实验八:相敏检波器实验

实验八:相敏检波器实验
实验八:相敏检波器实验

实验八相敏检波器实验

一、实验目的:了解相敏检波器的原理及工作情况。

二、基本原理:相敏检波器模块示意图如下所示,图中Vi为输入信号端,V o为输出端,AC为交流参考电压输入端,DC为直流参考电压输入。当有脉冲符号的两个端子为附加观察端。

三、需用器件与单元:移相器/相敏检波器/低通滤波器模块、音频振荡器、双踪示波器(自备)、直流稳压电源±15V、±2V、转速/频率表、数显电压表。

四、旋钮初始位置:转速/频率表置频率档,音频振荡器频率为4KHz左右,幅度置最小(逆时针到底),直流稳压电源输出置于±2V档。

五、实验步骤:

1、了解移相器/相敏检波器/低通滤波器模块面板上的符号布局,接入电源±

15V及地线。

2、根据如下的电路进行接线,将音频振荡器的信号0?输出端和移相器及相

敏检波器输入端Vi相接,把示波器两根输入线分别接至相敏检波器的输

入端Vi和输出端V o组成一个测量线路。

3、将主控台电压选择拨段开关拨至+2V档位,改变参考电压的极性(通过DC端输入+2V或者-2V),观察输入和输出波形的相位和幅值关系。由此可得出结论,当参考电压为正时,输入和输出同相;当参考电压为负时,输入和输出反相。

4、调整好示波器,调整音频振荡器的幅度旋钮,示波器输出电压为峰-峰值4V,通过调节移相器和相敏检波器的电位器,使相敏检波器的输出V o为全波整流波形。

六、思考题:

根据实验结果,可以知道相敏检波器的作用是什么?移相器在实验线路中的作用是什么?(即参考端输入波形相位的作用)。

实验八 包络检波及同步检波实验

实验十二包络检波及同步检波实验 一、实验目的 1.进一步了解调幅波的原理,掌握调幅波的解调方法。 2.掌握二极管峰值包络检波的原理。 3.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,分析产生的原因并思考克服的方法。 4. 掌握用集成电路实现同步检波的方法。 二、实验内容 1.完成普通调幅波的解调。 2.观察抑制载波的双边带调幅波的解调。 3.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波时的现象。三、实验原理及实验电路说明 检波过程是一个解调过程,它与调制过程正好相反。检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。 假如输入信号是高频等幅信号,则输出就是直流电压。这是检波器的一种特殊情况,在测量仪器中应用比较多。例如某些高频伏特计的探头,就是采用这种检波原理。 若输入信号是调幅波,则输出就是原调制信号。这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。 从频谱来看,检波就是将调幅信号频谱由高频搬移到低频,如图12-1所示(此图为单音频Ω调制的情况)。检波过程也是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。 常用的检波方法有包络检波和同步检波两种。有载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。 图12-1 检波器检波前后的频谱 1.二极管包络检波的工作原理

包络检波及同步检波实验

实验十二包络检波及同步检波实验 学院:光电与信息工程学院专业:电子信息工程姓名:学号: 一、实验目的 1.进一步了解调幅波的原理,掌握调幅波的解调方法。 2.掌握二极管峰值包络检波的原理。 3.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,分析产生的原因并思考克服的方法。 4. 掌握用集成电路实现同步检波的方法。 二、实验内容 1.完成普通调幅波的解调。 2.观察抑制载波的双边带调幅波的解调。 3.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波时的现象。 三、实验仪器 1.高频实验箱 1台 2.双踪示波器 1台 3.频率特性测试仪(可选)1台 四、实验原理及实验电路说明 检波过程是一个解调过程,它与调制过程正好相反。检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。 假如输入信号是高频等幅信号,则输出就是直流电压。这是检波器的一种特殊情况,在测量仪器中应用比较多。例如某些高频伏特计的探头,就是采用这种检波原理。 若输入信号是调幅波,则输出就是原调制信号。这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。 从频谱来看,检波就是将调幅信号频谱由高频搬移到低频,如图12-1 所示(此图为单音频Ω调制的情况)。检波过程也是应用非线性器件进行频率变换,首先

产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。 常用的检波方法有包络检波和同步检波两种。有载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。 图12-1 检波器检波前后的频谱 1.二极管包络检波的工作原理 当输入信号较大(大于0.5伏)时,利用二极管单向导电特性对振幅调制信号的解调,称为大信号检波。 大信号检波原理电路如图12-2(a)所示。检波的物理过程如下:在高频信号电压的正半周时,二极管正向导通并对电容器C充电,由于二极管的正向导通电阻很小,所以充电电流i D很大,使电容器上的电压V C很快就接近高频电压的峰值。充电电流的方向如图12-2(a)图中所示。

2.移相器相敏检波器实验

实验二移相器相敏检波器实验 一、实验目的:了解移相器、相敏检波器的工作原理。 二、基本原理: 1、移相器工作原理: 图2—1为移相器电路原理图与调理电路中的移相器单元面板图。 图2—1 移相器原理图与面板图 图中,IC1、R1、R2、R3、C1构成一阶移相器(超前),在R2=R1的条件下,其幅频特性和相频特性分别表示为: K F1(jω)=Vi/V1=-(1-jωR3C1)/(1+jωR3C1) K F1(ω)=1 ΦF1(ω)=-л-2tg-1ωR3C1 其中:ω=2лf,f为输入信号频率。同理由IC2,R4,R5,Rw,C3构成另一个一阶移相器(滞后),在R5=R4条件下的特性为: K F2(jω)=Vo/V1=-(1-jωRwC3)/(1+jωRwC3) K F2(ω)=1 ΦF2(ω)=-л-2tg-1ωRwC3 由此可见,根据幅频特性公式,移相前后的信号幅值相等。根据相频特性公式,相移角度的大小和信号频率f及电路中阻容元件的数值有关。显然,当移相电位器Rw=0,上式中ΦF2=0,因此ΦF1决定了图7—1所示的二阶移相器的初始移相角: 即ΦF=ΦF1=-л-2tg-12лfR3C1 若调整移相电位器Rw,则相应的移相范围为:ΔΦF=ΦF1-ΦF2=-2tg-12лfR3C1+2tg-12лfΔRwC3已知R3=10KΩ,C1=6800p,△Rw=10kΩ,C3=0.022μF,如果输入信号频率f一旦确定,即可计算出图2—1所示二阶移相器的初始移相角和移相范围。

2、相敏检波器工作原理: 图2—2为相敏检波器(开关式)原理图与调理电路中的相敏检波器面板图。图中,AC 为交流参考电压输入端,DC为直流参考电压输入端,Vi端为检波信号输入端,Vo端为检波输出端。 图2—2 相敏检波器原理图与面板图 原理图中各元器件的作用:C1交流耦合电容并隔离直流;A1反相过零比较器,将参考电压正弦波转换成矩形波(开关波+14V ~ -14V);D1二极管箝位得到合适的开关波形V7≤0V(0 ~ -14V),为电子开关Q1提供合适的工作点;Q1是结型场效应管,工作在开或关的状态;A2工作在反相器或跟随器状态;R6限流电阻起保护集成块作用。 关键点:Q1是由参考电压V7矩形波控制的开关电路。当V7=0V时,Q1导通,使A2的同相输入5端接地成为倒相器,即V3=-V1(Vo=-Vi);当V7<0V时,Q1截止(相当于A2的5端接地断开),A2成为跟随器,即V3=V1(Vo=Vi)。相敏检波器具有鉴相特性,输出波形V3的变化由检波信号V1(Vi)与参考电压波形V2(AC)之间的相位决定。下图8—3为相敏检波器的工作时序图。

流电路图和工作原理,相敏检波电路图...)

关键词语:差动变压器式传感器工作原理,螺线管式差动变压器结构图,差动变压器等效电路图,差动变压器基本特性,差动变压器式传感器测量电路,差动整流工作原理,差动整流电路,相敏检波电路图,差动变压器式加速度传感器原理图,差动变压式传感器的应用 差动变压器式传感器 把被测的非电量变化转换为线圈互感量变化的传感器称为互感式传感器。这种传感器是根据变压器的基本原理制成的, 并且次级绕组都用差动形式连接, 故称差动变压器式传感器。 差动变压器结构形式较多, 有变隙式、变面积式和螺线管式等, 但其工作原理基本一样。非电量测量中, 应用最多的是螺线管式差动变压器, 它可以测量1~100mm范围内的机械位移, 并具有测量精度高, 灵敏度高, 结构简单, 性能可靠等优点。 差动变压器结构形式较多, 有变隙式、变面积式和螺线管式等, 但其工作原理基本一样。非电量测量中, 应用最多的是螺线管式差动变压器, 它可以测量1~100mm范围内的机械位移, 并具有测量精度高, 灵敏度高, 结构简单, 性能可靠等优点。 一、工作原理 螺线管式差动变压器结构如图 4 -10 所示, 它由初级线圈#, 两个次级线圈和插入线圈中央的圆柱形铁芯等组成。 螺线管式差动变压器按线圈绕组排列的方式不同可分为一节、二节、三节、四节和五节式等类型, 如图 4 - 11 所示。一节式灵敏度高, 三节式零点残余电压较小, 通常采用的是二节式和三节式两类。 图4-11 螺线管式差动变压器结构图

差动变压器式传感器中两个次级线圈反向串联, 并且在忽略铁损、 导磁体磁阻和线圈分布电容的理想条件下, 其等效电路如图 4 - 12所示。当初级绕组w1加以激励电压1? U 时, 根据变压器的工作原理, 在两个次级绕组w2a 和w2b 中便会产生感应电势a E 2?和b E 2?。 如果工艺上保证变压器结构完全对称,则当活动衔铁处于初始平衡位置时, 必然会使两互感系数M1=M2。根据电磁感应原理, 将有??=b a E E 22。 由于变压器两次级绕组反向串联, 因而0222=-=???b a E E U , 即差动变压器输出电压为零。 图4-12 差动变压器等压电路 活动衔铁向上移动时,由于磁阻的影响, w2a 中磁通将大于w2b, 使M1>M2, 因而a E 2?增加, 而b E 2?减小。 反之, b E 2?增加, a E 2?减小。因为? ??-=b a E E U 222, 所以当a E 2?、b E 2?随着衔铁位移x 变化时, 2?U 也必将随x 变化。 图 4 - 13 给出了变

二极管包络检波器和同步检波器仿真实验报告

二极管包络检波器和同步检波器仿真实验报告 姓名: 学号: 班级:09电信二班

一、实验目的 1.进一步了解调幅波的原理,掌握调幅波的解调方法。 2.了解二极管包络检波的主要指标,检波效率及波形失真。 3.掌握用集成电路实现同步检波的方法。 二、实验内容及步骤 (1)二极管包络检波电路 1.利用EWB软件绘制出如图 1.15的二极管包络检波电路。 2.按图设置各个元件参数,其中调幅信号源的调幅度M为0.8。打开仿真开关,从示波器上观察波形。画出波形图。 3.分别将Rp调到最大或最小,从示波器上可以观察到惰性失真和负峰切割失真,画出波形图。 附图1.15二极管包络检波器仿真实验电路 (2)同步检波电路 1.利用EWB软件绘制出如图 1.19的双边带调幅实验电路。 2. 按图设置各个元件参数,打开仿真开关,从示波器上观察同步检波器输入的双边带信号及输出信号。画出波形图。 3.改变同步检波器参考信号相位,观察输出波形的变化,画出波形图。

附图1.19 双边带调制及其同步检波的仿真实验电路 三.实验报告要求 1.画出二极管包络检波器的波形。画出二极管包络检波器的惰性失真和负峰切割失真波形。RP1=0% RP2=100% RP=0% RP2=0%负峰切割失真

RP1=100% RP2=0%负峰切割失真 R1=R2=100%惰性失真

2.对比画出同步检波电路的正常波形和改变参考信号相位波形。 同步检波电路的正常波形 Uc=3.5344V

参考信号相位30度波形Uc=3.0668V 参考信号相位45度波形Uc=2.5082V

二极管包络检波实验,实验二,高频电子线路实验报告,南京理工大学紫金学院

高频实验报告 实验名称:二极管包络检波实验 姓名: 学号: 班级:通信 时间:2013.12 南京理工大学紫金学院电光系

一、 实验目的 1.加深对二极管大信号包络检波工作原理的理解。 2.掌握用二极管大信号包络检波器实现普通调幅波(AM )解调的方法。了解滤波电容数值对AM 波解调影响。 3.了解电路参数对普通调幅波(AM )解调影响。 图4-1是二极管大信号包络检波电路,图4-2表明了大信号检波的工作原理。输入信号)(t u i 为正并超过C 和1R 上的)(0t u 时,二极管导通,信号通过二极管向C 充电,此时)(0t u 随充电电压上升而升高。当)(t u i 下降且小于)(0t u 时,二极管反向截止,此时停止向C 充电并通过L R 放电,)(0t u 随放电而下降。充电时,二极管的正向电阻D r 较小,充电较快,)(0t u 以接近)(t u i 上升的速率升高。放电时,因电阻L R 比D r 大的多(通常Ω=k R L 10~5),放电慢,故)(0t u 的波动小,并保证基本上接近于)(t u i 的幅值。如果)(t u i 是高频等幅波,则)(0t u 是大小为0U 的直流电压(忽略了少量的高频成分),这正是带有滤波电容的整流电路。当输入信号)(t u i 的幅度增大或减少时,检波器输出电压)(0t u 也将随之近似成比例地升高或降低。当输入信号为调幅波时,检波器输出电压)(0t u 就随着调幅波的包络线

而变化,从而获得调制信号,完成检波作用,由于输出电压)(0t u 的大小与输入电压的峰值接近相等,故把这种检波器称为峰值包络检波器。 2.二极管大信号包络检波效率 检波效率又称电压传输系数,用d η表示。它是检波器的主要性能指标之一,用来描述检波器将高频调幅波转换为低频电压的能力。d η定义为: cm a m cm a m d U m U U m U ΩΩ= = )()(调幅波包线变化的幅度检出的音频电压幅度η 当检波器输入为高频等幅波时,输出平均电压0U ,则d η定义为 cm cm d U U U U 00)()(== 检波电压的幅值整出的直流电压η 这两个定义是一致的,对于同一个检波器,它们的值是相同的。由于检波原理分析可知,二极管包络检波器当C R L 很大而D r 很小时,输出低频电压振幅只略小于调幅波包络振幅,故d η略小于1,实际上d η在80%左右。并且R 足够大时, d η为常数,即检波器输出电压的平均值与输入高频电压的振幅成线性关系,所 以又把二极管峰值包络检波称为线性检波。检波效率与电路参数L R 、C 、0r 以及信号大小有关。它很难用一个简单关系式表达,所以简单的理论计算还不如根据经验估算可靠。如要更精确一些,则可查图表并配以必要实测数据得到。 3.二极管大信号包络检波器输入电阻 输入电阻是检波器的另一个重要的性能指标。对于高频输入信号源来说,检波器相当于一个负载,此负载就是检波器的等效输入电阻in R 。 d L in R R η2~- 上式说明,大信号输入电阻in R 等于负载电阻的一半再除以d η。例如 Ω=k R L 1.5,当d η=0.8,时,则Ω=?= k R in 2.38 .021 .5。 由此数据可知,一般大信号检波比小信号检波输入电阻大。 3.二极管大信号包络检波器检波失真

包络检波器的设计与实现

2013~2014学年第一学期 《高频电子线路》 课程设计报告 题目:包络检波器的设计与实现 专业:电子信息工程 班级:11电信1班 姓名: 指导教师:冯锁 电气工程学院 2013年12月12日

任务书

摘要 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称为检波。检波广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。对调幅波来说是从它的振幅变化提取调制信号的过程;对调频波,是从它的频率变化提取调制信号的过程;对调相波,是从它的相位变化提取调制信号的过程。 工程实际中,有一类信号叫做调幅波信号,这是一种用低频信号控制高频信号幅度的特殊信号。为了把低频信号取出来,需要专门的电路,叫做检波电路。使用二极管可以组成最简单的调幅波检波电路。调幅波解调方法有二极管包络检波器、同步检波器。目前应用最广的是二极管包络检波器,不论哪种振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进行解调。但是,普通调幅信号来说,它的载波分量被抑制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅检波器称为包络。 为了生动直观的分析检波电路,利用了最新电子仿真软件Multisim11.0进行二极管包络检波虚拟实验,Multisim具有组建电路快捷、波形生动直观、实验效果理想等优点。计算机虚拟仿真作为高频电子线路实验的辅助手段,是一种很好的选择,可以加深学生对一些抽象枯燥理论的理解,从而达到提高高频电子线路课程教学质量的目的。

目录 第1章设计目的及原理 (4) 1.1设计目的和要求 (4) 1.1设计原理 (4) 第2章指标参数的计算 (8) 2.1电压传输系数的计算 (8) 2.2参数的选择设置 (8) 第3章 Multisim的仿真结果及分析 (11) 总结 (16) 参考文献 (17) 答辩记录及评分表 (18)

包络检波器设计书

《通信电子线路》课程设计说明书 包络检波器 学院:电气与信息工程学院 学生:磊 指导教师:欣职称/学位实验师 专业:通信工程 班级:通信1302班 学号: 1330440253 完成时间: 2015-12-31

工学院通信电子线路课程设计课题任务书 学院:电气与信息工程学院专业:通信工程

摘要 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称为检波。检波广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。对调幅波来说是从它的振幅变化提取调制信号的过程;对调频波是从它的频率变化提取调制信号的过程;对调相波是从它的相位变化提取调制信号的过程。 工程实际中,有一类信号叫做调幅波信号,这是一种用低频信号控制高频信号幅度的特殊信号。为了把低频信号取出来,需要专门的电路,叫做检波电路。使用二极管可以组成最简单的调幅波检波电路。调幅波解调方法有二极管包络检波器、同步检波器。目前应用最广的是二极管包络检波器,不论哪种振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进行解调。但是,普通调幅信号来说,它的载波分量被抑制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅检波器称为包络。 关键词:调幅波;低频信号;振幅检波

目录 1 绪论 0 2 包络检波器设计原理 (1) 2.1原理框图 (1) 2.2原理电路 (2) 2.3工作原理分析 (2) 2.4 峰值包络检波器的输出电路 (4) 2.5 电压传输系数 (4) 2.6检波器的惰性失真 (5) 2.7检波器的底部切割失真 (6) 3包络检波器电路设计 (7) 4调试 (8) 4.1 AM发射机实验 (8) 4.2 AM接收机实验 (9) 参考文献 (11) 致 (12)

包络检波器的设计与实现

目录 前言 (1) 1 设计目的及原理 (2) 1.1设计目的和要求 (2) 1.1设计原理 (2) 2包络检波器指标参数的计算 (6) 2.1电压传输系数的计算 (6) 2.2参数的选择设置 (6) 3 包络检波器电路的仿真 (9) 3.1 Multisim的简单介绍 (10) 3.2 包络检波电路的仿真原理图及实现 (10) 4总结 (13) 5参考文献 (14)

前言 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称为检波。广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。对调幅波来说是从它的振幅变化提取调制信号的过程;对调频波,是从它的频率变化提取调制信号的过程;对调相波,是从它的相位变化提取调制信号的过程。 工程实际中,有一类信号叫做调幅波信号,这是一种用低频信号控制高频信号幅度的特殊信号。为了把低频信号取出来,需要专门的电路,叫做检波电路。使用二极管可以组成最简单的调幅波检波电路。调幅波解调方法有二极管包络检波器、同步检波器。目前应用最广的是二极管包络检波器,不论哪种振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进行解调。但是,对普通调幅信号来说,它的载波分量被抑制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅检波器称为包络。 为了生动直观的分析检波电路,利用最新电子仿真软件Multisim11.0进行二极管包络检波虚拟实验。Multisim具有组建电路快捷、波形生动直观、实验效果理想等优点。计算机虚拟仿真作为高频电子线路实验的辅助手段,是一种很好的选择,可以加深学生对一些抽象枯燥理论的理解,从而达到提高高频电子线路课程教学质量的目的。

实验六 二极管包络检波电路资料

实验六 二极管包络检波电路 一、 实验目的 1. 掌握用二极管大信号包络检波器实现普通调幅波(AM )解调的方法。 2. 了解电路参数对普通调幅波(AM )解调影响。 二、实验使用仪器 1.集成乘法调幅实验板、二极管包络检波实验板 2.高频信号源、100MHz 双踪示波器、万用表。 图6-1是二极管大信号包络检波电路,图6-2表明了大信号检波的工作原理。输入信号)(t u i 为正并超过C 和L R 上的)(0t u 时, 二极管导通,信号通过二极管向C 充电,此时)(0t u 随充电电压上升而升高。当)(t u i 下降且小于)(0t u 时,二极管反向截止,此时停止向C 充 电并通过L R 放电,)(0t u 随放电而下降。充电时,二极管的正向电阻D r 较小,充电较快, )(0t u 以接近)(t u i 上升的速率升高。放电时,因电阻L R 比D r 大得多(通常Ω=k R L 10~5),放电慢,故)(0t u 的波动小,并保证基本上接近于)(t u i 的幅值。如果)(t u i 是高频等幅波,且L R 很大,则)(0t u 几乎是大小为0U 的直流电压,这正是带有滤波电容的半波整流电路。当输入信号)(t u i 的幅度增大或减少时,检波器输出电压)(0t u 也将随之近似成比例地升高或降

低。当输入信号为调幅波时,检波器输出电压)(0t u 就随着调幅波的包络线而变化,从而获得调制信号,完成检波作用,由于输出电压)(0t u 的大小与输入电压的峰值接近相等,故把这种检波器称为峰值包络检波器。 2.二极管大信号包络检波器的电压传输系数 电压传输系数是检波器的主要性能指标之一,用d η表示, cm a m cm a m d U m U U m U ΩΩ== )()(调幅波包线变化的幅度检出的音频电压幅度η 对于二极管包络检波器,当C R L 很大而D r 很小时,输出低频电压振幅只略小于调幅波包络振幅,故d η略小于1,实际上d η在80%左右。并且L R 足够大时,d η为常数,即检波器输出电压的平均值与输入高频电压的振幅成线性关系,所以又把二极管峰值包络检波称为线性检波。电压传输系数与电路参数L R 、C 、0r 以及信号大小有关,很难用一个简单关系式表达,所以d η常用实测估算得到。 3.二极管大信号包络检波器输入电阻 输入电阻是检波器的另一个重要的性能指标。对于高频输入信号源来说,检波器相当于一个负载,此负载就是检波器的等效输入电阻in R 。 d L in R R η2~ - 上式说明,大信号输入电阻in R 等于负载电阻的一半再除以d η。例如Ω=k R L 1.5,当d η=0.8,时,则Ω=?= k R in 2.38 .021 .5。 由此数据可知,一般大信号检波比小信号检波输入电阻大。 3.二极管大信号包络检波器检波失真 检波输出可能产生三种失真:第一种,由于检波二极管伏安特性弯曲引起的非线性失真;第二种是由于滤波电容放电慢引起的惰性失真;第三种是由于输出耦合电容上所充的直流电压引起的负峰切割失真。其中第一种失真主要存在于小信号检波器中,并且是小信号检波器中不可避免的失真,对于大信号检波器这种失真影响不大,主要是后两种失真。 (1) 惰性失真。如图6-3电路所示。

包络检波和同步检波实验

实验七 包络检波和同步检波 一、实验目的 1、掌握二极管峰值包络检波的原理; 2、掌握同步检波的原理; 3.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,分析产生的原因并思考克服的方法。 二、实验仪器 1、示波器 一台 2、稳压电源 一台 3、频谱分析仪 一台 4、高频毫伏表 一台 5、万用表 一台 三、实验原理和相关知识 振幅解调是振幅调制的逆过程,通常称为检波。它的作用是从已调制的高频振荡中恢复出原来的调制信号。检波过程与调制过程正好相反。从频谱来看,检波就是将调幅信号频谱由高频搬移到低频,如图所示(此图为单音频Ω调制的情况)。检波过程也是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。图7-1 给出了检波器检波前后的频谱和波形。 u i 非线性电路(器件) 低通滤波器 u Ω f t t f 0F (a ) (b ) f c +F f c f c £F 图7-1 检波器检波前后的频谱 检波器可分为包络检波和同步检波两大类。AM 振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。包络检波又分为平方律检波、峰值包络检波、平均包络检波等。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。 1二极管(大信号)峰值包络检波器 二极管包络检波器的工作原理:主要是利用二极管的单向导电特性和检波负载RC 的充放电过程来完成调制信号的提取。还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。 串联式二极管(大信号)包络检波器如图7-2所示:在高频信号电压的正半周时,二极管正向导通并对电容器C 充电,由于二极管的正向导通电阻很小,所以充电电流i D 很大,使

相敏检波

相敏检波 (一)相敏检波的功用和原理 1、什么是相敏检波电路? 相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。 2、为什么要采用相敏检波? 包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。第二,包络检波电路本身不具有区分不同载波频率的信号的能力。对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。 3、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是什么? 相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。有了参考信号就可以用它来鉴别输入信号的相位和频率。 4、相敏检波电路与调幅电路在结构上有哪些相似之处?它们又有哪些区别? 将调制信号ux乘以幅值为1的载波信号就可以得到双边带调幅信号us,将双边带调幅信号us再乘以载波信号,经低通滤波后就可以得到调制信号ux。这就是相敏检波电路在结构上与调制电路相似的原因。 二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。这使它们的输入、输出耦合回路与滤波器的结构和参数不同。 (二)相敏检波电路的选频与鉴相特性 1、相敏检波电路的选频特性 什么是相敏检波电路的选频特性? 相敏检波电路的选频特性是指它对不同频率的输入信号有不同的传递特性。以参考信号为基波,所有偶次谐波在载波信号的一个周期内平均输出为零,即它有抑制偶次谐波的功能。对于n=1,3,5等各奇次谐波,输出信号的幅值相应衰减为基波的1/ n,即信号的传递系数随谐波次数增高而衰减,对高次谐波有一定抑制作用。

包络检波及同步检波实验报告

实验十三包络检波及同步检波实验 一、实验目的 1.进一步了解调幅波的原理,掌握调幅波的解调方法。 2.掌握二极管峰值包络检波的原理。 3.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,分析产生的原因并思考克服的方法。 4.掌握用集成电路实现同步检波的方法。 二、实验内容 1.完成普通调幅波的解调。 2.观察抑制载波的双边带调幅波的解调。 3.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波时的现象。 三、实验原理 检波过程是一个解调过程,它与调制过程正好相反。检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。 常用的检波方法有包络检波和同步检波两种。有载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。 图12-1 检波器检波前后的频谱 1.二极管包络检波的工作原理 当输入信号较大(大于0.5伏)时,利用二极管单向导电特性对振幅调制信号的解调,称为大信号检波。 大信号检波原理电路如图12-2(a)所示。检波的物理过程如下:在高频信号电压的正半周时,二极管正向导通并对电容器C 充电,由于二极管的正向导通电阻很小,所以充电电流D i 很大,使电容器的电压C V 很快就接近高频电压的峰值。充电电流的方向如图12-2(a)图中所示。

(a) (b) 图12-2 本实验电路如图12-3所示,主要由二极管D 及RC 低通滤波器组成,利用二极管的单向导电特性和检波负载RC 的充放电过程实现检波,所以RC 时间常数的选择很重要。RC 时间常数过大,则会产生对角切割失真又称惰性失真。RC 常数太小,高频分量会滤不干净。综合考虑要求满足下式: a a m m RC 2 max 1-<< Ω 其中:m为调幅系数,max Ω为调制信号最高角频率。 当检波器的直流负载电阻R 与交流音频负载电阻ΩR 不相等,而且调幅度a m 又相当大时会产生负峰切割失真(又称底边切割失真),为了保证不产生负峰切割失真应满足R R m a Ω <。 2.同步检波 1)同步检波原理 同步检波器用于载波被抑止的双边带或单边带信号进行解调。它的特点是必须外加一个频率和相位都与被抑止的载波相同的电压。同步检波器的名称由此而来。 外加载波信号电压加入同步检波器可以有两种方式: 图12-4 同步检波器方框图 一种是将它与接收信号在检波器中相乘,经低通滤波器后检出原调制信号,如图12-4(a)所示;另一种是将它与接收信号相加,经包络检波器后取出原 输出 输入

相敏检波器

1 2 3 4 2 4 1 4 实验二十 相敏检波器实验 一、 实验目的 说明由施密特开关电路及运放组成的相敏检波电路的原理。 二、 实验原理 相敏检波电路如图所示: 图为输入信号端 ,为交流参考电压输入端 ,为输 出端 。 为直流参考电压输入端。 当、 端 输入控制电压信号时,通过差动放大器的作用使 D 和 J 处于开关状态, 从而把端 输入的正弦信号转换成半波整流信号。 三、 实验所需部件 相敏检波器、移相器、音频振荡器、直流稳压电源、低通滤波器、电压表、示波器 四、 1. 实验步骤 将音频振荡器频率幅度旋钮居中,输出信号信号(0°或 180°均可),接相敏 检波器输入端。 2. 3. 将直流稳压电压 2V 档输出电压(正负均可)接相敏检 波器端。 示波器两通道分别接相敏输入、输出端,观察输入、输出波形的相位关系和幅

4 2 5 6 值关系。 4. 改 变端参考电压的极性,观察输入、输出波形的相位和幅值关系。由此可以 得出结论:当参考电压为正时,输入与输出同相,当参考电压为负时,输入与输出反相。 5. 将音频振荡器 0°端输出信号送入移相器输入端,移相器的输出端与相敏检波 器的参考输入 端连接,相敏检波器的信号输入端接音频 0°输出。 6. 用示波器两通道观察附加观察 插口 、 的波形。 可以看出,相敏检波器中整形电路的作用是将输入的正弦波转换成方波,使相 敏检波器中的电子开关能正常工作。 7. 20V 。 8. 9. 将相敏检波器的输出端与低通滤波器的输入端连接,低通输出端接数字电压表 示波器两通道分别接相敏检波器输入输出端。 适当调节音频振荡器幅值旋钮和移相器“移相”旋钮,观察示波器中波形变化 和电压表电压值变化,然后将相敏检波器的输入端改接至音频振荡器 180°输出端口, 观察示波器和电压表的变化。 由此可以看出,当相敏检波器的输入信号和开关信号反相时,输出为正极性的 全波整流信号,电压表只是正极性方向最大值,反之,则输出负极性的全波整流波形, 电压表指示负极性的最大值。 10. 调节移相器“移相”旋钮,利用示波器和电压表,测出相敏检波器的输入 V P-P 值与输出直流电压的关系。 11. 使输入信号与参考信号的相位改变 180°,测出上述关系。 五、 注意事项 相敏检波器最大输入电压 V P-P 值为 20V 。

包络检波器的设计与实现

包络检波器的设计与实 现 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

目录 前言 (1) 4总结 5参考文献

前言 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称为检波。广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。对调幅波来说是从它的振幅变化提取调制信号的过程;对调频波,是从它的频率变化提取调制信号的过程;对调相波,是从它的相位变化提取调制信号的过程。 工程实际中,有一类信号叫做调幅波信号,这是一种用低频信号控制高频信号幅度的特殊信号。为了把低频信号取出来,需要专门的电路,叫做检波电路。使用二极管可以组成最简单的调幅波检波电路。调幅波解调方法有二极管包络检波器、同步检波器。目前应用最广的是二极管包络检波器,不论哪种振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进行解调。但是,对普通调幅信号来说,它的载波分量被抑制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅检波器称为包络。 为了生动直观的分析检波电路,利用最新电子仿真软件进行二极管包络检波虚拟实验。Multisim具有组建电路快捷、波形生动直观、实验效果理想等优点。计算机虚拟仿真作为高频电子线路实验的辅助手段,是一种很好的选择,可以加深学生对一些抽象枯燥理论的理解,从而达到提高高频电子线路课程教学质量的目的。 1设计目的及原理 设计目的和要求 通过课程设计,使学生加强对高频电子技术电路的理解,学会查寻资料﹑方案比较,以及设计计算等环节。进一步提高分析解决实际问题的能力,创造一个动脑动手﹑独立开展电路实验的机会,锻炼分析﹑解决高频电子电路问题的实际本领,真正实现由课本知识向实际能力的转化;通过典型电路的设计与制作,加深对基本原理的了解,增强学生的实践能力。 要求:掌握串、并联谐振回路及耦合回路、高频小信号调谐放大器、高频功率放大器、混频器、幅度调制与解调、角度调制与解调的基本原理,实际电路设计及仿真。 设计要求及主要指标:用检波二极管设计一AM信号包络检波器,并且能够实现以下指标。 输入AM信号:载波频率200kHz正弦波。

3 、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是

一、相敏检波的功用和原理 1、什么是相敏检波电路? 相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。 2、为什么要采用相敏检波? 包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。第二,包络检波电路本身不具有区分不同载波频率的信号的能力。对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。 3、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是什么? 相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。有了参考信号就可以用它来鉴别输入信号的相位和频率。 4、相敏检波电路与调幅电路在结构上有哪些相似之处?它们又有哪些区别? 将调制信号Ux乘以幅值为1的载波信号就可以得到双边带调幅信号Us,将双边带调幅信号Us再乘以载波信号,经低通滤波后就可以得到调制信号Ux。这就是相敏检波电路在结构上与调制电路相似的原因。 二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。这使它们的输入、输出耦合回路与滤波器的结构和参数不同。 二、相敏检波电路的选频与鉴相特性 1、相敏检波电路的选频特性 什么是相敏检波电路的选频特性? 相敏检波电路的选频特性是指它对不同频率的输入信号有不同的传递特性。

峰值包络检波器检波原理及失真分析

峰值包络检波器检波原理及失真分析 【摘要】 峰值包络检波器是由二极管,电阻,电容组成,电路结构十分简单。 检波原理是信号源通过二级管向负载电容C 充电和负载电容C 对负载电阻R 放电的过程,当C 的充放电达到动态平衡后,V 0按高频周期作锯齿状波动,其平均值是稳定的,且变化规律与输入调幅信号的包络变化规律相同,从而实现了AM 信号的解调。峰值包络检波会带来失真,包括惰性失真和负峰切割失真。现在应用不多,但对调幅解调的了解有很大的帮助。 【关键词】 包络检波 锯齿状 原理 失真 惰性 负峰切割 前 言 随着科技的发展,无线电通信在如今应用非常广泛 ,正如现在广泛使用的对讲机一样,即时沟通、经济实用、运营成本低、使用方便 , 同时还具有组呼通播、系统呼叫、机密呼叫等功能。在处理紧急突发事件中,在进行调度指挥中其作用是其他通信工具所不能比拟的。因此,为了更好的理解在高频电子线路中所学的知识和为以后的工作实践打好基础,我们三人借课程设计之际设计了一款峰 值包络检波器。 一、实验电路 实验电路图: 图1 峰值包络检波器原理图 二、工作原理? (1)实验波形如图: 图2 峰值包络检波波型图 RC 电路有两个作用:一是作为检波器的负载;在两端产生解调输出的原调制信号电压;二是滤除检波电流中的高频分量。为此,RC 网络必须满足 R C c <<ω1 且 R C >>Ω1 。式中,c ω为载波角频率,Ω为调制角频率。 1.v s 正半周的部分时间(φ<90o )

二极管导通,对C充电,τ充=R D C。因为?R D很小,所以τ充很小,v o≈v s 2.v s的其余时间(φ>90o) ??二极管截止,C经R放电,τ放=RC。因为?R?很大,所以τ放很大,C上电压下降不多,仍有:v o≈v s ?1 ,2过程循环往复,C上获得与包络(调制信号)相一致的电压波形,有很小的起伏。故称包络检波。 检波过程实质上是信号源通过二级管向负载电容C充电和负载电容C对负载 电阻R放电的过程,充电时间常数为R d C,R d 为二极管正向导通电阻。放电时间 常数为RC,通常R>R d ,因此对C而言充电快、放电慢。经过若干个周期后,检波 器的输出电压V 在充放电过程中逐步建立起来,该电压对二极管VD形成一个大的负电压,从而使二极管在输入电压的峰值附近才导通,导通时间很短,电流导 通角很小。当C的充放电达到动态平衡后,V 按高频周期作锯齿状波动,其平均值是稳定的,且变化规律与输入调幅信号的包络变化规律相同,从而实现了AM 信号的解调。 (2)指标分析 ??因v s幅度较大,用折线法分析。 1.?v s为等幅波 ??包络检波器波形: 图3 包络检波器波形 2.?v s为AM信号 ?v s=V s(1+mcosΩt)cosωo t ???因为Ω<<ωo,所以包络变化缓慢,在ωo的几个周期内:

移相器实验报告

一、移相器与相敏检波器实验 【实验目的】 1. 理解移相器和相敏检波器的工作原理。 2. 学习传感器实验仪和交流毫伏表的使用。 3. 学习用双踪示波器测量相移的方法。 【实验原理】 1. 移相器的工作原理 移相器是由电阻、电抗元件、非线性元件和有源器件等构成的一种电路,当正弦信号经 过移相器时其相位会发生改变。理想的移相器在调整电路参数时,可使通过信号的相位 在 0?~360?之间连续变化,而不改变信号的幅度,即信号可不失真地通过,只是相位发生了变化,图1为移相器的工作原理,其中相角?为经过移相器所获得的。 2. 相敏检波器的工作原理 相敏检波器是一种根据信号的相位来提取有用信号的处理电路,在外部同频控制信号作 用下,用控制信号来截取输入信号,相敏检波器输出的直流分量为反映输入信号与控制 信号 相位差的直流电压,经低通滤波器lpf滤除高频分量后得 到直流输出信号e;相敏检波器的组成框图见图2。 t?10?t??2 设控制信号表达式为: u??t?0?t?t2? ?t??),输入信号与控制信号在时域中的关系见图3。 设输入信号为:u?usin( 用控制信号截取输入信号后得到:u0?u?u,对u0积分并在一个周期内取平均得: 1t/2ue?usin(?t??)dt??t0?t ??t/20?t??)d(?t??)???sin(u/2 [cos(?t??)]t0?tuuu[cos(???)?cos?]??[cos?cos??sin?sin??cos?]?cos?2?2?? ① 由式①可以看出,相敏检波器经低通滤波器输出一个反映输入信号相位差的直流电压, 当??0时,即输入信号与控制信号同相时e? 交时,e?0。 利用相敏检波器可以消除信号中干扰噪声的影响。设输入信号中包含有噪声信号un和 有用信号us,即:u?us?un,则:u0?u?uc?ucus?ucun,对u0积分并在一个周期内1t1t 取平均得:e??ucussin(?t??s)dt??ucunsin(?t??n)dt t0t0 ?1u?,当??90?,即输入信号与控制信号正 ?[uscos(?s??c)?uncos(?n??c)] 通过移相器调节控制信号uc的相位,使噪声信号与控制信号相差90°相角,此时: 则:e??n??c?90?,us ?cos(?s??c),即相敏检波器的输出仅含有有用信号us分量, 噪声信号被剔除。因此,相敏检波器广泛用于通信领域和无损检测领域等用于有用信号 的甄 别。 【实验仪器和装置】 传感器实验仪、双踪示波器、交流毫伏表。 【实验内容】 接通传感器实验仪、双踪示波器和交流毫伏表电源,预热10分钟。 1. 移相器相移量的测量:

实验四二极管大信号包络检波器资料

实验报告 成绩 班级电子112 学号1886110233 姓名张影课程名称 高频电子线路实验与课程设计实验日期2013\11\20 实验名称二极管大信号包络检波器 实验目的: 1、通过实验熟悉大信号检波的工作原理。 2、掌握用二极管大信号包络检波器实现普通调幅波(AM )解调的方法。 3、初步掌握包络检波器的工程估算方法和检波特性的测试方法。 4、了解电路参数对普通调幅波(AM )解调影响。 5、研究电路参数对检波特性的影响。 实验原理: 1、二极管大信号包络检波工作原理 u i t t u 2 u 2u i Ucm m a U cm U 0 U Ωm直流成分U 0 图(1)大信号检波电路图(2)大信号检波原理 图(1)是二极管大信号包络检波电路,图(2)表明了大信号检波的工作原理。输入信号)(t u i 为正并超过C 和L R 上的)(0t u 时,二极管导通,信号通过二极管向C 充电,此时)(0t u 随充电电压上升而升高。当)(t u i 下降且小于)(0t u 时,二极管反向截止,此时停止向C 充电并通过L R 放电,)(0t u 随放电而下降。充电时,二极管的正向电阻D r 较小,

充电较快,)(0t u 以接近)(t u i 上升的速率升高。放电时,因电阻 L R 比D r 大得多(通常k R L 10~5),放电慢,故)(0t u 的波动小,并保证基本上接近于)(t u i 的幅值。如果)(t u i 是高频等幅波,且L R 很大,则)(0t u 几乎是大小为0U 的直流电压,这正是带有滤波电容的半波整流电路。当输入信号)(t u i 的幅度增大或减少时,检波器输出电压)(0t u 也将 随之近似成比例地升高或降低。当输入信号为调幅波时,检波器输出电压)(0t u 就随着 调幅波的包络线而变化,从而获得调制信号,完成检波作用,由于输出电压 )(0t u 的大小与输入电压的峰值接近相等,故把这种检波器称为峰值包络检波器。 2、二极管大信号包络检波器检波失真 检波输出可能产生三种失真:第一种,由于检波二极管伏安特性弯曲引起的非线性失真;第二种是由于滤波电容放电慢引起的惰性失真;第三种是由于输出耦合电容上所充的直流电压引起的负峰切割失真。其中第一种失真主要存在于小信号检波器中,并且是小信号检波器中不可避免的失真,对于大信号检波器这种失真影响不大,主要是后两种失真。 (1) 惰性失真。如图(3)电路所示。 t u u i u 0 图(3)惰性失真原理图 避免惰性失真的条件是 2 )(11L a CR m 上式表明若L CR 放电慢,将促成发生惰性失真。 (2)割底失真。如图(4)所示。

相关文档
最新文档