周速度可达到300m/s,传递功率可达到105KW,齿轮直径可从1mm到150m以上,是现代机械中应用最广的一种机械传动。只有了解齿轮的达到我失效原因及对策,才能更好的制造和利用齿轮,从而方便我们的机械制造过程,提高制造精度,达到所需的机械目的。

致谢

本论文的完成,得益于刘老师传授的知识,使本人有了完成论文所要求的知识积累,更得益于选题的确定、论文资料的收集、论文框架的确定、开题报告准备及论文初稿与定稿中对字句的斟酌倾注的大量心血!

在这里,还要特别感谢大学三年学习期间给我诸多教诲和帮助的潞安职业技术学院的各位老师给予我的指导和教诲我将永远记在心里!

感谢和我一起生活三年的室友,是你们让我们的寝室充满快乐与温馨,“君子和而不同”,我们正是如此!愿我们以后的人生都可以充实、多彩与快乐!

感谢我的同学们,谢谢你们给予我的帮助!

回首本人的求学生涯,父母的支持是本人最大的动力。父母不仅在经济上承受了巨大的负担,在心里上更有思子之情的煎熬与望子成龙的期待。忆往昔,每次回到家时父母的欣喜之情,每次离家时父母的依依不舍之眼神,电话和信件中的殷殷期待和思念之语,皆使本人刻苦铭心,目前除了学习成绩尚可外无以为报,希望以后的学习、工作和生活能使父母宽慰。

参考文献:

1、陈立德《机械设计基础》高等教育出版社,2007

2、陈南平顾守仁沈万慈《机械零件失效分析》清华大学出版社,1988

3、王中发《机械设计》北京理工大学出版社,1998

齿轮失效分析论文

毕业论文题目:齿轮的失效分析 姓名:杨新源 学号:2010053105 专业:矿山机电 班级:10-03 指导教师:刘霞 2011年9月20日

目录 目录 (2) 引言 (3) 一、齿轮传动的特点、类型 (3) 二、齿轮传动的基本要求 (4) 三、齿轮的失效形式以及解决措施 (4) (一)轮齿断齿 (4) (二)齿面磨损 (5) (三)齿面点蚀 (6) (四)齿面胶合 (7) (五)齿面塑性变形 (7) 四、常规齿轮损伤和失效的主要原因探究 (7) 五、齿轮的常用材料的基本要求 (8) 六、齿轮的常用材料及热处理 (9) 七、小结 (10) 致谢 (11) 参考文献 (12)

摘要:在现代社会工业发展中,齿轮是传动件中应用最广的重要工具,齿轮的类型很多,工况条件较为复杂。因此失效形式及影响因素也较多。尽管如此,从齿轮的基本特征特征产生原因和对策等方面都有其基本规律。并且齿轮失效常发生在轮齿部分,因此运用基本规律对具体齿轮的损伤作用具体分析,便不难查。这对机械传动齿轮质量,延长机械设备的使用寿命,具有非常重要的参考价值. 关键词:磨损失效分析齿轮损伤材料热处理

引言 在机械工程中,齿轮传动应用甚为广泛,齿轮传动是机械传动中一种重要的传动方式,并且往往处于极为重要的部位,因此齿轮的损伤和失效倍受人们的关注。齿轮的失效可分为轮体失效和轮齿失效两大类。由于轮体失效在一般情况下很少出现,因此齿轮的失效通常是指轮齿失效。所谓轮齿失效,就是齿轮在运转过程中,由于某种原因,使轮齿在尺寸、形状或材料性能上发生改变而导致整体设备不能正常工作。 要知道齿轮的失效形式,我们就应该先了解齿轮的传动类型、齿轮的特点、工作环境、只有清楚的知道了它的工作原理,才能更好的分析出它的失效形式 一、齿轮传动的特点、类型 齿轮的传动是目前最重要也是应用最广泛的一种传动形式。与其他机械传动相比。齿轮传动具有以下特点 优点:效率高,传动比稳定,工作可靠,寿命长,结构紧凑;适用的功率和速度范围广;可实现空间任意两轴间的传动。 缺点:制造成本高,安装精度要求高,当齿轮精度低,且速度较大时噪声大;不宜用于中心距较大的传动。 齿轮的传动类型: (一)按照齿轮的传动比是否恒定,可将齿轮传动分为 1.非圆齿轮传动,(传动比变化) 2.圆形齿轮传动(传动比恒定)两大类,

齿轮的失效原因及修复方法

第6期(总第151期) 2008年12月机械工程与自动化 M ECHAN I CAL EN G I N EER I N G & AU TOM A T I ON N o 16 D ec 1 文章编号:167226413(2008)0620189202 齿轮的失效原因及修复方法 陈宝红 (阳泉煤业集团职工教育培训中心,山西 阳泉 045008) 摘要:分析了在实际应用中齿轮失效的原因及预防措施,并阐述了齿轮断齿后可用堆焊方法进行修复。关键词:齿轮;失效;修复 中图分类号:TH 132141 文献标识码:A 收稿日期:2008204223;修回日期:2008207211 作者简介:陈宝红(19712),女,山西阳泉人,工程师,本科。 0 引言 在实际应用中齿轮的失效将直接影响着机械传动,从而影响整个生产过程。齿轮的失效主要发生在轮齿部分(轮缘),主要形式有轮齿折断、齿面点蚀、齿面磨损、齿面胶合和塑性变形等。而在实际使用过程中,这些失效均可通过有效的措施得到预防,且轮齿折断、齿面点蚀、齿面磨损等可通过适当的修复使齿轮得以重新使用。从而既能保证设备的正常运行,又可为企业节省大量的费用,具有显著的经济效益。1 齿轮失效形式的分析及预防措施 分析齿轮的失效,首先要清楚轮齿的啮合工作情况(见图1),当主动齿轮受到转矩作用回转时将受到法向压力F n 和摩擦力F m (F m =f F n ,f 为摩擦系数)的作用。在力F n 的作用下,主动齿轮工作面将产生接触应力ΡH ,齿根将产生弯曲应力ΡF 。齿轮啮合时才受力,离开啮合位置时不受力,所以F n 引起的应力ΡH 和ΡF 都是变化的。轮齿失效的主要原因是受交变应力的影响,轮齿的折断与弯曲应力ΡF 的大小有关,齿面点蚀与接触应力ΡH 的大小有关,齿面的磨损和胶合与齿面间的摩擦力F m 有关。以下就针对齿轮的失效形式进行分析并提出相应的预防措施。 111 轮齿折断的原因及预防措施 轮齿折断一般发生在轮齿根部,究其原因是轮齿受载后齿根弯曲应力ΡF 最大, 且易产生应力集中。预防措施是在使用中要尽量避免齿轮严重过载或受冲击作用。 112 齿面点蚀的原因及预防措施 轮齿在节圆附近因交变应力而受到很大的油压,从而产生接触疲劳。其预防措施是加强润滑,提高润 滑油的黏度,降低齿面的表面粗糙度。 齿面点蚀是润滑良好的闭式齿轮传动常见的失效形式,对于开式齿轮传动,由于齿面磨损很快,很少出现点蚀。 图1 轮齿啮合工作情况 113 齿面磨损的原因及预防措施 砂粒、金属屑等外界硬微粒进入啮合面造成了齿面磨损,它是开式齿轮传动失效的主要形式。预防措施是加强润滑,最好选用具有过滤的流动润滑,注意勤换润滑油;对于开式齿轮最好加齿轮外罩。114 齿面胶合的原因及预防措施 高速重载、散热不良、滑动速度大、齿面粘连后撕脱是齿面胶合的主要原因。预防措施是使用抗胶合能力强的润滑油。 2 齿轮失效后的修复方法 在实际使用过程中,最常见的齿轮失效形式是齿面磨损和轮齿折断,这两种失效形式都可用手工电弧堆焊的方法进行修复。根据轮齿的使用要求,应使齿

齿轮失效分析

《零件失效分析》课程应用研究进展报告 题目:齿轮失效分析—齿面点蚀 姓名: 魏亚雄学号:0903014113 学院(系):材料科学与工程学院 专业: 金属材料工程 叶云 指导教师: 评阅人: 2012年11月28日

齿轮失效分析——齿面点蚀 材料科学与工程学院金属材料工程09030141班 指导教师:叶云 一、目录 1.前言 (3) 2.齿轮传动的失效形式 (3) 3.齿面点蚀机理分析 (3) 4.影响齿面点蚀的因素 (4) 5.预防 (5) 6.结语 (5) 二、摘要 本文首先对中国现在齿轮的应用现状做了简要叙述,通过对齿轮失效形式的分类,简要对齿面磨粒磨损、齿面点蚀、齿面胶合、塑性变形和轮齿折断进行了定义。通过对齿轮齿面点蚀机理和齿面点蚀影响因素做了详细分析,并对齿轮失效的预防做了简述,对现实具有很重要的指导意义。

三、正文 1.前言 齿轮传动是现代机械传动中广泛采用的主要运动形式之一。做为最常见的机械传动零件,它优点很多应用广泛。但是,齿轮传动也存在其固有的缺点:不能缓和冲击作用。[1]当制造、安装和使用过程中出现不当情况往往会引起较大的振动、噪声,甚至发生断裂等失效故障,据统计,在各种机械故障中,齿轮失效占总数的60%以上。[2]因此,为了保证机器安全正常地运转,有必要详细分析齿轮失效原因。采取相应的措施。保证齿轮在预定寿命内正常工作。 2.齿轮传动失效形式 影响齿轮失效的原因很多。如设计选材、材料添加剂、毛坯加工工艺及齿轮的安装、调整、润滑和故障诊断、维护使用环节的各种失误都有可能导致齿轮失效。以下是齿轮失效的基本类别和特征。 齿轮失效一般发生在齿面,很少发生在其它部位。按照齿轮在工作中发生的故障的基本形式可以把齿轮失效划分为齿面磨损和轮齿折断两大类。齿面磨损是指齿轮在啮合工程中由于表面材料不断摩擦而消耗的过程,按照损伤的机理可以把齿轮损伤划分为齿面磨粒磨损、齿面点蚀、齿面胶合和塑性变形。[3] 2.1齿面磨粒磨损 齿面磨粒磨损常发生于开式齿轮齿轮传动中,由于如沙石、金属铁屑及外界其它物质进入啮合区并在齿轮副的啮合挤压作用下沿齿轮运动方向移动,因此磨痕走向一般并行于运动方向,整个齿面均匀磨损,沿滑动方向,磨痕呈重叠特征。 2.2齿面点蚀 齿面点蚀常出现在润滑比较良好的闭式软齿面传动中,一般在靠近齿根部位出现点状小坑。 2.3齿面胶合 胶合是互相啮合的齿面发生严重的粘着磨损损伤。 2.4 塑性变形 齿面塑性变形主要出现在低速重载,频繁启动和过载的场合。当齿面的工作应力超过材料的屈服极限时,齿面产生塑性流动,从而引起主动轮齿面节线处产生凹槽,从动轮出现凸脊。 2.5轮齿折断 由于齿面受到冲击载荷或者短时间过载。突然折断,尤其见于脆性材料齿轮。轮齿折断会造成传动失效。 3. 齿面点蚀机理分析 3.1 裂纹的形成机理[4] 柔性传动装置大齿轮齿面产生点蚀的部位在节圆附近的下齿面上,这是因为在齿轮节圆附近啮合时,基本上只有一对齿轮在啮合,齿面接触应力较大;而且此时接触点之间相对速度很小,油膜也不易形成,润滑情况不好。所以齿轮齿面处于过高的交变接触应力多次反复

齿轮传动的失效分析)

一般来说,齿轮传动的失效主要发生在轮齿上。轮齿部分的失效形式分为两大类:轮齿折断,齿面失效。 1. 轮齿折断 折断失效通常有轮齿的弯曲疲劳折断、过载折断和随机折断。 ?疲劳折断:工作时轮齿反复受载,使得齿根处产生疲劳裂纹,并逐步扩展以至轮齿折断的失效。疲劳裂纹多起源于齿根受拉的一侧。 ?过载折断:齿轮受到突然过载,或经严重磨损后齿厚减薄时,轮齿会发生过载折断。 ?随机折断:通常是指由于轮齿缺陷、点蚀或其它应力集中源在轮齿某部位形成过高应力集中而引起轮齿折断。断裂部位随缺陷或过高有害残余应力的位置而定,与齿根圆角半径无关。 ?轮齿折断的形式有整体折断和局部折断。整体折断多发生于直齿轮,局部折断多发生于斜齿和人字齿轮,齿宽较大的直齿轮和由于安装、制造因素使得局部受载过大的直齿轮,也可能发生局部折断。疲劳折断的断口较光滑,过载折断的断口则较粗糙。 ?增大齿根过渡圆角半径,减小齿面粗糙度,对齿根进行喷丸或碾压强化处理消除该处的加工刀痕,选用韧性较好的材料,采用合理的变位等,均有助于提高轮齿的抗折断能力。 ?通常,轮齿疲劳折断是闭式硬齿面齿轮传动的主要失效形式。 2. 齿面失效齿面失效常见的失效形式有:点蚀、胶合、齿面磨损和齿面塑性变形。 (1) 点蚀

齿轮在啮合过程中,相互接触的齿面受到周期性变化的接触应力的作用。若齿面接触应力超出材料的接触疲劳极限时,在载荷的多次重复作用下,齿面会产生细微的疲劳裂纹;封闭在裂纹中的润滑油的挤压作用使裂纹扩大,最后导致表层小片状剥落而形成麻点,这种疲劳磨损现象,齿轮传动中称为点蚀(图9.3-13)。节线靠近齿根的部位最先产生点蚀。润滑油的粘度对点蚀的扩展影响很大,点蚀将影响传动的平稳性并产生冲击、振动和噪音,引起传动失效。 ?点蚀又分为收敛性点蚀和扩展性点蚀。收敛性点蚀指新齿轮在短期工作后出现点蚀痕迹,继续工作后不再发展或反而消失的点蚀现象。收敛性点蚀只发生在软齿面上,一般对齿轮工作影响不大。扩展性点蚀指随着工作时间的延长而继续扩展的点蚀现象,常在软齿面轮齿经跑合后,接触应力高于接触疲劳极限时发生。硬齿面齿轮由于材料的脆性,凹坑边缘不易被碾平,而是继续碎裂成为大凹坑,所以只发生扩展性点蚀。严重的扩展性点蚀能使齿轮在很短的时间内报废。 ?提高齿面硬度和降低表面粗糙度,在许可的范围内增大相互啮合齿轮的综合曲率半径,采用粘度较高的润滑油等,有助于提高齿轮的抗点蚀能力。 (2) 齿面胶合 齿面胶合是指在重载或高速传动时,齿面局部金属焊接继而又因相对滑动,其齿面的金属从其表面被撕落,轮齿表面沿滑动方向出现粗糙沟痕的现象。

齿轮失效分析研究

齿轮失效分析研究 系统地分析齿轮失效的各种因素,结合故障树,以轮齿折断为例,找出故障的原因,对设备管理、现场分析及设计方案不完善而引起的故障分析有很大的意义。 标签:齿轮失效故障树故障分析 1 概述 圆柱齿轮传动由于具有传动比精确、结构紧凑、效率高及寿命长的优点,被广泛应用于各种工业部门,因而圆柱齿轮传动也成为各类机械中重要的零件之一。然而齿轮的失效却是造成机器故障的重要因素之一,会直接影响到整个机器的工作状态。 2 齿轮的失效分析 齿轮的失效形式由多种因素综合造成,且随着齿轮材料、热处理、运转状况等因素的不同而不同,其失效的主要形式有:①齿面耗损,包括磨料磨损、腐蚀磨损、胶合等;②齿面疲劳,包括点蚀、初期点蚀、剥落、表层压碎等;③齿面塑性变形,包括压痕、轮齿锤击塑变、呈波纹折皱等;④轮齿折断及裂纹等。 引起齿轮的失效的因素有许多种,可以从以下几个方面来分析: 设计因素:设计品质对产品的品质有着决定性的作 用。某雷达产品的天线俯仰机构中,小齿轮与轴通过键联结,由电机带动与大齿轮啮合,从而完成丝杆的伸缩运动。由于设计时小齿轮键槽开在齿根方向,齿根部强度薄弱,在受到短时过载的冲载荷作用时,轮齿承受的应力超过其极限应力,从而导致轮齿过载折断。找出原因后,经过重新设计计算,用轴齿轮代替原来的小齿轮,取消键联结方式,保证了齿根部的结构强度要求。 材质因素:齿轮的材料应根据其用途及工作条件来选择:速度较高的齿轮传动,齿面易产生点蚀,应选用高硬度材料;有冲击载荷的齿轮传动,轮齿易折断,应选用韧性较好的材料;低速重载的齿轮传动,轮齿既易折断又易磨损,应选用机械强度大,经热处理后齿面硬度高的材料。 制造工艺因素:在齿轮加工过程中,由于机床、刀具、夹具和齿坯在制造、安装和调整时不可避免地存在一些误差,从而形成了齿轮的运动误差、平稳性误差和齿面误差,使齿轮的传动精确度降低。一对齿轮在相互滚碾冲击作用下,接触应力过高,传动啮合不良,易造成齿面塑性变形。根据齿轮材料,制定合理的加工、淬火等工艺规程,并严格控制工艺过程,可以有效地避免淬火裂纹及磨削裂纹的出现。

(完整版)齿轮传动习题(含答案)

齿轮传动 一、选择题 7-1.对于软齿面的闭式齿轮传动,其主要失效形式为________。 A .轮齿疲劳折断 B .齿面磨损 C .齿面疲劳点蚀 D .齿面胶合 7-2.一般开式齿轮传动的主要失效形式是________。 A .轮齿疲劳折断 B .齿面磨损 C .齿面疲劳点蚀 D .齿面胶合 7-3.高速重载齿轮传动,当润滑不良时,最可能出现的失效形式为________。 A .轮齿疲劳折断 B .齿面磨损 C .齿面疲劳点蚀 D .齿面胶合 7-4.齿轮的齿面疲劳点蚀经常发生在________。 A .靠近齿顶处 B .靠近齿根处 C .节线附近的齿顶一侧 D .节线附近的齿根一侧 7-5.一对45钢调质齿轮,过早的发生了齿面点蚀,更换时可用________的齿轮代替。 A .40Cr 调质 B .适当增大模数m C .45钢齿面高频淬火 D .铸钢ZG310-570 7-6.设计一对软齿面减速齿轮传动,从等强度要求出发,选择硬度时应使________。 A .大、小齿轮的硬度相等 B .小齿轮硬度高于大齿轮硬度 C .大齿轮硬度高于小齿轮硬度 D .小齿轮用硬齿面,大齿轮用软齿面 7-7.一对齿轮传动,小轮材为40Cr ;大轮材料为45钢,则它们的接触应力________。 A .1H σ=2H σ B. 1H σ<2H σ C .1H σ>2H σ D .1H σ≤2H σ 7-8.其他条件不变,将齿轮传动的载荷增为原来的4倍,其齿面接触应力________。 A .不变 B .增为原应力的2倍 C .增为原应力的4倍 D .增为原应力的16倍 7-9.一对标准直齿圆柱齿轮,z l = 21,z 2 = 63,则这对齿轮的弯曲应力________。 A. 1F σ>2F σ B. 1F σ<2F σ C. 1F σ =2F σ D. 1F σ≤2F σ 7-10.对于开式齿轮传动,在工程设计中,一般________。 A .先按接触强度设计,再校核弯曲强度 B .只需按接触强度设计 C .先按弯曲强度设计,再校核接触强度 D .只需按弯曲强度设计。 7-7.设计闭式软齿面直齿轮传动时,选择小齿轮齿数z 1的原则是________。

齿轮传动失效分析及预防

经验交流现代农村科技2019年第9期 齿轮传动是机械传动中应用最广泛的一种传动形式,它具有传动平稳、传动比准确、承载能力强、工作效率高、结构紧凑等优点。但齿轮在传动过程中也会出现传动失效的问题,且失效形式是多种多样的。齿轮齿圈、轮辐、轮毂部分的结构尺寸通常是经验设计的,其强度和刚度较为富裕,因此在传动中极少失效。齿轮传动的主要失效部位为轮齿,根据轮齿失效部位的不同分为齿体失效和齿面失效。 1轮齿折断 轮齿折断的类型有两种:疲劳折断和过载折断。疲劳折断是由于轮齿受重复弯曲应力作用,当弯曲应力超过材料疲惫极限时,在轮齿齿根受拉一侧就会产生疲劳裂纹,在齿根应力集中处,裂纹加速扩展,直至轮齿折断。过载折断是由于轮齿受短时意外严重过载或冲击时,齿轮材料较脆时,轮齿突然折断。轮齿折断常发生在闭式硬齿面及开式齿轮传动中轮齿受拉应力一侧的齿根部位。对于齿宽较小的直齿轮常发生全齿折断,对于齿宽较大的直齿轮、斜齿轮常发生部分齿折断。 防止轮齿折断,提高抗断齿能力的措施:当分度圆直径为定值时,减小齿轮齿数并增大齿轮模数,以便增大齿根齿厚,进而提高齿根弯曲疲劳强度; 采用正变位的方法加工齿轮,以提高齿根抗弯强度; 提高齿面硬度,进而提高齿面接触疲劳强度;增大齿根处圆角半径,以减小应力集中;提高加工精度,降低表面粗糙度,减少加工损伤,避免应力集中;提高轮齿精度和齿轮支撑刚度,进而改善轮齿载荷分布;对齿轮齿根进行强化处理;对齿轮齿芯进行热处理,提高其韧性。 2齿面点蚀 齿面点蚀是由于齿面受到脉动循环接触应力作用,当接触应力超过材料的接触疲劳极限时,就会产生细微裂纹,这时润滑油进入裂缝,形成高压封闭油腔,润滑油的楔挤作用使裂纹扩展,直至齿面材料点状剥落。齿面点蚀常发生在闭式软齿面齿轮靠近节线的齿根面上。之所以靠近节线是由于齿轮传动重合度小于2,节线处一般只有一对齿啮合,接触应力较大;同时由于节线处做纯滚动,靠近节线附近滑动速度小,油膜不易形成,摩擦力大,易产生裂纹。开式齿轮传动无齿面点蚀,原因是开式齿轮传动齿面磨损速度大于点蚀速度。 提高齿面抗点蚀能力的措施:提高齿面硬度可增大作用接触应力,进而提高齿面接触疲劳强度;采用正变位传动,减少接触应力,进而提高齿面接触疲劳强度;提高润滑油粘度;提高齿轮加工精度,降低表面粗糙度。 3齿面磨损 齿面磨损有两种类型:磨粒磨损、研磨磨损。磨粒磨损是开式齿轮传动的主要失效形式,它是由于齿轮长期暴露在外面,砂粒、金属碎屑、灰尘等硬颗粒进入齿面而引起的齿面磨损。研磨磨损是由于齿面相互搓削引起的,它是一种不可避免的损耗现象。齿面磨损会使齿廓失真,瞬时传动比不固定,从而导致传动精度低,产生冲击、振动、噪音等。如果齿面磨损进一步加剧,会使得轮齿变薄,齿根弯曲疲劳强度降低,容易发生轮齿折断。 提高齿面抗磨损能力的措施:对开式齿轮传动安装防尘罩;采用耐磨材料;注意润滑油的清洁和定期更换,可在其中添加减摩剂;提高齿轮加工精度,降低轮齿表面粗糙度;减小滑动系数。 4齿面胶合 齿面胶合分为冷胶合和热胶合。在高速重载的齿轮传动中,较高的速度使得啮合区温升较大,润滑油粘度降低,油膜遭到破坏,金属表面直接接触而熔焊,此时齿面间的相对运动使得较软的齿面沿着滑动方向撕脱,形成沟痕,这种现象即为热胶合。而在低速重载的齿轮传动中,由于齿轮传动功率较大,速度较低,齿面间不易形成油膜,而出现冷粘着,这种现象即为冷胶合。齿面胶合会使传动不平稳,甚至导致齿轮报废。 提高齿面抗胶合能力的措施:优选抗胶合能力强的材料;选用粘度大的或极压润滑油;增大齿面硬度可提高许用接触应力,进而提高齿面接触疲劳强度;采用变位齿轮,降低齿高,减小滑动系数。5齿面塑性变形 在软齿面齿轮传动中,在重载荷作用下,齿面间的应力超过了材料屈服极限,较硬一侧的齿面沿摩擦力方向推挤较软一侧齿面而产生塑性流动,这种现象即为齿面塑性变形。齿面塑性变形常发生在低速重载或过载的软齿面齿轮传动中。 避免齿面塑性变形的措施:提高齿面硬度;选用粘度大的润滑油。 齿轮传动失效分析及预防 张云秀 (潍坊工程职业学院山东青州262500) 101 ··

齿轮的失效分析

齿轮的失效分析 【摘要】齿轮传动是靠轮齿的啮合传动来传递运动和动力的,轮齿失效是齿轮常见的主要失效形式。由于齿轮传动装置有开式、闭式,齿面有软齿面、硬齿面,齿轮转速有高有低,载荷有轻重之分,所以设计应用中会出现各种不同的失效形式。分析研究失效形式有助于建立齿轮设计的准则,提出防止和减轻失效的措施。 【关键词】失效形式齿轮传动失效原因 齿轮的失效形式很多,它们不大可能同时发生,却又相互联系,相互影响。例如轮齿表面产生点蚀后,实际接触面积减少将导致磨损的加剧,而过大的磨损又会导致轮齿的折断。 1、齿轮失效的原因主要有以下三点: 1.早期点蚀的原因主要是由于齿面接触不良及超负荷运转,引起齿面接触应力增大。早期点蚀的发生时间较早,几天或十几天就发生大块的剥落,发展得很快,直径大且深。所以在使用中一般不应进行超负荷运转,尤其是初期运转时,负荷应从小到大逐渐增加,待齿面接触情况达到要求时,再满负荷运转。 2.后期点蚀的原因有3点:第一,接触精度不好,如对角接触、接触面有偏齿或顶齿根等现象。凡属接触不好的发生点蚀比较早,也比较严重。第二,大、小齿轮表面硬度差偏小,材料的饱和性能及抗疲劳性能差,亦易引起点蚀。第三,润滑油过稀易产生和助长点蚀的

发生和发展,因黏度小的润滑油无助于消减作用在齿面上的动力载荷和摩擦力,所以采用黏度较大的润滑油为宜。 3.擦伤与胶合。当润滑油过稀时,由于两齿轮间的压力和相对滑动,容易导致润滑油被挤出或啮合温度升高,使两齿面的金属表面直接接触而互相胶住,这时材料硬的齿面就会把软的齿面擦伤,或将一部分金属黏走,使软齿面上形成许多沿滑动方向的沟纹。齿面发生胶合后,两齿面都变得很粗糙,从而加剧了齿面的磨损。 2、齿轮失效的几种形式 齿轮传动就装置形式来说,有开式、半开式及闭式之分;就使用情况来说有低速、高速及轻载、重载之别;就齿轮材料的性能及热处理工艺的不同,轮齿有较脆(如经整体淬火、齿面硬度较高的钢齿轮或铸铁齿轮)或较韧(如经调质、常化的优质钢材及合金钢齿轮),齿面有较硬(轮齿工作面的硬度大于350HBS或38HRC,并称为硬齿面齿轮)或较软(轮齿工作面的硬度小于或等于350HBS或38HRC,并称为软齿面齿轮)的差别等。由于上述条件的不同,齿轮传动也就出现了不同的失效形式。一般地说,齿轮传动的失效主要是轮齿的失效,而轮齿的失效形式又是多种多样的,这里只就较为常见的轮齿折断和工作面磨损、点蚀,胶合及塑性变形等略作介绍,其余的轮齿失效形式请参看有关标准。至于齿轮的其它部分(如齿圈、轮辐、轮毂等),除了对齿轮的质量大小需加严格限制外,通常只需按经验设计,所定的尺寸对强度及刚度均较富裕,实践中也极少失效。 1、轮齿折断

齿轮失效分析实例

齿轮失效分析实例 齿轮是传递运动和动力的一种机械零件。齿轮的类型以及特点不仅可决定齿轮的运转特性,并且也决定了它是否会过早地失效。 齿轮失效的类型可划分为四种: (1)磨损失效,是指轮齿接触表面的材料损耗; (2)表面疲劳失效,是指接触表面或表面下应力超过材料疲劳极限所引起的材料失效。进一步又可分为初始点蚀、毁坏性点蚀和剥落。 (3)塑性变形失效,是指在重载荷作用下表面金属屈服所造成的表面变形。它又可进一步分为压塌和飞边变形、波纹变形和沟条变形。 (4)折断失效,是指整个轮齿或轮齿相当大的一部分发生断裂。可以进一步分为疲劳折断、磨损折断、过载折断、淬火或磨削裂纹引起的折断等。 本章主要介绍变速箱齿轮及被动齿轮的失效分析实例,供读者参考。 变速箱齿轮失效分析 1.45号钢齿坯裂纹分析 45号钢齿坯,由φ80mm圆钢落料后直接粗车成外径为φ78mm的柱体形状。其化学成分为:C:0.49%,Mn: 0.68%,Cr<0.2%。热处理工艺过程:在X—45箱式电炉中加热,到温度(820℃)装炉,装炉量109只,保温时间为一小时(工件达到温度后计算时间),工件用盐水冷却(冷却液不循环),水温20~30℃。回火温度为520~530℃(零件淬火后隔天回火)。经车削后,发现零件内孔平面和内孔上有较多裂纹,如图1和2所示。 图1 OPI 图象说明: 零件实物经SM-3R型渗透剂着色探伤后宏观形貌。经肉眼与放大镜观察,在齿坯内孔平面与内孔中有距离大致相等的5~6处较长的裂纹,裂纹均由内孔之平面与孔交界处为起始分别向内孔壁与平面扩展;内孔平面上和内孔交界处加工纹路明显且尖锐。

图象说明: 内孔平面试样作金相观察,有 数条裂纹交叉分布,其内充满氧化皮 夹杂。其微观裂纹长度不等,分别为 0.63mm,0.29mm,0.23mm及0.19等。 图2 OMI 200× 2.汽车变速箱齿轮失效 失效齿轮为载重汽车变速箱一挡齿轮,由渗碳钢制造,在进行台架试验时,未达到设计要求就发生断齿现象。 根据断口的形貌可断定该齿轮的断裂为高应力作用下引起的快速断裂。主动齿轮心部断口基本为韧窝,被动齿轮具有准解理断裂形貌,说明主动齿轮韧性较好,但强度较低。显微硬度证实了主动齿轮硬度较被动齿轮低。两只齿轮渗碳层中均有网状渗碳体析出,这将使表层韧性较低,致使在运转过程经受不了启动冲击应力的作用。本次断裂事故是由主动齿轮先断裂,进而引起被动齿轮崩齿,故在被动齿轮上还能看到碰伤的痕迹。因此,可以认为齿轮失效的原因为渗碳工艺控制不当(热处理不当)而引起断齿。 变速箱一挡齿轮发生断齿后的宏观实物如图3所示。主动齿轮及被动齿轮断齿后的宏观断口形貌见图4所示。 图象说明: 变速箱齿轮发生断齿后的宏观 实物形貌。 图3 OPI

常见齿轮失效形式

FAILURE PROBABILITY OF GEAR TEETH WEAR Milosav Ognjanovic University of Belgrade Faculty of Mechanical Engineering ABSTRACT In extreme gear service conditions some of the tooth damages such as pitting are not the main type of teeth flank failure any more. The hypothesis concerning infinite fatigue endurance of teeth flanks is without support now. Abrasive wear and squeeze at local points of contact eliminate and/or stop pitting from developing. Three types of surface damages (abrasive wear, squeezing and pitting) occur simultaneously and contribute to each other. In that way, teeth flank failure accelerates and gets more intensive and progressive. Infinite flank endurance does not exist. Besides this, the process of simultaneous (progressive) teeth flank damage is stochastic. Statistical approach to failure intensity evaluation is the only possibility. For certain wear limits of teeth flanks, experimental results are presented by statistical parameters. Those statistical models and statistical parameters are suitable for the development of reliability models of gear and gear drives. Introduction Intensive research in the area of the gear damage resistance is resulted with standard DIN 3990 part 5. This standard defines gear testing procedure and endurance limits for different kinds of materials and gear heat and mechanical treatments. Research in this direction is continued [1], [4], but many questions in that very complex area are still without answer. Gear calculation according to the mentioned standard is based on teeth pitting resistance. Fatigue of surface layer (pitting) is the most suitable for the load capacity calculation. In the service conditions and in the testing using FZG gear tester (DIN 51 354), it is not possible to extract fatigue (pitting) damages separately from the others surface damages (sliding wear, surface squeezing, etc.). Besides this, the processes like sliding wear (scoring and scuffing) and surface squeezing obstruct a pitting process. In these conditions, the gear teeth failure process can be slowed down (weakened) or accelerated. For this interaction, it is necessary to research and separately test a pitting process, for example, by using the ZF roller test rig [5] or perform especially those tests which can extract separate (not mixed) types of teeth failure [6]. Detailed research of teeth sliding wear is presented in the paper [2]. The wear depth of the teeth flanks is calculated by using a developed mathematical model. Complex teeth surface failure is not possible to be defined in a deterministic way. Interaction of individual damage processes is not the same for different stress levels, for different materials, heat and mechanical treatment or lubrication. This interaction is stochastic and can be presented by statistical models and parameters. In this paper, a suggestion in that sense is presented. It is not possible to define complex teeth surface failure in a deterministic way. Types of Teeth Wear and Wear Components Separation The gear load capacity is limited by different kinds of teeth flanks wear: pitting, abrasive and adhesive wear (scoring and scuffing) and squeezing. These flank damages are parallel or complementary. For pitting development, it is necessary to start the crack and grow it up along with increrased high stress cycles number. In the meantime, by sliding or squeezing it is possible to eliminate cracks in the very initial period and slow down the pitting process (especially micro pitting). Each of the mentioned damages can be disturbed or supported by some of the others. Pitting is the damage which corresponds to the gears with surface hardened teeth, at surface stress close to surface endurance limit. Sliding wear (scoring) is characteristic for the gears with non-hardened teeth and with high surface stress. The process of sliding wear is not limited by surface endurance limit. There is no stress level which cannot make surface damage along unlimited stress cycles number (teeth mesh revolution). Scuffing is damage characteristic for highly loaded gears with a very high speed of rotation. Squeezing of gear teeth flanks can arise with not hardened materials caused by a very high flank stress level, especially at a low speed of rotation. More details for each of the mentioned types of teeth flank wear are as follows. The mentioned types of teeth flank wear will be considered in detail.

齿轮常见失效原因及其维修方法分析

齿轮常见失效原因及其维修方法分析 在我国的机械行业中,作为机械设备中的必要零件,齿轮的生产精度以及生产质量直接决定着机械设备的使用性能。但是在实际的使用过程中,机械设备出现故障很多原因就是设备中的齿轮出现了失效问题。文章主要针对齿轮的时效常见问题以及相应的维修方法给予详细的分析以及阐述,希望通过文章的阐述以及分析能够帮助机械设备中的齿轮找出问题出现的原因,及时给予维修;同时也希望通过文章的阐述能够为我国的齿轮生产及制作的发展及创新贡献力量。 标签:齿轮失效;机械设备;维修方法 在机械设备的传动部分,齿轮通常是作为一种变速传动零部件。因此在我国的机械设备中,齿轮是一种不可替代的传动零部件。伴随着现阶段我国机械设备对于齿轮的应用范围越来越大,齿轮制作以及发展也是非常的迅速。但是在实际的设备运行过程中,齿轮往往会由于一系列的原因出现失效问题。根据相关部门的统计,机械设备的故障中有近一半是由于齿轮失效造成的。基于上述的情况,我们要对齿轮失效的原因给予详细的分析和处理,选择最优化的维修方法进行齿轮失效维修,保障机械设备的正常运行。 1 机械设备中的齿轮失效主要原因 关于机械设备中的齿轮失效主要原因的阐述以及分析,文章主要从三个方面进行分析以及阐述。第一个方面是齿轮折断造成的齿轮失效。第二个方面是齿轮齿面出现损坏造成的齿轮失效。第三个方面是其他问题造成的齿面失效。下面进行详细的论述以及分析。 1.1 齿轮折断造成的齿轮失效 在实际的应用过程中,齿轮失效中的齿轮折断根据不同的齿轮形式有不同的折断原因。全齿轮折断通常情况下出现在直齿轮的轮齿处;局部齿轮折断通常出现在斜齿轮以及锥齿轮的轮齿处。下面作具体的分析。 1.1.1 在齿轮运行过程中会因为过载出现齿轮折断 由于过载导致的齿轮折断,在齿轮的折断区域会出现放射状的放射区域或者是人字的放射区域。在通常情况下齿面断裂的放射方向和断裂的方向是平行的。断面放射中心就是贝壳纹裂的断面断口。齿轮出现过载折断的主要原因是齿轮在较短的时间内承载的外界压力远远大于齿轮本身的最大压力,过大的压力造成了齿轮强度变低,出现折断的问题。同时导致齿轮出现折断的原因还有很多,例如齿轮的加工精度不符合要求;齿轮的齿面表面太粗糙和齿轮的加工材质本身存在缺陷等。 1.1.2 在齿轮运行过程中会因为疲劳出现齿轮折断

齿轮常见失效形式及其解决方法

齿轮常见失效形式及其解决方 法(总2页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

齿轮失效分析与解决方法 摘要通过对齿轮失效形式的分析,找出相应解决方法,提高机械传动齿轮质量,延长机械设备的使用寿命。分析研究失效形式有助于建立齿轮设计的准则,提出防止和减轻失效的措施。 关键词失效;轮齿折断;齿面点蚀;齿面胶合;齿面磨损;齿面塑性变形齿轮是现代机械中应用最广泛的重要基础零件之一。齿轮类型很多,有直齿轮、斜齿轮、人字齿等,齿面硬度有软齿面和硬齿面,齿轮转速有高有低,传动装置有开式装置和闭式装置,载荷有轻重之分,因此影响因素很多,所以实际应用中会出现各种不同的失效形式。齿轮的失效主要发生在轮齿部分,其常见失效形式有:轮齿折断、齿面点蚀、齿面磨损、齿面胶合和齿面塑性变形五种。 1 轮齿折断 轮齿折断有多种形式,在正常情况下,有以下两种:1)过载折断。因短时过载或冲击载荷而产生的折断。过载折断的断口一般都在齿根部位。断口比较平直,并且具有很粗糙的特征。 2)疲劳折断。齿轮在工作过程中,齿根处产生的弯曲应力最大,再加上齿根过渡部分的截面突变及加工刀痕等引起的应力集中作用,当轮齿重复受载后,齿根处就会产生疲劳裂纹,并逐步扩展,致使轮齿疲劳折断轮齿。齿面较小的直齿轮常发生全齿折断,齿面较大的直齿轮,因制造装配误差易产生载荷偏置一端,导致局部折断;斜齿轮和人字齿齿轮,由于接触线倾斜,一般是局部齿折断。 为了提高齿轮的抗折断能力,除设计时满足强度条件外,还可采取下列措施:①采用高强度钢;②采用合适的热处理方式增强轮齿齿芯的韧性;③增大齿根过度圆角半径,消除齿根加工刀痕,齿根处强化处理;④加大齿轮模数; ⑤采用正变位齿轮。 为避免轮齿折断,设计时要进行轮齿弯曲疲劳强度计算和静弯曲强度计算。 齿面磨损有磨粒磨损和跑合磨损两种。 在齿轮传动中,随着工作环境的不同,齿面间存在多种形式的磨损情况。当齿面间落入铁屑、砂粒、非金属物等磨粒性物质或粗糙齿面的摩擦时,都会发生磨粒磨损。齿面磨损后,引起齿廓变形,产生振动、冲击和噪声,磨损严重时,由于齿厚过薄而可能发生轮齿折断。磨粒磨损是开式齿轮传动的主要失效形式。 新的齿轮副,由于加工后表面具有一定的粗糙度,受载时实际上只有部分峰顶接触。接触处压强很高,因而在开始运转期间,磨损速度和磨损量都较大,磨损到一定程度后,摩擦面渐渐光洁,压强减小、磨损速度缓和,这种磨损成为跑合。人们有意的使新齿轮副在轻载下进行跑合,为随后的正常磨损创造条件。但应注意,跑合结束后,必须清洗和更换润滑油。

齿轮的失效形式有哪些

齿轮的失效形式有哪些 1. 齿轮的失效形式有哪些, a齿面点蚀 b齿面磨损c齿面折断d齿面胶合e塑形变型 2. 齿面胶合的失效机理如何,避免齿面胶合的措施有哪些, 齿面胶合是由于齿面未能有效地形成润滑油膜,导致齿面金属直接接触,并在随后的相对滑动中,相互粘连的金属沿着相对滑动方向相互撕扯而出现一条条划痕。措施:采用正变位齿轮,减小模数,降低齿高以减小滑动速度,提高齿面硬度,降低齿面粗糙度值,采用抗胶合能力强的齿轮材料,在润滑油中加入抗胶合能力强的极压添加剂等 3. 齿面点蚀的机理如何, 齿轮工作时,在循环接触应力,齿面摩擦力及润滑的反复作用下,在齿面或其他表层内会产生微小的裂纹。这些微裂纹继续扩展,相互连接,形成小片并脱落,在齿面上出现细碎的凹坑或麻点,从而造成痴齿面损伤,称为疲劳点蚀。 4. 减小齿面磨损的措施有哪些, 采用闭式齿轮传动,提高齿面硬度,降低齿面粗糙度值,注意保持润滑油清洁等。 5. 如何提高齿轮的抗折断能力, a采用正变位齿轮,增大齿根的强度 b使齿根过渡曲线更为平缓及消除加工刀痕,减小齿根应力集中 c增大轴及支承的刚件,使齿轮接触线的受载较为均匀 d采用合适的热处理方法,使齿芯材料具有足够的韧性 e采用喷丸,滚压等工艺措施对齿根表层进行强化处理。 6. 齿轮常用的材料及热处理方法有哪些, 锻钢,铸铁,非金属材料。调制,淬火,渗碳,渗氮 7. 软齿面闭式齿轮传动的设计模式如何, 通常保证接齿面触疲劳强度为主。

8硬齿面闭式齿轮传动的设计模式如何, 通常保证齿根弯曲疲劳强度为主。 9.开式齿轮传动的设计模式如何, 根据保证齿面抗磨损及齿根抗折断能力两准则进行计算 10.对齿轮性能的基本要求是什么, 齿面要硬,齿芯要韧 11.为了降低载荷沿接触线分布不均匀得程度,可以用怎么样的办法, 可以采用增大轴,轴承及支座的刚度,对称地配置轴承,以及适当地 限制齿轮的宽度,同时应尽可能避免齿轮作悬臂布置。 12.斜齿轮的螺旋角通常取多少, 8?-20? 13.人字齿的螺旋角一般是多少, 15?-40 蜗杆 1. 蜗杆传动的优缺点, 优点:传动比大,结构紧凑,传动平稳,噪声小。 缺点:传动效率低,蜗轮齿圈用青铜制造,成本高。 2. 蜗杆传动的正确啮合条件如何, 蜗杆的轴面模数,压力角应与蜗轮的端面模数,压力角相等。 3. 闭式蜗杆为什么要进行热平衡计算,有哪些措施, 蜗杆的传动效率低,所以工作时发热量大。在闭式传动中,如果产生的热量不能及时散逸,将因油温不断升高而使润滑油稀释,从而增大摩擦损失,甚至发生胶合。所以,必须根据单位时间内的发热量等于同时间内的散热量进行热平衡计算,以保证油温稳定地处于规定的范围内。加散热片以增大散热面积,在蜗杆轴端加装风扇以加速空气的流通。在传动箱内装循环冷却管路。文案编辑词条

相关文档
最新文档