智能循迹小车变速转弯程序

智能循迹小车变速转弯程序
智能循迹小车变速转弯程序

#include

#define uchar unsigned char

#define uint unsigned int

uchar a,i,time_count=0, count=0,Dutycycle0=50,Dutycycle1=50,flag; uchar state;

/***定义电机控制位***/

sbit INT11=P0^0; //电机控制位,左电机左,芯片中的总开关

sbit INT22=P0^1; // 右电机控制位,高电平有效

sbit INT33=P0^2; //控制左电机,从而控制其中的车轮

sbit INT44=P0^3;

sbit funpwm0=P1^3; ///两个控制PWM的端口

sbit funpwm1=P1^4;

sbit IO4=P2^0; //ST188输出端口

sbit IO1=P2^1;

sbit IO2=P2^2;

sbit IO3=P2^3;

sbit IO5=P0^7;

sfr CCON = 0xD8; // PCA控制寄存器

sbit CCF0 = CCON^0; // PCA模块0中断标志

sbit CCF1 = CCON^1; // PCA模块0中断标志

sbit CR = CCON^6; // PCA计数器阵列溢出标志位

sbit CF = CCON^7; // PCA计数器阵列运行控制位

sfr CMOD = 0xD9; // PCA工作模式寄存器

sfr CL = 0xE9; // PCA的16位计数器----低8位

sfr CH = 0xF9; // PCA的16位计数器----高8位

sfr CCAPM0 = 0xDA; // PCA模块0的输出脉冲频率

sfr CCAP0L = 0xEA; // PCA捕获、比较寄存器——低位字节sfr CCAP0H = 0xFA; // PCA捕获、比较寄存器——高位字节sfr CCAPM1 = 0xDB; // PCA模块1的输出脉冲频率

sfr CCAP1L = 0xEB; // 同上

sfr CCAP1H = 0xFB; // 同上

sfr PCAPWM0= 0xf2; // PCA模块0的PWM寄存器

sfr PCAPWM1= 0xf3; // PCA模块1的PWM寄存器

/*------------------------------------------------

uS延时函数,含有输入参数 unsigned char t,无返回值

unsigned char 是定义无符号字符变量,其值的范围是

0~255 这里使用晶振12M,精确延时请使用汇编,大致延时

长度如下 T=tx2+5 uS

------------------------------------------------*/

void DelayUs2x(unsigned char t)

{

while(--t);

}

/*------------------------------------------------

mS延时函数,含有输入参数 unsigned char t,无返回值

unsigned char 是定义无符号字符变量,其值的范围是

0~255 这里使用晶振12M,精确延时请使用汇编

------------------------------------------------*/

void DelayMs(unsigned char t)

{

while(t--)

{

//大致延时1mS

DelayUs2x(245);

DelayUs2x(245);

}

}

/****************************速度设定:通过改变参数a,b 来来改变两路pwm的占空比数值越大占空比越小*******************************************/ void pwm0(unsigned int a)

{

CCAP0L=a;

CCAP0H=a;

}

void pwm1(unsigned int b) {

CCAP1L=b;

CCAP1H=b;

}

void pwm_Init()

{

CL=0;

CH=0;

CMOD=0x00;

CCAP0H=CCAP0L=0x00;

CCAPM0=0x42;

CCAP1H=CCAP1L=0x00;

CCAPM1=0x42;

CR=1;

}

delay(i)

{

int k,j;

for(j=1000;j>0;j--)

for(k=200;k>0;k--)

i--;

}

former()

{

INT11=1;

INT22=0;

INT33=1;

INT44=0;

pwm0(45);

pwm1(40);

DelayMs(1000);

}

turnleft0() {

pwm0(130);

pwm1(30);

DelayMs(1000); }

turnright0() {

pwm0(30);

pwm1(130);

DelayMs(1000); }

turnleft1() {

pwm0(0Xff);

pwm1(0);

DelayMs(1000); }

turnright1() {

pwm0(0);

pwm1(0Xff);

DelayMs(1000);

}

stop()

{

INT11=1;

INT22=1;

INT33=1;

INT44=1;

}

void turnleft2()

{

INT11=1;

INT22=0;

INT33=0;

INT44=1;

pwm0(0);

pwm1(30);

}

void turnright2()

{

INT11=0;

INT22=1;

INT33=1;

INT44=0;

pwm0(30);

pwm1(0);

}

/*************************主函数***********************************/ main()

{while(1)

{

pwm_Init();

DelayMs(20);

while(1)

{

if(IO5==1) turnright2();

else

{

INT11=1;

INT22=1;

INT33=1;

INT44=1;

}

/*if(IO3==0&&IO2==0&&IO1==0&&IO4==0) former();

if(IO3==0&&IO2==0&&IO1==0&&IO4==1) turnright1(); if(IO3==0&&IO2==0&&IO1==1&&IO4==0) turnright0(); if(IO3==0&&IO2==0&&IO1==1&&IO4==1) turnleft2(); if(IO3==0&&IO2==1&&IO1==0&&IO4==0) turnleft0(); if(IO3==0&&IO2==1&&IO1==0&&IO4==1) turnright1(); if(IO3==0&&IO2==1&&IO1==1&&IO4==0) former();

if(IO3==0&&IO2==1&&IO1==1&&IO4==1) turnleft2(); if(IO3==1&&IO2==0&&IO1==0&&IO4==0) turnleft1(); if(IO3==1&&IO2==0&&IO1==1&&IO4==0) turnleft0(); if(IO3==1&&IO2==0&&IO1==0&&IO4==1) former();

if(IO3==1&&IO2==0&&IO1==1&&IO4==1) turnright1(); if(IO3==1&&IO2==1&&IO1==0&&IO4==0) turnright2(); if(IO3==1&&IO2==1&&IO1==0&&IO4==1) turnleft1(); if(IO3==1&&IO2==1&&IO1==1&&IO4==0) turnright2(); if(IO3==1&&IO2==1&&IO1==1&&IO4==1) former;*/ }

}}

智能循迹小车设计与实现

智能循迹小车设计与实现 摘要本文介绍的是基于单片机STC89C52控制智能循迹小车的设计。利用红外对光管检测黑线与障碍物,并以STC89C52单片机为控制芯片控制电动小汽车的运动,从而实现自动循迹避障的功能。其中小车的电机由LG9110驱动,整个系统的电路结构简单,可靠性高。 关键词STC89C52 LG9110 红外对光管循迹小车

The manufacture of intelligent tracking car Abstract This articale introduces the design of intelligent tracking car based on the STC89C52 single chip computer.Based infrared detection of black lines and the road obstacles,and use a STC89C52 MCU as the controlling core for the movement.A electronic drived,which can automatic track and avoid obstacle,was designed and fabricated.In which,the electric machinery of car is drived by the LG9110.The electric circuit stuction of whole system is simple,and the function is dependable. Keywords STC89C52 LG9110 Infrared emitting diode Tracking car

智能循迹小车程序

#include #define uchar unsigned char #define uint unsigned int //D0-D7:f,b,a,e,d,h,c,g 共阴依次编码 //74LS04反相器驱动数码管 uchar code table[10] = {0x5F,0x42,0x9E,0xD6,0xC3,0xD5,0xDD,0x46,0xDF,0xD7}; uchar i = 0; //用于0-3数码管轮流显示 uint j = 0; //计时的次数 uint time=0; //计时 uint pwm=16; //占空比 uint speed; //调制PWM波的当前的值 sbit R=P3^2; //右边传感器P3^2 sbit L=P3^3; //左边传感器P3^3 //电机驱动口定义 sbit E NB=P1^0; //前轮电机停止控制使能 sbit E NA=P1^1; //后轮控制调速控制端口 sbit I N1=P1^2; //前轮 sbit I N2=P1^3; //前轮 sbit I N3=P1^4; //后轮 sbit I N4=P1^5; //后轮 void Init() { TMOD = 0x12; //定时器0用方式2,定时器1用方式1 TH0=(256-200)/256; //pwm TL0=(256-200)/256; TH1 = 0x0F8; //定时2ms TL1 = 0x30; EA = 1; ET0 = 1; ET1 = 1; TR0 = 1; TR1 = 1; } void tim0(void) interrupt 1 //产生PWM { speed ++; if(speed <= pwm) //pwm 就相当于占100的比例 { ENA = 1; } else if(speed < 100) { ENA = 0; }

基于STC89C52单片机-红外智能循迹小车 (1)

基于STC89C52单片机红外智能循迹小车 实验报告册 学院:电气工程学院 协会:电子科技协会 班级:电气1206 班 姓名:蔡申申 学号:201223910625 联系方式:151 **** ****

摘要 本报告论述了自己参加第八届河南工业大学科技创新大赛——基于STC89C52RC单片机红外智能循迹小车的方案论证、制作过程、调试过程。设计采用STC89C52RC单片机为核心控制器件,采用TCRT5000红外反射式开关传感器作为小车的循迹模块来识别白色路面中央的黑色引导线,采集信号并将信号转换为能被单片机识别的数字信号,单片机获取路面信息后,进行分析、处理,最后控制减速电机转动实现转向。实验表明:该系统抗干扰能力强、电路结构简单、制作成本低,运行平稳、可靠性好。 关键词:STC89C52单片机、反射式光电对管、PWM调速 减速电机

目录 摘要 (2) 1 绪论 (4) 1.1 智能循迹小车概述 (4) 1.1.1 循迹小车的发展历程回顾 (4) 1.1.2 智能循迹分类 (4) 1.1.3 智能循迹小车的应用 (5) 2 智能循迹小车总体设计方案 (5) 2.1 整体设计方案 (5) 2.1.1 系统设计步骤 (5) 2.1.2 系统基本组成 (5) 2.2 整体控制方案确定 (6) 3 系统的硬件设计 (6) 3.1 单片机电路的设计 (6) 3.1.1 单片机的功能特性描述 (6) 3.1.2 晶振电路 (7) 3.1.3 复位电路 (7) 3.2 光电传感器模块 (8) 3.2.1 传感器分布 (8) 3.3 电机驱动电路 (9) 3.3.1 L298N引脚结构 (9) 3.3.2 电机驱动原理 (9) 4 系统的软件设计 (10) 4.1 软件设计的流程 (10) 4.2 本系统的编译器 (10) 5 系统的总体调试 (11) 5.1 硬件的测试 (11) 5.2 系统的软件调试 (11) 结论 (11) 致谢 (11) 参考文献 (12) 附录A 原理图与模块电路图 (12) 附录B 程序代码 (13) 附录C 硬件实物图 (15)

智能循迹小车C程序(完美-详尽)

-----------------------小车运行主程序------------------- -------------------------------------------------------- 简介:@模块组成:红外对管检测模块----五组对管,五个信号采集端口 直流电机驱动模块----驱动两个直流电机,另一个轮子用万向轮 单片机最小系统------用于烧写程序,控制智能小车运动 @功能简介:在白色地面或皮质上用黑色胶带粘贴出路线路径宽度微大于相邻检测管间距。 这样小车便可在其上循迹运行。 @补充说明:该程序采取“右优先”的原则: 即右边有黑线向右转, 若无,前方有黑线,向前走, 若无,左边有黑线,向左转, 若全无,从右方向后转。 程序开头定义的变量的取值是根据我的小车所调试选择好的, 如果采用本程序,请自行调试适合自己小车的合适参数值。 编者:陈尧,黄永刚(江苏大学电气学院二年级,三年级) 1.假定:IN1=1,IN3=1时电机正向转动,必须保证本条件 2.假定:遇到白线输出0,遇到黑线输出1; 如果实际电路是:遇到白线输出1,遇到黑线输出0, 这种情况下只需要将第四,第五句改成: #define m0 1 #define m1 0 即可。 3.说明1:直行---------------速度full_speed_left,full_speed_right. 转弯,调头速度------correct_speed_left,correct_speed_right. 微小校正时---------高速轮full_speed_left,full_speed_right; 低速轮correct_speed. 可以通过调节第六,七,八,九,十条程序,改变各个状态 下的占空比(Duty cycle ),以求达到合适的转弯,直行速度 4.lenth----------length检测到黑线到启动转动的时间间隔 5.width----------mid3在黑线上到脱离黑线的时间差 6.mid3-----------作为判断中心位置是否进入黑线的标志,由于运行的粗糙性和惯性, 常取其他对管的输出信号作为判断条件 7.check_right----若先检测到左边黑线,并且左边已出黑线,判断右端是否压黑线时间拖延

智能循迹小车总体设计方案

智能循迹小车总体设计方案 1.1 整体设计方案 本系统采用简单明了的设计方案。通过高发射功率红外光电二极管和高灵敏度光电晶体管组成的传感器循迹模块黑线路经,然后由AT89S52通过IO口控制L298N驱动模块改变两个直流电机的工作状态,最后实现小车循迹。 1.2系统设计步骤 (1)根据设计要求,确定控制方案; (2)将各个模块进行组装并进行简单调试; (3)画出程序流程图,使用C语言进行编程; (4)将程序烧录到单片机内; (5)进行调试以实现控制功能。 1.2.1系统基本组成 智能循迹小车主要由AT89S52单片机电路、循迹模块、L298N驱动模块、直流电机、小车底板、电源模块等组成。 (1)单片机电路:采用AT89S52芯片作为控制单元。AT89S52单片机具有低成本、高性能、抗干扰能力强、超低功耗、低电磁干扰,并且与传统的8051单片机程序兼容,无需改变硬件,支持在系统编程技术。使用ISP可不用编程器直接在PCB板上烧录程序,修改、调速都方便。 (2)循迹模块:采用脉冲调制反射红外发射接收器作为循迹传感器,调制信号带有交流分量,可减少外界的大量干扰。信号采集部分就相

当于智能循迹小车的眼睛,有它完成黑线识别并产生高、低平信号传送到控制单元,然后单片机生成指令来控制驱动模块来控制两个直流电机的工作状态,来完成自动循迹。 (3)L298N驱动模块:采用L298N作为点击驱动芯片。L298N具有高电压、大电流、响应频率高的全桥驱动芯片,一片L298N可以分别控制两个直流电机,并且带有控制使能端。该电机驱动芯片驱动能力强、操作方便、稳定性好,性能优良。L298N的使能端可以外接电平控制,也可以利用单片机进行软件控制,满足各种复杂电路的需要。另外,L298N的驱动功率较大,能够根据输入电压的大小输出不同的电压和功率,解决了负载能力不够的问题。

智能小车单片机程序+论文+流程图+管教说明-报告模板

简易智能小汽车 队长:黄洋队员:尹志军梁荣新 赛前辅导老师:臧春华文稿整理辅导老师: 摘要 设计分为5个模块:前轮PWM驱动电路、后轮PWM驱动电路、轨迹探测模块、障碍物探测模块、光源探测模块。前轮PWM驱动电路用于转向控制;后轮PWM驱动电路用于方向和速度控制;探测模块利用三个光感元件,对黑色轨道进行寻迹;障碍物探测模块用于对两个障碍物进行探测;光源探测模块利用三个光敏电阻制成,用于寻光并确定光源角度,以期获得较为精确的转向值。绕障方案利用障碍物较低这个重要条件,在C点出发后,先利用光敏电阻获得光源的方向是本设计的一大特色。 一、方案论证与比较 1.轨迹探测模块设计与比较 方案一、使用简易光电传感器结合外围电路探测。 由于所采用光电传感器实际效果并不理想,对行驶过程中的稳定性要求很高,且误测几率较大、易受光线环境和路面介质影响。在使用过程极易出现问题,而且容易因为该部件造成整个系统的不稳定。故最终未采用该方案。 方案二、利用两只光电开关。 分别置于轨道的两侧,根据其接受到白线的先后来控制小车转向来调整车向,但测试表明,如果两只光电开关之间的距离很小,则约束了速度,如果着重于小车速度的提升,则随着车速的提升,则势必要求两只光电开关之间的距离加大,从而使得小车的行驶路线脱离轨道幅度较大,小车将无法快速完成准确的导向从而有可能导致寻迹失败。 方案三、用三只光电开关。 一只置于轨道中间,两只置于轨道外侧,当小车脱离轨道时,即当置于中间的一只光电开关脱离轨道时,等待外面任一只检测到黑线后,做出相应的转向调整,直到中间的光电开关重新检测到黑线(即回到轨道)再恢复正向行驶。现场实测表明,虽然小车在寻迹过程中有一定的左右摇摆(因为所购小车的内部结构决定了光电开光之间的距离到达不了精确计算值1厘米),但只要控制好行驶速度就可保证车身基本上接近于沿靠轨道行驶。 综合考虑到寻迹准确性和行驶速度的要求,采用方案三。 2.数据存储比较 方案一、采用外接ROM进行存储。 采用外接ROM进行存储是保存实验数据的惯用方法,其特点是在单片机断电之后

51红外循迹小车报告(舵机版)最终版

简易教程

前言 往届全国大学生电子设计竞赛曾多次出现了集光、机、电于一体的简易智能小车题目,此次,笔者在通过多次论证、比较与实验之后,制作出了简易小车的寻迹电路系统。 整个系统基于普通玩具小车的机械结构,利用小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。系统分为检测、控制、驱动三个模块。首先利用光电对接收管和路面信号进行检测,然后经过比较器处理,对软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。 智能小车能在画有黑线的白纸“路面”上行驶,这是由于黑线和白纸对光线的反射系数不同,小车可根据接收到的反射光的强弱来判断“道路”---黑线,最终实现简单的循迹运动。 个人水平有限,有错误不足之处,还望各位前辈同学多多包含,指出修正,完善。谢谢! 李学云王维 2016年7月27号

目录 前言 (1) 第一部分硬件设计 (1) 1.1 车模选择 (1) 1.2传感器选择 (1) 1.3 控制模块选择 (2) 第二部分软件设计及调试 (3) 2.1 开发环境 (3) 2.2总体框架 (3) 2.3 舵机程序设计与调试 (3) 2.3.1 程序设计 (3) 2.3.2 调试 (3) 2.3.3 程序代码 (4) 2.4 传感器调试 (5) 2.4.1 传感器好坏的检测 (5) 2.4.2 单片机能否识别信号并输出信号 (5) 2.5 综合调试 (7) 附录1 (9) 第一篇舵机(舵机及转向控制原理) (9) 1.1概述 (9) 1.2舵机的组成 (10) 1.3舵机工作原理 (11) 1.4舵机使用中应注意的事项 (12) 1.5如何利用程序实现转向 (12) 1.6舵机测试程序 (13) 附录2 (14) 第二篇光电红外传感器 (14) 2.1传感器的原理 (14) 2.2红外光电传感器ST188 结构图 (15) 2.3传感器的选择 (15) 2.4传感器的安装 (16) 2.5使用方法 (16) 2.7红外传感器输入输出调试程序 (17)

智能循迹小车分析方案

智能循迹小车设计 专业:自动化 班级:0804班 姓名: 指导老师: 2018年8月——2018年10月 摘要:

本课题是基于AT89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 AT89S52 单片机为系统控制处理器;采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 引言

当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。 作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车<特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。 无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛

智能循迹小车C程序完美详尽

/*------------------------------------------------------ -----------------------小车运行主程序------------------- -------------------------------------------------------- 简介:@模块组成:红外对管检测模块----五组对管,五个信号采集端口 直流电机驱动模块----驱动两个直流电机,另一个轮子用万向轮 单片机最小系统------用于烧写程序,控制智能小车运动 @功能简介:在白色地面或皮质上用黑色胶带粘贴出路线路径宽度微大于相邻检测管间距。 这样小车便可在其上循迹运行。 @补充说明:该程序采取“右优先”的原则: 即右边有黑线向右转, 若无,前方有黑线,向前走, 若无,左边有黑线,向左转, 若全无,从右方向后转。 程序开头定义的变量的取值是根据我的小车所调试选择好的, 如果采用本程序,请自行调试适合自己小车的合适参数值。 编者:陈尧,黄永刚(江苏大学电气学院二年级,三年级) 1.假定:IN1=1,IN3=1时电机正向转动,必须保证本条件 2.假定:遇到白线输出0,遇到黑线输出1; 如果实际电路是:遇到白线输出1,遇到黑线输出0, 这种情况下只需要将第四,第五句改成: #define m0 1 #define m1 0 即可。 3.说明1:直行---------------速度full_speed_left,full_speed_right. 转弯,调头速度------correct_speed_left,correct_speed_right. 微小校正时---------高速轮full_speed_left,full_speed_right; 低速轮correct_speed. 可以通过调节第六,七,八,九,十条程序,改变各个状态 下的占空比(Duty cycle ),以求达到合适的转弯,直行速度 4.lenth----------length检测到黑线到启动转动的时间间隔 5.width----------mid3在黑线上到脱离黑线的时间差 6.mid3-----------作为判断中心位置是否进入黑线的标志,由于运行的粗糙性和惯性, 常取其他对管的输出信号作为判断条件 7.check_right----若先检测到左边黑线,并且左边已出黑线,判断右端是否压黑线时间拖延

智能循迹小车程序代码

/**************************************************************** ************ 硬件连接 P1_4接驱动模块ENA使能端,输入PWM信号调节速度 P1_5接驱动模块ENB使能端,输入PWM信号调节速度 P1_0 P1_1接IN1 IN2 当P1_0=1,P1_1=0; 时左电机正转驱动蓝色输出 端OUT1 OUT2接左电机 P1_0 P1_1接IN1 IN2 当P1_0=0,P1_1=1; 时左电机反转 P1_2 P1_3接IN3 IN4 当P1_2=1,P1_3=0; 时右电机正转驱动蓝色输出 端OUT3 OUT4接右电机 P1_2 P1_3接IN3 IN4 当P1_2=0,P1_3=1; 时右电机反转 P1_0接四路寻迹模块接口第一路输出信号即中控板上面标记为OUT1 P1_1接四路寻迹模块接口第二路输出信号即中控板上面标记为OUT2 P1_2接四路寻迹模块接口第三路输出信号即中控板上面标记为OUT3 P1_3接四路寻迹模块接口第四路输出信号即中控板上面标记为OUT4 八路寻迹传感器有信号(白线)为0 没有信号(黑线)为1 ***************************************************************** ***********/ #include #define Right_moto_pwm P1_4 //接驱动模块ENA使能端,输入PWM 信号调节速度 #define Left_moto_pwm P1_5 //接驱动模块ENB使能端,输入PWM 信号调节速度 #define Left_1_led P2_0 //四路寻迹模块接口第一路 #define Left_2_led P2_1 //四路寻迹模块接口第二路 #define Right_1_led P2_2 //四路寻迹模块接口第三路 #define Right_2_led P2_3 //四路寻迹模块接口第四路 #define Left_moto_go {P1_0=0,P1_1=1;} //左电机前进 #define Left_moto_back {P1_0=1,P1_1=0;} //左电机后退 #define Left_moto_stop {P1_0=1,P1_1=1;} //左电机停转 #define Right_moto_go {P1_2=0,P1_3=1;} //右电机前转

PWM调速+循迹__智能小车程序

//T0产生双路PWM信号,L298N为直流电机调速,接L298N时相应的管脚上最好接上10K 的上拉电阻。 /* 晶振采用12M,产生的PWM的频率约为100Hz */ #include #include #define uchar unsigned char #define uint unsigned int sbit en1=P3^4; /* L298的Enable A */ sbit en2=P3^5; /* L298的Enable B */ sbit s1=P1^0; /* L298的Input 1 */ sbit s2=P1^1; /* L298的Input 2 */ sbit s3=P1^3; /* L298的Input 3 */ sbit s4=P1^2; /* L298的Input 4 */ sbit R=P2^0; sbit C=P2^1; sbit L=P2^2; sbit key=P1^4; uchar t=0; /* 中断计数器*/ uchar m1=0; /* 电机1速度值*/ uchar m2=0; /* 电机2速度值*/ uchar tmp1,tmp2; /* 电机当前速度值*/ /* 电机控制函数index-电机号(1,2); speed-电机速度(0-100) */ void motor(uchar index, char speed) { if(speed<=100) { if(index==1) /* 电机1的处理*/ { m1=abs(speed); /* 取速度的绝对值*/ s1=1; s2=0; } if(index==2) /* 电机2的处理*/ { m2=abs(speed); /* 电机2的速度控制*/ s3=1; s4=0; } } } void Back(void) {

智能循迹小车设计

智能循迹/避障小车研究 工作报告 一、智能循迹小车程序结构框图 二、Proteus仿真图 三、软件程序设计

一、智能循迹小车程序结构框图 经过几天在网上的查找,对智能循迹/避障小车有了大致的了 解, 一般有三个模块: 1、最基本的小车驱动模块,使用两个二相四线步进电机对小车的两个后轮分别进行驱动,前轮最好用万向轮,能使小车更好地转弯; 2、小车循迹模块,在小车底部有三个并排安装的红外对管,对黑色与白色的反射信号不同,经单片机处理后对小车进行相应处理; 3、避障模块,我写的程序中对于避障模块是用中断来处理的(即安装在小车车头的红外对管检测到有障碍物后,就会向单片机的P3_2口输出一个高电平或是低电平,这时中断程序将对小车进行预先设定好的避障处理),但是在程序结构框图中,我不太会表示中断处理方式,所以就用查询的方式画了。

N Y N Y 二、Proteus 仿真图 我用Proteus 大概地仿真了小车的运行状态。图中的两个二相四线步进电机就代表小车的左右轮(假定步进电机顺时针转动方向为小车前进方向),网上有很多种驱动芯片,在仿真时我只使用L298N 芯

片来驱动步进电机。用三个单刀双制开关模拟用于小车循迹的三个红外对管的输出信号,经一个与门与三极管开关连接到P3_3口,中断程序对P1_0, P1_1, P1_2三个口进行检测,并做出相应处理。同时因为避障模块的优先级高于循迹模块,所以将外部中断0用于避障,外部中断1用于循迹。P1_3口则用于检测小车是否到达终点。 1、小车驱动模块: 使用一片298芯片驱动一个二相四线步进电机,电机的电压为12V。

基于某51单片机的智能小车控制系统

工业职业技术学院 毕业设计 课题名称基于51与单片机的智能小车控制系统 系(院)名称电气工程系 专业及班级 学生 学号 指导教师

完成日期年11 月19 日

摘要 随着我国科学技术的进步,智能化作为现代社会的新产物开始越来越普及,各种高科技也广泛应用于智能小车和机器人玩具制造领域,使智能机器人越来越多样化。智能小车是一个多种高薪技术的集成体,它融合了机械、电子、传感器、计算机硬件、软件、人工智能等许多学科的知识,可以涉及到当今许多前沿领域的技术。 整个小车平台主要以51单片机为控制核心,通过无线遥控实现前进后退和转向行驶,通过红外线传感器,实现小车的自适应巡航、避障等功能。设计采用对比选择,模块独立,综合处理的研究方法。通过翻阅大量的相关文献资料,分析整理出有关信息,在此基础上列出不同的解决方案,结合实际情况对比方案优劣选出最优方案进行设计。从电机车体,最小系统到无线遥控,红外线对管的自动寻迹再到红外线自动避障和语音控制,完成各模块设计。通过调试检测各模块,得到正确的信号输出,实现其应有的功能。最后将各个调试成功的模块结合到小车的车体上,结合程序,通过单片机的控制,将各模块有效整合在一起,达到所预期的目标,完成最终设计与制作,能使小车在一定的环境中智能化运转。 关键字:智能小车,单片机,红外传感器。

目录 第一章绪论.............................................................................................................................- 1 - 1.1.1智能循迹小车概述........................................................................................................- 1 - 1.1.2课题研究的目的和意义 ...............................................................................................- 2 - 1.1.3智能循迹小车智能循迹分类.......................................................................................- 3 - 1.1.4智能循迹小车的应用....................................................................................................- 3 - 第二章方案设计 ..........................................................................................................................- 5 - 2.1 主控系统.........................................................................................................................- 5 - 2.2单片机最小系统 ...............................................................................................................- 6 - 2.2.1 STC89C52简介...................................................................................................- 6 - 2.2.2 时钟电路...............................................................................................................- 8 - 2.2.3复位及复位电路....................................................................................................- 8 - 2.3 电机驱动模块................................................................................................................ - 10 - 2.4 循迹及避障模块............................................................................................................ - 11 - 2.5 机械系统......................................................................................................................... - 11 - 2.6电源模块......................................................................................................................... - 11 - 第三章硬件设计 ..................................................................................................................... - 12 - 3.1总体设计......................................................................................................................... - 12 - 3.1.1主板设计框图..................................................................................................... - 12 - 主板设计框图如图3-1,所需原件清单如表3-1 .................................................. - 12 -

智能循迹小车程序

智能循迹小车程序 Document number:BGCG-0857-BTDO-0089-2022

#include<> #define uchar unsigned char #define uint unsigned int //D0-D7:f,b,a,e,d,h,c,g 共阴依次编码 //74LS04反相器驱动数码管 uchar code table[10] = {0x5F,0x42,0x9E,0xD6,0xC3,0xD5,0xDD,0x46,0xDF,0xD7}; uchar i = 0; //用于0-3数码管轮流显示uint j = 0; //计时的次数 uint time=0; //计时 uint pwm=16; //占空比 uint speed; //调制PWM波的当前的值 sbit R=P3^2; //右边传感器 P3^2 sbit L=P3^3; //左边传感器 P3^3 //电机驱动口定义 sbit ENB=P1^0; //前轮电机停止控制使能 sbit ENA=P1^1; //后轮控制调速控制端口 sbit IN1=P1^2; //前轮 sbit IN2=P1^3; //前轮 sbit IN3=P1^4; //后轮

sbit IN4=P1^5; //后轮 void Init() { TMOD = 0x12; //定时器0用方式2,定时器1用方式1 TH0=(256-200)/256; //pwm TL0=(256-200)/256; TH1 = 0x0F8; //定时2ms TL1 = 0x30; EA = 1; ET0 = 1; ET1 = 1; TR0 = 1; TR1 = 1; } void tim0(void) interrupt 1 //产生PWM { speed ++; if(speed <= pwm) //pwm 就相当于占100的比例{ ENA = 1; }

智能寻迹小车以及程序

寻迹小车 在历届全国大学生电子设计竞赛中多次出现了集光、机、电于一体的简易智能小车题目。笔者通过论证、比较、实验之后,制作出了简易小车的寻迹电路系统。整个系统基于普通玩具小车的机械结构,并利用了小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。 总体方案 整个电路系统分为检测、控制、驱动三个模块。首先利用光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。系统方案方框图如图1所示。 图1 智能小车寻迹系统框图 传感检测单元 小车循迹原理 该智能小车在画有黑线的白纸“路面”上行驶,由于黑线和白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”—黑线。笔者在该模块中利用了简单、应用也比较普遍的检测方法——红外探测法。 红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。 传感器的选择 市场上用于红外探测法的器件较多,可以利用反射式传感器外接简单电路自制探头,也可以使用结构简单、工作性能可靠的集成式红外探头。ST系列集成红外探头价格便宜、体积小、使用方便、性能可靠、用途广泛,所以该系统中最终选择了ST168反射传感器作为红外光的发射和接收器件,其内部结构和外接电路均较为简单,如图2所示:

图2 ST168检测电路 ST168采用高发射功率红外光、电二极管和高灵敏光电晶体管组成,采用非接触式检测方式。ST168的检测距离很小,一般为8~15毫米,因为8毫米以下是它的检测盲区,而大于15毫米则很容易受干扰。笔者经过多次测试、比较,发现把传感器安装在距离检测物表面10毫米时,检测效果最好。 R1限制发射二极管的电流,发射管的电流和发射功率成正比,但受其极限输入正向电流50mA的影响,用R1=150的电阻作为限流电阻,Vcc=5V作为电源电压,测试发现发射功率完全能满足检测需要;可变电阻R2可限制接收电路的电流,一方面保护接收红外管;另一方面可调节检测电路的灵敏度。因为传感器输出端得到的是模拟电压信号,所以在输出端增加了比较器,先将ST168输出电压与2.5V进行比较,再送给单片机处理和控制。 传感器的安装 正确选择检测方法和传感器件是决定循迹效果的重要因素,而且正确的器件安装方法也是循迹电路好坏的一个重要因素。从简单、方便、可靠等角度出发,同时在底盘装设4个红外探测头,进行两级方向纠正控制,将大大提高其循迹的可靠性,具体位置分布如图3所示。

智能循迹小车详细源代码程序MSPID

巡线车程序(完整版) 1 #ifndef _Macro.h_ 2 #define _Macro.h_ 3 #include 4 #include 5 #define uchar unsigned char 6 #define uint unsigned int 7 #define one 11.11 8 #define LMAX 1999 9 #define RMAX 3999 10 #define CPU_F ((double)8000000) 11 #define delay_us(x) __delay_cycles((long)(CPU_F*(double)x/1000000.0)) 12 13 #define delay_ms(x) __delay_cycles((long)(CPU_F*(double)x/1000.0)) 14 #define PC 20 // 比例放大系数 15 #define IC 0 //积分放大系数 16 #define DC 85 //大系数 17 #define LEFTOUT TACCR1 18 #define RIGHTOUT TACCR2 19 #define SensorIn P5IN 20 #define F 5000//5000hz 21 #define Period (8000000/F) 22 #define EnableLeftPos P3OUT|=BIT1 23 #define UnenableLeftPos P3OUT&=~BIT1 24 25 #define EnableLeftNeg P3OUT|=BIT0 26 #define UnenableLeftNeg P3OUT&=~BIT0 27 28 #define EnableRightPos P3OUT|=BIT2 29 #define UnenableRightPos P3OUT&=~BIT2 30 31 #define EnableRightNeg P3OUT|=BIT3 32 #define UnenableRightNeg P3OUT&=~BIT3 33 34 #define Basic_Left 100//百分之八十 35 #define Basic_Right 100//Basic_Left 36 #define MAX (100) 37 #define MIN (-100) 38 #define foreward 1 39 #define backward 0

智能循迹小车总体设计方案

智能循迹小车总体设计方案 整体设计方案 本系统采用简单明了的设计方案。通过高发射功率红外光电二极管和高灵敏度光电晶体管组成的传感器循迹模块黑线路经,然后由AT89S52通过IO口控制L298N驱动模块改变两个直流电机的工作状态,最后实现小车循迹。 系统设计步骤 (1)根据设计要求,确定控制方案; (2)将各个模块进行组装并进行简单调试; (3)画出程序流程图,使用C语言进行编程; (4)将程序烧录到单片机内; (5)进行调试以实现控制功能。 系统基本组成 智能循迹小车主要由AT89S52单片机电路、循迹模块、L298N驱动模块、直流电机、小车底板、电源模块等组成。 (1)单片机电路:采用AT89S52芯片作为控制单元。AT89S52单片机具有低成本、高性能、抗干扰能力强、超低功耗、低电磁干扰,并且与传统的8051单片机程序兼容,无需改变硬件,支持在系统编程技术。使用ISP可不用编程器直接在PCB板上烧录程序,修改、调速都

方便。 (2)循迹模块:采用脉冲调制反射红外发射接收器作为循迹传感器,调制信号带有交流分量,可减少外界的大量干扰。信号采集部分就相当于智能循迹小车的眼睛,有它完成黑线识别并产生高、低平信号传送到控制单元,然后单片机生成指令来控制驱动模块来控制两个直流电机的工作状态,来完成自动循迹。 (3)L298N驱动模块:采用L298N作为点击驱动芯片。L298N具有高电压、大电流、响应频率高的全桥驱动芯片,一片L298N可以分别控制两个直流电机,并且带有控制使能端。该电机驱动芯片驱动能力强、操作方便、稳定性好,性能优良。L298N的使能端可以外接电平控制,也可以利用单片机进行软件控制,满足各种复杂电路的需要。另外,L298N的驱动功率较大,能够根据输入电压的大小输出不同的电压和功率,解决了负载能力不够的问题。

基于单片机的智能小车开题报告

毕业设计(论文) 开题报告 设计(论文)题目:基于单片机的智能小车 学院名称:电子与信息工程学院 专业:电子与信息工程 班级:电信092班 姓名:杨介派学号09401180228 指导教师:胡劲松职称教授 定稿日期:2013 年1 月26 日

基于单片机的智能小车 1.课题研究背景和意义 智能化作为现代社会的新产物,是以后的发展方向,他可以按照预先设定的模式在一个特定的环境里自动的运作,无需人为管理,便可以完成预期所要达到的或是更高的目标。它集中地运用了计算机、传感、信息、通信、导航、人工智能及自动控制等技术,是典型的高新技术综合体。智能车辆是目前世界车辆工程领域研究的热点和汽车工业增长的新动向。随着企业生产技术的不断提高以及对自动化技术要求的不断加深,智能车辆已在许多工业部门获得了广泛的应用。无论是从科学发展、理论研究的角度,还是从汽车工业发展以及市场竞争的角度看,对智能车辆的研究都是必要的。而智能小车的研究及相关产品开发也将有利于我国在此领域技术发展与进步。因此,研制一种智能,高效的智能小车控制系统具有重要的实际意义和科学理论价值。 2.国内外研究现状及发展趋势 2.1 国外智能车辆的现状研究 国外智能车辆的研究历史较长,始于上世纪50年代,它的发展历程大致可以分为三个阶段: 第一阶段:20世纪50年代是智能车辆研究的初始阶段。1954年美国Barrett Electronic 公司研究开发出了世界上第一台自主引导车系统,该系统只是一个运行在固定路线上的拖车式运货平台,但它却具有了智能车辆最基本的特征即无人驾驶。 第二阶段:从80年代中后期,世界主要发达国家对智能车辆开展可卓有成就的研究,在欧洲,普罗米修斯项目于1986年开始了在这个领域的探索,在美洲,美国于1995年成立了国家自动高速公路系统联盟,其目标之一就是研究发展智能车辆的可行性,并促进智能车辆技术进入实用化。 第三阶段:从90年代开始,智能车辆进入了深入、系统、大规模的研究阶段。最为突出的是,美国卡内基-梅陇大学机器人研究所一共完成了Navlab系列的自主车的研究,取得了显著的成就。 2.2 国内智能车辆的现状研究 国内的许多高校和科研院所都在进行ITS关键技术、设备的研究,随着ITS研究的兴起,我国已形成了一支ITS技术研究开发的专业技术队伍。交通部已将ITS研究列入“十五”科技发展计划和2010年长期规划。相信经过相关领域的共同努力,我国ITS及智能车辆的技术水平

相关文档
最新文档