浅析矩阵论的发展与应用1解读

浅析矩阵论的发展与应用1解读
浅析矩阵论的发展与应用1解读

浅析矩阵论的发展和应用

摘要:矩阵是数学中的一个重要的基本概念。起初的矩阵式作为线性代数中的一个小分支慢慢发展而来的,但随着其在图论、代数、组合数学和统计上的广泛应用,使之逐渐成为数学中一个不可替代的组成部分,并发展为一个独立的分支。矩阵理论体系的形成,也推广了矩阵论在不同领域的发展和应用。本文从矩阵论发展过程的角度出发,浅析了矩阵论在不同领域的应用。关键字:矩阵论,矩阵分解,实际应用

1矩阵论的发展

“Matrix”这一词语由西尔维斯特首先使用的,但是他并没有给出明确的概念。矩阵的现代概念在19 世纪初期逐渐形成。19世纪初期,德国数学家高斯、爱森斯坦等已经使用了矩阵中的有关线性变换和矩阵乘积等的相关知识。矩阵(Matrix)的明确概念是由英国数学家凯莱在1858年在著作《关于矩阵理论的研究报告》中给出的。在这份报告中,凯莱率先将矩阵作为一个独立的数学对象加以研究,他被认为是矩阵论的创立者,并为矩阵理论的发展奠定了良好的基础。随后,弗罗伯纽斯等人逐渐完善了矩阵的理论体现形成了矩阵的现代理论[1]。

然而,矩阵理论思想的萌芽却由来已久。早在公元前1世纪的《九章算术》中[2],矩阵形式解方程组已经运用的相当成熟,但也仅仅是作为线性方程组系数的排列形式解决实际问题,并未建立起独立的矩阵理论。直到18世纪和19世纪中叶,这种排列形式在线性方程组和行列式计算中的应用日益广泛并为矩阵的发展提供了良好的条件。矩阵理论的早起的概念是独立于矩阵理论本身而存在的,它从不同的领域和思想研究中的逐步发展,并逐步形成了后来的矩阵理论。首先是在17世纪的欧洲,克莱姆和范德蒙等数学家将行列式在线性方程组的求解中做了极大的应用,并最终形成现代矩阵论中的克莱姆法则和范德蒙行列式。到18世纪末,拉格朗日、达朗贝尔等数学家将矩阵(此时矩阵的概念还没有明确提出)的维度空间从单维扩展到了四维或者n维,并提出了n个变量(12,n

x x x)的二次型。直到19世纪的初期,伴随着行列式理论的蓬勃发展,与矩阵理论密切相关的线性空间、线性变换理论等也趋于成熟。但是在1844年之前n维空间的概念一直未能从代数中独立出来。在此之前,它一直被认为是符号化的算术。n维空间概念的真正脱离出来成为一个脱离空间直观的纯数学概念是以1844格拉斯曼发表的《张量演算》为节点的。19世纪初到19世纪3、40年代,以柯西、雅可比、凯莱以及哈密顿等人为代表的数学家都为矩阵理论的形成和发展做了很多突出的贡献。

2 不同理论中的矩阵思想和矩阵思想的创立

矩阵理论的形成是在多种理论的共同推进下而演化出来,并形成独立的数学对象。不同理论中的矩阵里理论思想的孕育和发展也是因“论”而异。下面主要简要介绍一下以二次型理论、微分方程理论、行列式理论等理论中的矩阵思想的孕育和发展,并简要说明西尔维斯特对矩阵的初期研究和矩阵理论的创立。

2.1 二次型理论中的矩阵思想

矩阵理论在二次型理论中的体现主要是矩阵的阵列。在当时,矩阵中的阵列就是一二次型为主要形式表示的。在1748年,欧拉就已经将矩阵论中的特征值和特征根的相关概念应用到了三个变量的二次型中。特征方程的概念是由拉格朗日在他有关于线性微分方程的著作中提出的,与此同时,特征根的概念也在拉普拉斯的作品中出现过。随后在1773年,拉格朗日在齐次多项式中提出线性变换的概念及齐次线性正交变换[1]。即将齐次多项式的表达式2

22rz qyz py ++通过线性代换???+=+=nx

ms z Nx Ms y ,变换成()()222Nm Mn q pr Q PR --=-。 1801年高斯出版《算术研究》,将欧拉,拉格朗日的二次型理论进行了系统的推广。过程如下:一整数n 表示成整数,,,a b x y 的形式,设()n cy bxy ax F =++=222y x , ,令???+=+='

'''y x y y x x δγβα。则F 变换成一个新的形式()n y c y x b x a y x F =++=22'''''2''''',,其中()

()222'''βγδ--=-a ac b c a b ,'F 的系数依赖于F 的系数和变换本身。这种将变换的系数写成矩阵阵列的形式,实际上就是后来的矩阵理论中的乘法思想。尽管当时的高斯已经用单个字母只带一个特殊的变换,但并没有明确的提出乘法这中思想。

2.2 微分方程中的矩阵思想

微分方程的发展源自于物理问题的需要,物理学中的微分方程的普遍的应用“迫使”微分成为一门独立的学科。微分方程的求解过程中渗透着矩阵的一些概念,诸如特征值,特征向量等。特征方程的概念在微分方程中早就有隐含,例如欧拉考虑弹性问题求解常系数一般线性方程时就已经有涉及到。在达朗贝尔[4]的从1743 年到1758 年的著作中,对二阶微分方程组

()321031

22,,==+∑=i y a dt y d k k ik i 进行了探讨,为了解这个方程组,对3个方程分别乘上一个常

量i v ,而后加在一起得

()321031,,==+∑=k v a v k ik i i λ,即如果()321v v v 是矩阵()ik a A =相应于λ的特征向量,那么变换332211y v y v y v u ++=就是把方程化简成单个微分方程022=+u dt

u d λ。在化简过程中孕育了特征向量、特征值等概念。 受到二次曲面的启发,通过二次型的化简对微分方程进行研究,柯西在研究的过程中孕育了对称矩阵、特征方程、正交变换等矩阵中的概念。在二次 曲面的问题中,柯西通过将一个二次曲面用一个二次型来表示,再通过将坐标变换将二次型转换成只含有平方项的形式。即将矩阵在线性变换的作用下实现对角化,并在n 个变量的二次型中,将系数化为对角矩阵。之后柯西、西尔维斯特、雅可比等人分别证明了是对成矩阵的特征根是实数。

2.3 行列式中的矩阵思想

矩阵和行列式的发展是同时进行的。行列式的发展促进了矩阵的产生,矩阵的发展则为行列式的进步起了推动作用。线性方程组的问题早在17世纪中期就已经出现了,先后有莱布尼兹、克莱姆等数学家运用行列式来解决线性方程组的问题。1764年,Bezout 和欧拉分别证明了含有n 个未知量n 个方程的的齐次线性方程组在系数行列式等于零的时候有非零解。

在行列式的发展中,贡献较为突出的就是范德蒙,较为著名的理论成果主要以其名字命名的范德蒙行列式[5]

。范德蒙之后,柯西在行列式的理论方面也有突出贡献,他的贡献主要是一般行列式的乘法定理。证明了新组的行列式是原来2 个组的行列式的乘积,即j

i c .=j i a .j i b .,这里j i a .和j i b .代表n 阶行列式,j k n k k i j i b a c .1

..∑==。这些理论中,实际上涉及了矩阵论中的正

定矩阵、对称矩阵以及相似变换等概念和知识。之后又有雅可比和爱森斯坦等人分别在行列式的研究中涉及到了相对应矩阵论中矩阵的运算不符合交换律等问题。

2.4 矩阵的创立

1850年,西尔维斯特在研究方程的个数与未知量的个数不相同的线性方程时,由于无法使用行列式,所以引入了Matrix-矩阵这一词语。现代的矩阵理论给出矩阵的定义就是:由m n ?个数排成的m 行n 列的数表。在此之后,西尔维斯特还分别引入了初等因子、不变因子的概念[5]。虽然后来一些著名的数学家都对矩阵中的不同概念给出了的定义,也在矩阵领域的研究中做了很多重要的工作。但是直到凯莱在研究线性变化的不变量时,才把矩阵作为一个独立的数学概念提

出来,矩阵才作为一个独立的理论加以研究。

矩阵概念的引入,首先是由凯莱发表的一系列和矩阵相关的文章,将零散的矩阵的知识发展为系统完善的理论体系。矩阵论的创立应归功与凯莱。凯莱在矩阵的创立过程中做了极大的贡献。其中矩阵的转置矩阵、对称矩阵和斜对称矩阵的定义都是由凯莱给出的。“从逻辑上来说,矩阵的概念应限于行列式的概念,但在历史上却正好相反。”凯莱如是说。1858年,《A memoir on the theory of matrices》系统阐述了矩阵的理论体系,并在文中给出了矩阵乘积的定义。

对矩阵的研究并没有因为矩阵论的产生而停止。1884年,西尔维斯特给出了矩阵中的对角矩阵和数量矩阵的定义。1861年,史密斯给出齐次方程组的解的存在性和个数时引进了增广矩阵和非增广矩阵的术语。同时,德国数学家弗罗伯纽斯的贡献也是不可磨灭的,他的贡献主要是在矩阵的特征方程、特征根、矩阵的秩、正交矩阵、矩阵方程等方面。并给出了正交矩阵、相似矩阵和合同矩阵的概念,指明了不同类型矩阵之间的关系和矩阵之间的重要性质。除此之外,许多数学家对矩阵论的创立和发展都有着极为重要的作用,限于文章的篇幅,这里就不在一一赘述,仅给出了几位有着卓越贡献的数学家的较为突出的成绩。

3矩阵论的应用

从上述矩阵的发展历史我们就可以看出,矩阵论在各个理论研究领域和生活中都有广发的应用。例如,矩阵理论在数值计算、线性规划、数据分析、科学实验、信号传输等领域都被广发应用。随着科学技术的发展,各领域各学科对矩阵论使用的广泛程度也在增加,矩阵论的作用也越来越越重要。下面简述矩阵论在现实生活中的几个方面的应用。

3.1矩阵在经济学中的应用

在生活中的各个领域,数学在经济学中的应用无疑是最为广泛的。本小节主要是结合最典型的经济学中的案例说明矩阵在经济学中的应用。研究的问题是在一定需求的情况下,系统内各个企业应该如何生产才能满足需求。通过矩阵的引入和应用,该问题很容易就得到了解决。

例如:在经济系统中存在这样三个企业,煤矿、电厂和铁路。且每个企业都有自己的单一产品并都有本系统内各企业的产品来加工或变换。假设已知表格如下[6]:

现假设一个月中三个企业的订单为:煤矿4万元,电厂3.5万元,铁路4.5万元。现研究该

月个企业如何生产才能完成任务?假设1x 、2x 、3x 分别为煤矿,电厂,铁路的总产量,则课得到如下矩阵关系:

123[,,]T x x x x =,[4000035004500]T d =,00.350.40.050.150.40.150.150.2T ????=??????

有x d Tx =+ 经过一系列的矩阵变换,得到矩阵I T -的逆矩阵是存在的(I 是单位矩阵),说明无论需求d 如何变化,总能得到x 的解,也就是该经济系统是可行的。该案例虽然简单,但是可以归结出,经济学中的许多问题都可以归结或抽象成为简单的数学概念,而很多的数学概念是可以利用矩阵论中的知识进行求解的。此外,矩阵在经济学中还有其他方面的应用:1.利用矩阵方法计算投入产出分析中的直接消耗系数和完全消耗系数;2.利用矩阵方法求矛盾线性方程组的最小二乘解;3.利用矩阵的方法求线性规划问题中的最优解;4.矩阵的初等行变换在标准化经济效果中的应用;

5. 矩阵的理论与方法在农业科研中的几个应用。矩阵等数学基础知识在自然科学的其他领域也有着广泛的应用,诸如工业中,在理论上研究电路图的、电话网和城市交通网等设计的问题,都可以通过矩阵论的知识完成和实现。

3.2 矩阵论在密码学中的应用

计算机科学技术也是矩阵论应用较为广泛的一个领域。矩阵计算的方便性使得矩阵可以简单的表示复杂的公式。在数字图像处理、计算机学中和人工智能方面都能发挥其作用[7]。本小姐以密码学为例。

在军事通讯中,常将字符(信号)与数字对应,如[7]

26

252454321 z y x e d c b a 例如信息are 对应一个矩阵[]5181=B ,但如果按这种方式传输,则很容易被敌人破译. 于是必须采取加密措施,即用一个约定的加密矩阵A 乘以原信号B ,传输信号为T AB C =(加密),收到信号的一方再将信号还原(破译)为C A B T 1-=. 如果敌方不知道加密矩阵,

则很难破译.设收到的信号为[]T C 312721=,并已知加密矩阵为????

??????-=111110101A ,问原信号B 是什么?

就上述问题,接收者可以在知道加密矩阵A 的情况下,通过对矩阵A 求逆和矩阵C 相城得

到矩阵B,也就是未加密的信号。此外,加密学中的棋盘密码、凯撒密码和维吉尼亚密码等各种密码都有矩阵论的应用。

3.3其他应用

除了在上述两种领域中的应用,矩阵论更广泛的应用主要是在工程计算中,这就是设计正交矩阵,广义逆矩阵[8]等等以系列的应用。统计学密切有关的如下几个方面:矩阵偏序、矩阵不等式、广义逆矩阵等,这些方面与统计学息息相关,特别是在多元分析和线性模型参数估计中都有着重要的应用。广义逆矩阵是对逆矩阵的推广。通过矩阵知识的运用,简化计算来减少计算耗时和复杂度等等。

4总结

矩阵论发展的悠久历史使之具有及其丰富的内容。作为一种基本的工具,矩阵理论在包括数学学科在内的各个领域都有着广泛的应用。现代科学技术的发展也给矩阵论的发展带来了广阔的发展前景。

参考文献

[1].李文林. 数学史概论[M]. 北京: 高等教育出版社,2002

[2].钱宝琮. 中国数学史[M]. 北京: 科学出版社,1964

[3].M. 克莱因.古今数学思想[M]. 上海: 上海科学技术出版社, 2002

[4].邱启荣. 矩阵论与数值分析[M]. 北京:清华大学出版社, 2013

[5].方保镕,周继东,李医民. 矩阵论[M]. 北京: 清华大学出版社, 2004

[6].邱汶华. 浅析矩阵在经济中的应用[J]. 廊坊师范学院学院报(自然科学版), 2009年03期

[7].汤燕. 矩阵在密码学中的应用[J]. 教科文汇(下旬刊). 2010年08期

[8].林海明. 矩阵及其应用[J]. 数学的实践与认识. 1982年01期

读书的好处

1、行万里路,读万卷书。

2、书山有路勤为径,学海无涯苦作舟。

3、读书破万卷,下笔如有神。

4、我所学到的任何有价值的知识都是由自学中得来的。——达尔文

5、少壮不努力,老大徒悲伤。

6、黑发不知勤学早,白首方悔读书迟。——颜真卿

7、宝剑锋从磨砺出,梅花香自苦寒来。

8、读书要三到:心到、眼到、口到

9、玉不琢、不成器,人不学、不知义。

10、一日无书,百事荒废。——陈寿

11、书是人类进步的阶梯。

12、一日不读口生,一日不写手生。

13、我扑在书上,就像饥饿的人扑在面包上。——高尔基

14、书到用时方恨少、事非经过不知难。——陆游

15、读一本好书,就如同和一个高尚的人在交谈——歌德

16、读一切好书,就是和许多高尚的人谈话。——笛卡儿

17、学习永远不晚。——高尔基

18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向

19、学而不思则惘,思而不学则殆。——孔子

20、读书给人以快乐、给人以光彩、给人以才干。——培根

数值计算方法学习心得

数值计算方法学习心得 ------一个代码的方法是很重要,一个算法的思想也很重要,但 在我看来,更重要的是解决问题的方法,就像爱因斯坦说的内容比 思维本身更重要。 我上去讲的那次其实做了挺充分的准备,程序的运行,pdf文档,算法公式的推导,程序伪代码,不过有一点缺陷的地方,很多细节 没有讲的很清楚吧,下来之后也是更清楚了这个问题。 然后一学期下来,总的来说,看其他同学的分享,我也学习到 许多东西,并非只是代码的方法,更多的是章胜同学的口才,攀忠 的排版,小冯的深入挖掘…都是对我而言比算法更加值得珍惜的东西,又骄傲地回想一下,曾同为一个项目组的我们也更加感到做项 目对自己发展的巨大帮助了。 同时从这些次的实验中我发现以前学到的很多知识都非常有用。 比如说,以前做项目的时候,项目导师一直要求对于要上传的 文件尽量用pdf格式,不管是ppt还是文档,这便算是对产权的一种 保护。 再比如代码分享,最基础的要求便是——其他人拿到你的代码 也能运行出来,其次是代码分享的规范性,像我们可以用轻量级Ubuntu Pastebin,以前做过一小段时间acm,集训队里对于代码的分享都是推荐用这个,像数值计算实验我觉得用这个也差不多了,其 次项目级代码还是推荐github(被微软收购了),它的又是可能更 多在于个人代码平台的搭建,当然像readme文档及必要的一些数据 集放在上面都更方便一些。

然后在实验中,发现debug能力的重要性,对于代码错误点的 正确分析,以及一些与他人交流的“正规”途径,讨论算法可能出 错的地方以及要注意的细节等,比如acm比赛都是以三人为一小组,讨论过后,讲了一遍会发现自己对算法理解更加深刻。 然后学习算法,做项目做算法一般的正常流程是看论文,尽量 看英文文献,一般就是第一手资料,然后根据论文对算法的描述, 就是如同课上的流程一样,对算法进一步理解,然后进行复现,最 后就是尝试自己改进。比如知网查询牛顿法相关论文,会找到大量 可以参考的文献。 最后的最后,想说一下,计算机专业的同学看这个数值分析, 不一定行云流水,但肯定不至于看不懂写不出来,所以我们还是要 提高自己的核心竞争力,就是利用我们的优势,对于这种算法方面 的编程,至少比他们用的更加熟练,至少面对一个问题,我们能思 考出对应问题的最佳算法是哪一个更合适解决问题。 附记: 对课程的一些小建议: 1. debug的能力不容忽视,比如给一个关于代码实现已知错误的代码给同学们,让同学们自己思考一下,然后分享各自的debug方法,一步一步的去修改代码,最后集全班的力量完成代码的debug,这往往更能提升同学们的代码能力。 2. 课堂上的效率其实是有点低的,可能会给学生带来一些负反馈,降低学习热情。 3. 总的来说还是从这门课程中学到许多东西。 数值分析学习心得体会

数值分析心得体会

数值分析心得体会 篇一:学习数值分析的经验 数值分析实验的经验、感受、收获、建议班级:计算131 学号:XX014302 姓名:曾欢欢 数值分析实验主要就是学习MATLAB的使用以及对数值分析类容的应用,可以使学生更加理解和记忆数值分析学得类容,也巩固了MATLAB的学习,有利于以后这个软件我们的使用。在做实验中,我们需要具备较好的编程能力、明白MATLAB软件的使用以及掌握数值分析的思想,才能让我们独立自主的完成该作业,如果是上述能力有限的同学,需要借助MATLAB的书以及网络来完成实验。数值分析实验对于我来说还是有一定难度,所以我课下先复习了MATLAB的使用方法以及编写程序的基本类容,借助互联网和同学老师资源完成了数值分析得实验的内容。在实验书写中,我复习了各种知识,所以我认为这门课程是有必要且是有用处的,特别是需要处理大量实验数据的人员,很有必要深入了解学习它,这样在以后的工作学习里面就减少了很多计算问题也提高了实验结果的精确度。 学习数值分析的经验、感受、收获、建议数值分析的内容包括插值与逼近,数值微分与数值积分,非线性方程与线性方程组的数值解法,矩阵的特征值与特征向量计算,常微分方程数值解等。

首先我们必须明白数值分析的用途。通常所学的其他数学类学科都是由公式定理开始,从研究他们的定义,性质再到证明与应用。但实际上,尤其是工程,物理,化学等其它具体的学科。往往我们拿到 手的只是通过实验得到的数据。如果是验证性试验,需要代回到公式 进行分析,验证。但往往更多面对的是研究性或试探性试验,无具体 公式定理可代。那就必须通过插值,拟合等计算方法进行数据处理以得到一个相对可用的一般公式。还有许多计算公式理论上非常复杂,在工程中不实用,所以必须根据实际情况把它转化成多项式近似表 示。学习数值分析,不应盲目记公式,因为公事通常很长且很乏味。其次,应从公式所面临的问题以及用途出发。比如插值方法,就 是就是把实验所得的数据看成是公式的解,由这些解反推出一个近似公式,可以具有局部一般性。再比如说拟合,在插值的基础上考虑实 验误差,通过拟合能将误差尽可能缩小,之后目的也是得到一个具有 一定条件下的一般性的公式。。建议学习本门课程要结合知识与实际,比如在物理实验里面很多

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

数值分析 第一章 学习小结

数值分析 第1章绪论 --------学习小结 一、本章学习体会 通过本章的学习,让我初窥数学的又一个新领域。数值分析这门课,与我之前所学联系紧密,区别却也很大。在本章中,我学到的是对数据误差计算,对误差的分析,以及关于向量和矩阵的范数的相关内容。 误差的计算方法很多,对于不同的数据需要使用不同的方法,或直接计算,或用泰勒公式。而对于二元函数的误差计算亦有其独自的方法。无论是什么方法,其目的都是为了能够通过误差的计算,发现有效数字、计算方法等对误差的影响。 而对误差的分析,则是通过对大量数据进行分析,从而选择出相对适合的算法,尽可能减少误差。如果能够找到一个好的算法,不仅能够减少计算误差,同时也可以减少计算次数,提高计算效率。 对于向量和矩阵的范数,我是第一次接触,而且其概念略微抽象。因此学起来较为吃力,仅仅知道它是向量与矩阵“大小”的度量。故对这部分内容的困惑也相对较多。 本章的困惑主要有两方面。一方面是如何能够寻找一个可靠而高效的算法。虽然知道算法选择的原则,但对于很多未接触的问题,真正寻找一个好的算法还是很困难。另一方面困惑来源于范数,不明白范数的意义和用途究竟算什么。希望通过以后的学习能够渐渐解开自己的疑惑。 二、本章知识梳理

2.1 数值分析的研究对象 数值分析是计算数学的一个重要分支,研究各种数学问题的数值解法,包括方法的构造和求解过程的理论分析。它致力于研究如何用数值计算的方法求解各种基本数学问题以及在求解过程中出现的收敛性,数值稳定性和误差估计等内容。 2.2误差知识与算法知识 2.2.1误差来源 误差按来源分为模型误差、观测误差、截断误差、舍入误差与传播误差五种。其中模型误差与观测误差属于建模过程中产生的误差,而截断误差、舍入误差与传播误差属于研究数值方法过程中产生的误差。 2.2.2绝对误差、相对误差与有效数字 1.(1)绝对误差e指的是精确值与近似值的差值。 绝对误差:

数值分析学习心得体会.doc

数值分析学习感想 一个学期的数值分析,在老师的带领下,让我对这门课程有了深刻的理解和感悟。这门 课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处 理问题的时候,可以合理适当的提出方案和假设。他的内容贴近实际,像数值分析,数值微 分,求解线性方程组的解等,使数学理论更加有实际意义。 数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有 了更加方便以及科学的方法。像第一章就讲的误差,在现实生活中,也许没有太过于注意误 差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误 差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在 别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数 值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出 的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。 数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数 学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反三。像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中 的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容 易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的, 这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的 都是不同的算法。而在看待问题上,不同的思考方式总是可以快速的全方位的去看透彻问题, 从而知道如何去解决。 在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的不懈讲解下, 我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自 己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触 到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。 计算132 2013014923 张霖篇二:数值分析学习报告 数值分析学习心得报告 班级:11级软工一班 姓名: * * * 学号: 20117610*** 指导老师:* * * 学习数值分析的心得体会 无意中的一次选择,让我接触了数值分析。 作为这学期的选修课,我从内心深处来讲,数值分析真的有点难。感觉它是在高等数学 和线性代数的基础上,又加深了探讨。虽然这节课很难,我学的不是很好,但我依然对它比 较感兴趣。下面就具体说说我的学习体会,让那些感兴趣的同学有个参考。 学习数值分析,我们首先得知道一个软件——matlab。matrix laboratory,即矩阵实验 室,是math work公司推出的一套高效率的数值计算和可视化软件。它是当今科学界最具影 响力、也是最具活力的软件,它起源于矩阵运算,并高速发展成计算机语言。它的优点是强 大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面、便捷的与其他程序和语 言接口。 根据上网搜集到的资料,你就会发现matlab有许多优点: 首先,编程简单使用方便。到目前为止,我已经学过c语言,机器语言,java语言,这

数值分析读后感

数值分析读后感 M060112101 刘洪兰 研究生生活的第一个半年快要结束了,回想一下这半年是个学习基础知识的忙碌的半年,作为基础课程,我自认为数值分析是最重要的一门课程,不论是理论分析还是实际应用它都有无可替代的作用,原来很多无法解决的实际问题,学了数值分析之后才感觉找到了另一个灵巧而又准确的解决方法,现在就我这半年对数值分析的学习简单的谈一下感想。 数值分析插值法的引入,帮我们解决了已知一些函数点求一些在这些已知点附近的未知点的问题,他能构造出一个能很好拟合这些已知点性质的函数,并且能根据精度的要求做出灵活的构造,使计算变得更加精确更加简单。当函数只在有限点集上给定函数值,要求在包含该点集的区间内用公式给出函数的表达式,这一类的问题是函数逼近问题,最佳二次逼近和最小二乘法分别从连续和离散的角度用相对简单的表达式对复杂的函数做出了很好的逼近。在一些数值积分求法复杂的时候,数值分析提供的梯形公式和辛普森公式用一些特殊点的和对积分作出估计,是原来无法运算的积分问题获得很好的解答,另外还有更精确的复合中点公式、复合梯形公式、复合辛普森公式,当然还有已正交基为基底的对一些问题更加精确的高斯公式。 在一些实际问题的线性方程的求解中,未知数个数有时候会很多,而且零元素也较多时,普通的求解方法就显得不适用了,在这个时候,用迭代法求解便成了最佳的选择。数值分析给我们三种常用的迭代方法:雅克比迭代、高斯赛德尔迭代和超松弛迭代,每一种都是很好地解决方法。在非线性方程与方程组的数值求解问题中,有方法简单但计算步数相对比较多的二分法和不动点迭代求法,也有应用更加广泛的牛顿法和弦截法,使原本复杂的非线性问题变得相对非常简单。矩阵特征值的计算问题,用乘幂法求最大特征值和特征向量,用反幂法求最小特征值和特征向量,用幂方法还可以求出接近数值p的特征值和特征向量,给我们一个全新的求解特征值和特征向量的方法。最后的欧拉法,梯形法,改进的欧拉法,还有经典的标准四阶龙格库塔方法都是用于常微分方程初值问题的数值解法。 除了以上这些具体的数值解法之外,数值分析还给出了我们很多关于误差估计的概念,这在实际问题中很重要,因为实际问题都会有一定的精度要求,我感觉这也是我学习数值分析之后的一个很大的收获,对误差有了一个比之前更加系统的了解,也认识到误差在解决实际问题中的影响。 总之,经过一学期对数值分析的学习,我感觉收获很多,不仅使自己解决问题的思路得到开拓,也培养了自己严谨的思维习惯,但是,同时我也感觉还有数值分析的一些方法自己没能完全理解,我相信自己对数值分析的学习不会随着考试的结束而结束的,在以后的学习中,我还要继续深化对它的学习,最后谢谢老师这学期对我们细心又耐心的数值讲解,在您的帮助下我才能学到这么多东西,谢谢老师。这就是我这学期对数值分析学习后的感想。

数值分析考试复习总结

1 误差 相对误差和绝对误差得概念 例题: 当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生? 答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差: 建立数学模型过程中产生:模型误差 参数误差 选用数值方法产生:截断误差 计算过程产生:舍入误差 传播误差 6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差. 解 a 的相对误差:由于 31021|)(|-?≤-≤a x x E . x a x x E r -=)(, 221018 1 10921)(--?=?≤ x E r . (1Th ) )(a f 对于)(x f 的误差和相对误差. |11||)(|a x f E ---==()25 .0210113 21??≤ -+---a x x a =310- 33 104110|)(|--?=-≤a f E r . □ 2有效数字 基本原则:1 两个很接近的数字不做减法: 2: 不用很小得数做分母(不用很大的数做分子) 例题: 4.改变下列表达式使计算结果比较精确: (1) ;1||,11211<<+--+x x x x 对 (2) ;1,11>>- - +x x x x x 对 (3) 1||,0,cos 1<<≠-x x x x 对. 解 (1) )21()122x x x ++. (2) ) 11(2x x x x x -++. (3) x x x x x x x cos 1sin )cos 1(sin cos 12+≈ +=-. □

(整理)数值分析计算方法超级总结

工程硕士《数值分析》总复习题(2011年用) [由教材中的习题、例题和历届考试题选编而成,供教师讲解和学生复习用] 一. 解答下列问题: 1)下列所取近似值有多少位有效数字( 注意根据什么? ): a) 对 e = 2.718281828459045…,取* x = 2.71828 b) 数学家祖冲之取 113355 作为π的近似值. c) 经过四舍五入得出的近似值12345,-0.001, 90.55000, 它们的有效 数字位数分别为 位, 位, 位。 2) 简述下名词: a) 截断误差 (不超过60字) b) 舍入误差 (不超过60字) c) 算法数值稳定性 (不超过60字) 3) 试推导( 按定义或利用近似公式 ): 计算3 x 时的相对误差约等于x 的相对 误差的3倍。 4) 计算球体积3 34r V π= 时,为使其相对误差不超过 0.3% ,求半径r 的相对 误差的允许范围。 5) 计算下式 341 8 )1(3)1(7)1(5)1(22345+-+---+---=x x x x x x P )( 时,为了减少乘除法次数, 通常采用什么算法? 将算式加工成什么形式? 6) 递推公式 ?????=-==- ,2,1,1102 10n y y y n n 如果取 * 041.12y y =≈= ( 三位有效数字 ) 作近似计算, 问计算到 10y 时误差为初始误差的多少倍? 这个计算过程数值稳定吗 ? 二. 插值问题: 1) 设函数 )(x f 在五个互异节点 54321,,,,x x x x x 上对应的函数值为 54321,,,,f f f f f ,根据定理,必存在唯一的次数 (A ) 的插值多项式 )(x P ,满足插值条件 ( B ) . 对此,为了构造Lagrange 插值多项式 )(x L ,由5个节点作 ( C ) 个、次数均为 ( D ) 次的插值基函数

数值分析总结

第一章绪论 1.数值运算的误差估计 2.绝对误差、相对误差与有效数字 3.避免误差的相关问题 病态问题与条件数 算法的数值稳定性 数值运算中的若干原则 第二章非线性方程求根1.不动点迭代格式 不动点迭代格式的构造、计算 全局收敛性判断 局部收敛性与收敛阶判断(两个方法)

2.Newton迭代 格式、计算及几何意义 局部收敛性及收敛阶(单、重根)非局部收敛性判断(两个方法)3.Steffensen迭代 格式及计算 (具有)二阶的局部收敛性 4.Newton迭代的变形 求重根的迭代法(三种方法) 避免导数计算的弦割法(两种方法) Newton下山法* 5.二分法 计算 预先估计对分次数

第三章解线性方程组的直接法 1.矩阵三角分解法及其方程组求解 直接三角分解法及其分解的条件 平方根法(Cholesky 分解) 追赶法 列主元三角分解法* 2.Gauss 消去法 Gauss 主元素消去法(列主元素消去法、全主元素消去法) Gauss 顺序消去法 3.方程组的性态与误差分析 向量和矩阵的范数(基础知识) 方程组解的相对误差估计 矩阵的条件数 病态方程组的求解*

第四章解线性代数方程组的迭代法1.迭代法的基本理论 简单迭代法格式的构造、收敛性判断以及方程组的求解 Gauss—Seidel迭代法格式的构造、收敛性判断以及方程组的求解2.三种迭代法的构造、收敛性判断以及方程组的求解Jacobi迭代法

基于Jacobi迭代法的Gauss—Seidel迭代法 逐次超松弛迭代法①掌握简单迭代收敛性判断的方法。 设B为迭代矩阵,如果||B||<1,则用||B||判断迭代的收敛性比用ρ(B)<1更为方便,但此结论仅为充分条件。 如果||B||≥1,判断迭代的收敛性需考察ρ(B)<1是否成立。 如果需证明迭代发散,则需证明ρ(B)≥1。 ②简单迭代法的收敛快慢,依赖于迭代矩阵谱半径的大小。当ρ(B)<1,迭代次数k≥(mln10)/(-lnρ(B)),则迭代矩阵谱半径越小,收敛越快。当ρ(B)=0时,则理论上迭代有限步得到精确解。 对简单迭代法而言,有的对任意初始向量都收敛(通常所说的收敛),有的对部分初始向量收敛,有的对任意初始向量(解向量除外)都不收敛。 ③对于由简单迭代法导出的Gauss-Seidel迭代法:x(k+1)=B1x(k)+B2x(k)+gk=0,1,… 应用上述结论需首先将由简单迭代法导出的Gauss-Seidel迭代格式改写为简单迭代:x(k+1)=(I–B1)?1B2x(k)+(I?B1)?1gk=0,1,…迭代收敛的充要条件为ρ((I?B1)?1B2)<1 若||(I?B1)?1B2||<1则对于任意的初始向量x(0),与简单迭代法相应的Gauss-Seidel 迭代收敛。 设B=B1+B2,若||B||∞<1,或||B||1<1,则对于任意初始向量x(0),与简单迭代法相应的Gauss-Seidel迭代收敛。 ④掌握Jacobi迭代及由Jacobi迭代导出的Gauss-Seidel迭代收敛性的判断方法。 对于Jacobi迭代与Gauss-Seidel迭代的收敛性,首先考察系数矩阵A是否严格对角占优。 对于Gauss-Seidel迭代,其次考察系数矩阵A是否对称正定。 其它判断方法与简单迭代以及由简单迭代导出的Gauss-Seidel迭代之收敛性判断方法相同。

数值计算方法学习心得

数值计算方法学习心得 在研究生一年级的上半学期,我们安排了计算方法的课程,通过课堂授课、网上学习、学术报告以及课堂监督等方式的引导,我们对计算方法有了全新的认识。我们知道,数学是一门重要的基础学科。离开了数学,科技便无法发展。而在数学这门学科中,数值计算方法有着其不可取代的重要地位。 在授课的过程中,首先利用前几讲课的时间对计算方法的基础进行补充,考虑到有部分专业的学生在本科时期没有接触过计算方法这门课程;计算方法主要研究实际问题,当今社会计算机高速的发展,为人们使用数值计算方法解决科学技术中的各种数学问题提供了有力的硬件条件。要将关于数值计算的实际问题借助于计算机来解决,那么实际的上机操作就显得十分重要。因此,老师在平时课堂授课的同时,也推广网上学习,通过课堂掌握知识、网上复习内容双重方式学习,更有利于我们掌握知识,另外对于我们上机操作也具有十分重要的指导意义。通过网上看教学视频,一方面我们对课上学习的内用加深了印象,另一方面由于课堂上时间有限,对于某些知识,我们在听课时不是很清楚,似懂非懂,在网上学习的帮助下,我们可以在课后及时对这些知识进行进一步的消化,对于我们吸收知识也是一种很好的方式。此外,网上学习具有可重复性的优点,这是课堂上所不具有的特点,在课堂上不懂的知识,在网上可以反复学习,在网上学习中遇到的问题也能够反馈到课堂。所以课堂授课与网上学习相辅相成,各有优点,弥补了各自的不足之处。 很多课应用却是另一码事,学是一码事,当然课程的学术报告也十分重要, 程中,我们学会了,遇到问题却不会解决,所以课程学术报告此时起了关键作用。

学术报告是基于每组学生各自的专业设置的,这样做一方面检验学生应用计算方法的能力,另一方面也是为了引导学生将计算方法与本专业联系起来,学会应用学过的知识对现象进行描述、建模以及采用编程的方法处理数据等。 本学期的计算方法课程相当充实,在老师课上精心的授课、学生课下利用网上资源认真复习、对课程学术报告的完成以及课堂监督下,同学们都受益匪浅,尤其是对于数据处理方法的学习、思维的形成都有极其重要的作用,对于后期的专业研究也有深远的影响。 本学期已经接近尾声,计算方法课程也已经结束,在此向老师表示敬意和感谢。.

数值分析知识点总结

数值分析知识点总结 说明:本文只提供部分较好的例题,更多例题参考老师布置的作业题和课件相关例题。 一、第1章 数值分析与科学计算引论 1. 什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相 对误差有何关系? 相对误差限:** r r e ε=的一个上界。 有效数字:如果近似值* x 的误差限是某一位的半个单位,该位到* x 的第一位非零数字共有n 位,就说x *共有n 位有效数字。即x *=±10m ×(a 1+a 2×10-1+…+a n ×10-(n-1)),其 中a 1≠0,并且* 11 102 m n x x -+-≤ ?。其中m 位该数字在科学计数法时的次方数。例如9.80的m 值为0,n 值为3,绝对误差限*2 11102 ε-=?。 2. 一个比较好用的公式: f(x)的误差限:( ) * ** ()'()()f x f x x εε≈ 例题:

二、第2章插值法 例题:

5. 给出插值多项式的余项表达式,如何用其估计截断误差? 6. 三次样条插值与三次分段埃尔米特插值有何区别?哪一个更优越?

7. 确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件? 8. 三弯矩法: 为了得到三次样条表达式,我们需要求一些参数: 对于第一种边界条件,可导出两个方程:

,那么写成 矩阵形式: 公式 1 对于第二种边界条件,直接得端点方程: ,则在这个条件下也可以写成如上公式1的形式。对于第三种边界条件,可得: 也可以写成如下矩阵形式: 公式 2 求解以上的矩阵可以使用追赶法求解。(追赶法详见第五章) 例题:数值分析第5版清华大学出版社第44页例7

数值分析第二章小结

第2章线性方程组的解法 --------学习小结 一、本章学习体会 通过本章知识的学习我首先了解到求解线性方程组的方法可分为两类:直接法和迭代法。计算机虽然运行速度很快,但面对运算量超级多的问题,计算机还是需要很长的时间进行运算,所以,确定快捷精确的求解线性方程组的方法是非常必要的。 本章分为四个小节,其中前两节Gauss消去法和直接三角分解法因为由之前《线性代数》学习的一定功底,学习起来还较为简单,加之王老师可是的讲解与习题测试,对这一部分有了较好的掌握。第三节矩阵的条件数与病态方程组,我 Ax 的系数矩阵A与左端向量b的元素往往是通首先了解到的是线性方程组b 过观测或计算而得到,因而会带有误差。即使原始数据是精确的,但存放到计算机后由于受字长的限制也会变为近似值。所以当A和b有微小变化时,即使求解过程精确进行,所得的解相对于原方程组也可能会产生很大的相对误差。对于本节的学习掌握的不是很好,虽然在课后习题中对课堂知识有了一定的巩固,但整体感觉没有很好的掌握它。第四节的迭代法,初次接触迭代法,了解到迭代法就是构造一个无线的向量序列,使他的极限是方程组的解向量。迭代法应考虑收敛性与精度控制的问题。三种迭代方法的基本思想我已经掌握了,但是在matlab 的编程中还存在很大的问题。 在本节的学习中我认为我最大的问题还是程序的编写。通过这段时间的练习,虽然掌握了一些编写方法和技巧。相比于第一章是对其的应用熟练了不少,但在程序编写上还存在很多问题。希望在以后的学习中能尽快熟练掌握它,充分发挥它强大的作用。 二、本章知识梳理

2.1、Gauss 消去法(次重点) Gauss 消去法基本思想:由消元和回代两个过程组成。 2.1.1顺序Gauss 消去法(对方程组的增广矩阵做第二种初等行变换) 定理 顺序Gauss 消去法的前n-1个主元素) (k kk a (k=1,2,```,n-1)均不为零的充分必要条件是方程组的系数矩阵A 的前 n-1个顺序主子式 )1,,2,1(0)1()1(1 ) 1(1)1(11-=≠=n k a a a a D kk k k K ΛΛM M Λ 消元过程:对于 k=1,2,···,n-1 执行 (1)如果 ,0)(=a k kk 则算法失效,停止计算,否则转入(2) 。 (2)对于i=k+1,k+2,···n,计算 a a k kk k ik k i m )() (,= n k j i m a a a k kj ik k ij k ij ,,1,,) ()() 1(Λ+=-=+ n k i m b b b k k ik k i k i ,,1,) ()() 1(Λ+=-=+ 回代过程: a b x n nn n n n ) () (/= ) (1,,2,1/)() (1 )() (?--=- =∑+=n n k a x a b x k kk j n k j k kj k k k 2.1.2 列主元素Gauss 消去法(把) (n k k i a k kj ,,1,) (?+=中绝对值最大的元素交换到第k 行的主对角线位置)(重点) 定理 设方程组的系数矩阵A 非奇异,则用列主元素Gauss 消去法求解方程组时,各个列主元素a (k=1,2,```,n-1)均不为零。 消元过程:对于 k=1,2,···,n-1 执行 (1)选行号k i ,使 )()(max k i n i k k k i k k a a ≤≤=。 (2)交换A 与b 两行所含的数值。 (3)对于i=k+1,k+2,···n,计算

数值分析第五章学习小结

第五章学习小结 姓名:张亚杰班级:机械1505班学号:S2******* 一、本章学习体会 本章的内容与实际关联很大,可以解决很多工程实际问题。1、主要有两方面内容:插值与逼近。插值即是由已知数据通过某种多项式求出在特定区间的函数值。逼近即是用简单函数近似代替复杂函数,如何在给定的精度下,求出计算量最小最佳的多项式,是函数逼近要解决的问题。2、插值中样条插值比较难,需要花一定的时间。逼近主要是必须使选择的多项式计算出的误差最小。 3、我个人觉得本章的难点是样条插值与最佳平方逼近。 二、知识构图: 因为本章内容较多,故本次知识架构图分为三部分:插值、正交多项式和逼近。 1、插值:

2、正交多项式和逼近的知识总结采取以下方式: 一、正交多项式 1、正交多项式的概念与性质 若在区间上非负的函数满足 (1)对一切整数存在; (2)对区间上非负连续函数,若 则在上,那么,就称为区间上的权函数。 常见的权函数有 2、两个函数的内积 定义:给定[](),(),,()f x g x C a b x ρ∈是上的权函数,称 为函数()f x 与()g x 在[a,b]上的内积。 内积的性质: (1)对称性:()(),,f g g f =; (2)数乘性:(),(,)(,)kf g f kg k f g ==; (3)可加性:()()()1212,,,f f g f g f g +=+; (4)非负性:若在[a,b]上()0f x ≠,则。 3、函数的正交 (1)两个函数的正交与正交函数系 若内积 (,)a b ()x ρ0,()b n a n x x dx ρ≥?(,)a b ()f x ()0b n a x x dx ρ=? (,)a b ()0f x ≡()x ρ(,)a b 2 ()1,()11 ()11(),0(),x x x a x b x x x x x e x x e x ρρρρρ--≡≤≤= -<<=-≤≤=≤<∞=-∞<<+∞ (,)a b (,)()()()b a f g x f x g x dx ρ=?(,)0f f >

数值分析课程总结

课程内容 1误差 了解误差的来源与分类及误差的基本概念与性质; 熟悉绝对误差及绝对误差限、相对误差及相对误差限和有效数字之间的关系; 掌握一元和二元函数的误差估计式并会应用; 熟悉减小误差的积累和传播应注意的几大原则和通常做法。 2插值法 掌握Lagrange 插值、Newton 插值; 理解Hermite 插值的构造和计算; 掌握这些插值函数的余项表达式的求法、形式、作用及估计; 了解用插值基函数思想求任何插值条件的插值函数问题; 了解分段插值及三次样条函数插值的构造思想、特点和计算方法; 了解差商和差分、等距结点插值的基本性质。 3曲线拟合与函数逼近 掌握曲线拟合的有关概念、意义和推导过程; 掌握应用最小二乘原理求矛盾方程组的最小二乘解; 了解函数逼近的有关概念、意义和推导过程; 掌握求解最佳一致逼近和最佳平方逼近函数的方法; 熟悉求连续函数的最佳平方逼近及由离散点求曲线拟合的方法; 了解正交多项式特点及性质,会求连续函数的最佳一致多项式逼近。 4数值积分与数值微分 理解机械求积公式及代数精度概念; 掌握确定求积公式的代数精度的方法; 掌握Newton-Cotes 求积公式、特点及余项形式; 了解Romberg算法及Gauss 求积公式的构造技术、特点及余项形式; 掌握复化梯形求积公式、复化Simpson 求积公式的构造技术及余项形式; 了解上述求积公式的适用类型并会熟练使用这些公式做数值积; 了解数值微分法以及Newton-Cotes 求积公式、Gauss 求积公式的稳定性问题。5非线性方程的数值解法 掌握求非线性方程根的对分区间法、简单迭代法、Newton 迭代法; 理解这些方法的构造特点、收敛速度及适用范围并掌握压缩映射原理; 了解Newton 迭代法的变形如Newton 下山法、割线法及迭代法加速技术; 了解局部收敛及收敛阶的概念; 6求解线性方程组的直接解法 掌握解线性方程组的Gauss 消元法、列主元法、LU 分解; 理解这些方法的构造过程和特点以及适用的线性方程组; 了解全主元消元法、平方根法,知道直接解法的误差分析; 了解特殊线性方程组求解的追赶法。 7求解线性方程组的间接方法 掌握向量范数、矩阵范数的基本概念与性质; 熟悉用范数来分析方程组的性态及稳定性; 掌握线性方程组的误差分析与解的改善; 了解病态方程组概念并会判断; 能判别Jocobi 迭代和Gauss-Seidel 迭代的敛散性并会应用迭代求解。

数值分析课程设计心得体会

数值分析课程设计心得体会 篇一:数值分析课程设计 青岛农业大学 本科生课程论文 题目:数值分析课程设计 姓名:杨宝赟 学院:理学与信息科学学院 专业:信息与计算科学专业 班级:2008级2班 学号:20084051 指导教师:常桂娟 完成时间:2011年12月23日 二○一一年十二月二十三日 课程论文任务书 学生姓名杨宝赟指导教师常桂娟论文题目数值分析课程设计论文内容(需明确列出研究的问题):运用MATLAB数学软件设计出数值分析的求拉格朗日插值多项式和牛顿插值多项式

以及Polyfit多项函数拟合来求P2?a?bx?cx2解方程组。资料、数据、技术水平等方面的要求:论文要符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。文字要流畅、语言要准确、论点要清楚、论据要准确、论证要完整、严密,有独立的观点和见解。内容要理论联系实际,计算数据要求准确,涉及到他人的观点、统计数据或计算公式等要标明出处,结论要写的概括简短。参考 文献的书写按论文中引用的先后顺序连续编码。(根据情况修改)发出任务书日期完成论文(设计)日期学科组或教研室意见(签字)院、系(系)主任意见(签字) 目录 前言............................................................... ......................................... - 1 - 一、设计题1:.............................................................

....................... - 2 - (一)、求拉格朗日插值多项式................................................... - 2 - 理论知识............................................................... .............. - 2 - 拉格朗日插值的设计思路与算法如下:......................... - 3 - 2.求拉格朗日插值多项式的程序如下:- 3 - 3.程序运行操作过程与输出结果............................................ - 4 - 4.对计算过程与结果分析........................................................ - 5 - (二)、求牛顿插值多项式......................................................... - 5 - 理论知识............................................................... .............. - 5 - 设计思路与算法步

数值分析第一章小结

第1章绪论 --------学习小结 姓名班级学号 一、本章学习体会 通过对本章的学习,我发现原来好多科学技术都离不开数学。首先,对于我们工科专业软件的计算过程中,我了解到数值分析已经被公认为与理论分析,实验分析并列的科学研究三大基本手段之一。它有一个逻辑性很强的求解过程:提出实际问题,建立数学模型,提出数值问题,设计可靠、高效的算法,程序设计、上级实践计算结果,计算结果可视化。这种严密的逻辑完全可以应用在我们的生活中,正如我们去解决好多问题都可以通过提出问题,假设方法,验证正确性,解决问题。当然对于本章的一些相关概念还理解的不是十分明白,希望在今后的学习中真正能从学过了变成会学了。 二、本章知识梳理 1.1数值分析的研究对象 研究对象:利用计算机求解各种数学问题的数值方法及有关理论. 数值问题:输入与输出均为数据的问题. 数值方法: 求解数值问题时,在计算机上可执行的系列计算公式. 数值算法: 有步骤地完成求解数值问题的过程。规定了怎样从输入数据计算出数值问题解的一个有限的基本运算序列。

1.2误差知识与算法知识 1.2.1误差的来源与分类 1.2.2绝对误差,相对误差与有效数字 (1)绝对误差:精确值与近似值的差. (2)相对误差:绝对误差在原数中所占比例. (3)有效数字:有效数字=可靠数字+存疑数字. 1.2.3函数求值的误差估计 误差估计的一般运算 一元函数: x ≈a,f(x)≈f(a) e(a)=x-a e(f(a))=f(x)-f(a)≈f ’(a)(x-a) 二元函数:

(,)(,)((,))()()f a b f a b e f a b e a e b x y ??≈?+??? (,)(,)((,))| |()||()f a b f a b f a b a b x y ??ε≈?ε+?ε?? 1.2.4算法及其计算复杂性 1.算法:有步骤地完成解数值问题的过程。规定了怎样从输入数据计算出数值问题解的一个有限的基本运算序列。 2.好算法的标准:(1)有可靠的理论基础,包括正确性、收敛性、数值稳定性以及可作误差分析。(2)有良好的计算复杂性。 3.数值运算中的一些原则 1. 要有数值稳定性 2. 合理安排两级相差悬殊输间的运算次序,防止“大数”吃“小数”; 3. 避免两个相近的数相减 4. 避免接近于0的数做除数,防止溢出 5. 简化计算步骤,减少运算次数 1.3向量范数与矩阵范数

计算方法学习心得

计算方法学习心得 在研究生一年级的上半学期,我们安排了计算方法的课程,通过课堂授课、网上学习、学术报告以及课堂监督等方式的引导,我们对计算方法有了全新的认识。 我们知道,数学是一门重要的基础学科。离开了数学,科技便无法发展。而在数学这门学科中,数值计算方法有着其不可取代的重要地位。 在授课的过程中,首先利用前几讲课的时间对计算方法的基础进行补充,考虑到有部分专业的学生在本科时期没有接触过计算方法这门课程;计算方法主要研究实际问题,当今社会计算机高速的发展,为人们使用数值计算方法解决科学技术中的各种数学问题提供了有力的硬件条件。要将关于数值计算的实际问题借助于计算机来解决,那么实际的上机操作就显得十分重要。因此,老师在平时课堂授课的同时,也推广网上学习,通过课堂掌握知识、网上复习内容双重方式学习,更有利于我们掌握知识,另外对于我们上机操作也具有十分重要的指导意义。 通过网上看教学视频,一方面我们对课上学习的内用加深了印象,另一方面由于课堂上时间有限,对于某些知识,我们在听课时不是很清楚,似懂非懂,在网上学习的帮助下,我们可以在课后及时对这些知识进行进一步的消化,对于我们吸收知识也是一种很好的方式。此外,网上学习具有可重复性的优点,这是课堂上所不具有的特点,在课堂上不懂的知识,在网上可以反复学习,在网上学习中遇到的问题也能够反馈到课堂。所以课堂授课与网上学习相辅相成,各有优点,弥补了各自的不足之处。 当然课程的学术报告也十分重要,学是一码事,应用却是另一码事,很多课程中,我们学会了,遇到问题却不会解决,所以课程学术报告此时起了关键作用。学术报告是基于每组学生各自的专业设置的,这样做一方面检验学生应用计算方法的能力,另一方面也是为了引导学生将计算方法与本专业联系起来,学会应用学过的知识对现象进行描述、建模以及采用编程的方法处理数据等。 本学期的计算方法课程相当充实,在老师课上精心的授课、学生课下利用网上资源认真复习、对课程学术报告的完成以及课堂监督下,同学们都受益匪浅,尤其是对于数据处理方法的学习、思维的形成都有极其重要的作用,对于后期的专业研究也有深远的影响。 本学期已经接近尾声,计算方法课程也已经结束,在此向老师表示敬意和感谢。

数值分析(计算方法)总结

误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差 是的绝对误差,是的误差, 为的绝对误差限(或误差限) 为的相对误差,当较小时,令 相对误差绝对值得上限称为相对误差限记为:即: 绝对误差有量纲,而相对误差无量纲 若近似值的绝对误差限为某一位上的半个单位,且该位直到的第一位非零数字共有n位,则称近似值有n位有效数字,或说精确到该位。 例:设x==3.1415926…那么,则有 效数字为1位,即个位上的3,或说精确到个位。 科学计数法:记 有n位有效数字,精确到。 由有效数字求相对误差限:设近似值有n位有效数字,则其相对误差限为 由相对误差限求有效数字:设近似值的相对误差限为为则它有n位有效数字 令 1.x+y近似值为和的误差(限)等于误 差(限)的和 2.x-y近似值为 xy近似值为 1.避免两相近数相减 2.避免用绝对值很小的数作除数 3.避免大数吃小数 4.尽量减少计算工作量 第二章非线性方程求根 1.逐步搜索法 设f(a)<0,f(b)>0,有根区间为(a,b),从x0=a出发,按某个预定步长(例如h=(b-a)/N)一步一步向右跨,每跨一步进行一次根的搜索,即判别f(x k)=f(a+kh)的符号,若f(x k)>0(而f(x k-1)<0),则有根区间缩小为[x k-1,x k](若f(x k)=0,x k即为所求根),然后从x k-1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k-x k-1|

2.二分法 设f(x)的有根区间为[a,b]=[a0,b0],f(a)<0,f(b)>0.将[a0,b0]对分,中点 x0=((a0+b0)/2),计算f(x0)。 3.比例法 一般地,设[a k,b k]为有根区间,过(a k,f(a k))、(b k,f(b k))作直线,与x轴交于一点x k,则: 1.试位法每次迭代比二分法多算一次乘法,而且不保证收敛。 2.比例法不是通过使求根区间缩小到0来求根,而是在一定条件下直接构造出一个点列(递推公式),使该点列收敛到方程的根。——这正是迭代法的基本思想。 事先估计: 事后估计 局部收敛性判定定理: 局部收敛性定理对迭代函数的要求较弱,但对初始点要求较高,即初始点必须选在精确解的附近 Steffensen迭代格式: Newton法: Newton下山法:是下山因子 弦割法: 抛物线法:令 其中: 则: 设迭代x k+1=g(x k)收敛到g(x)的不动点(根)x*设e k=x k-x*若则称该迭代为p(不小于1)阶收敛,其中C(不为0)称为渐进误差常数

相关主题
相关文档
最新文档