离子液体应用的研究进展

离子液体应用的研究进展
离子液体应用的研究进展

离子液体的应用前景

离子液体的应用前景 离子液体是指全部由离子组成的液体,如高温下的KCI,KOH呈液体状态,此时它们就是离子液体。在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐、有机离子液体等,目前尚无统一的名称,但倾向于简称离子液体。在离子化合物中,阴阳离子之间的作用力为库仑力,其大小与阴阳离子的电荷数量及半径有关,离子半径越大,它们之间的作用力越小,这种离子化合物的熔点就越低。某些离子化合物的阴阳离子体积很大,结构松散,导致它们之间的作用力较低,以至于熔点接近室温。 离子液体的优点 一、离子液体无味、不燃,其蒸汽压极低,因此可用在高真空体系中,同时可减少因挥发而产生的环境污染问题; 二、离子液体对有机和无机物都有良好的溶解性能,可使反应在均相条件下进行,同时可减少设备体积; 三、可操作温度范围宽(-40~300℃),具有良好的热稳定性和化学稳定性,易与其它物质分离,可以循环利用; 四、表现出Lewis、Franklin酸的酸性,且酸强度可调。 上述优点对许多有机化学反应,如聚合反应、烷基化反应、酰基化反应,离子溶液都是良好的溶剂。 离子液体的应用前景 迄今为止,室温离子液体的研究取得了惊人的进展。北大西洋公约组织于2000年召开了有关离子液体的专家会议;欧盟委员会有一个有关离子液体的3年计划;日本、韩国也有相关研究的相继报道。在我国,中国科学院兰州化学物理研究所西部生态绿色化学研究发展中心、北京大学绿色催化实验室、华东师范大学离子液体研究中心等机构也开展专门的研究。兰州化学物理研究所已在该领域取得重大突破,率先制备了多种咪唑类离子液体润滑剂。 世界领先的离子液体开发者—德国SolventInnovation公司即将推出数以吨计的商品。SolventInnovation公司也正在开发一系列的离子液体,以取代对环境极有害的溶剂。其

离子液体及其研究进展

正离子部分是有机阳离子,如:1-丁基-3-甲基咪唑[bmim]+,1-乙基-3-甲基咪唑[emim]+,体积比无机离子大,因此有较低的熔点[3]。阳离子中电荷越分散,分子的对称性越低,生成化合物的熔点越低。阴离子的大小对熔点有较大的影响。大的阴离子,与阳离子的作用力小,晶体中的晶格能小。因此,易生成熔点低的化合物。 2.2 溶解性 离子液体的分子结构还影响它们对化合物的溶解性能。例如,[bmim]+BF-4是亲水的,而[bmim]+PF-6是疏水的,与水不互溶。选择性地溶解催化剂但与反应物和产物不溶的离子液体是很有价值的,因为这样,产物的分离简单,可节省能源。有机化合物在一些离子液体中也有一定的溶解度。 Bonhote等[3]研究了有机溶剂在离子液体[emim]+CF3SO-3中的溶解性。二氯甲烷、四氢呋喃可与其互溶,而甲苯、二氧六环是不溶的。Waffensehmidt等[4]的研究结果表明,调节阳离子中烷基链的长短可改变溶解度。如卜辛烯在(MeEt3N)+ (P-MePh-SO3)-溶,但溶解在[Me(n-C6H11)3N]+(P-MePhSO3)-中。 2.3 热稳定性[5] 离子液体的热稳定性分别受杂原子-碳原子之间作用力和杂原子-氢键之间作用力的限制,因此与组成的阳离子和阴离子的结构和性质密切相关。例如在氧化铝上测定的多种咪唑盐离子液体的起始热分解温度大多在400℃左右,同时也与阴阳离子的组成有很大关系。当阴离子相同时,咪唑盐阳离子2位上被烷基取代时,离子液体的起始热分解温度明显提高;而3位氮上的取代基为线型烷基时较稳定。相应的阴离子部分稳定性顺序为:PF6>Beti>Im≈BF4>Me≈AsF6≥I、Br、Cl。同时,离子液体的水含量也对其热稳定性略有影响。 2.4 密度 离子液体的密度与阴离子和阳离子有 离子液体及其研究进展 吴清文 天津工业大学材料化工学院 300160 前言 离子液体是由一种含氮杂环的有机阳离子和一种无机阴离子组成的盐,在室温或室温附近温度下呈液态,又称为室温离子液体、室温熔融盐、有机离子液体等。与传统的有机溶剂和电解质相比,离子液体具有一系列突出优点:(1)几乎没有蒸气压、不挥发、无色、无味;(2)有较大的稳定温度范围,较好的化学稳定性及较宽的电化学稳定电位窗口;(3)通过阴阳离子的设计可调节其对无机物、水、有机物及聚合物的溶解性,并且其酸度可调至超酸。最初的离子液体主要用于电化学研究,近年来在作为环境友好的溶剂方面有很大的潜力,故也称之为“绿色溶剂”。 1 离子液体的组成 目前被人们关注的液体离子的种类比较多,但大体上说起来,其中的阳离子主要有以下四类[1,2]:烷基季铵离子;烷基季鳞离子:N-烷基取代吡啶离子;1,3-二烷基取代咪唑离子。阴离子则可以是AlC1-4、BF-4、PF-4、CF3COO-、CF3SO-3、(CF3SO2)2N-、SbF-等有机离子和配合物离子。 2 离子液体的物理化学特质 2.1 熔点 离子液体是低熔点的季铵、膦盐。 很大关系。比较含不同取代基咪唑阳离子的氯铝酸盐的密度发现,密度与咪唑阳离子上N-烷基链长度呈线性关系,随着有机阳离子变大,离子液体的密度变小。这样可以通过阳离子结构的轻微调整来调节离子液体的密度。阴离子对密度的影响更加明显,通常是阴离子越大,离子液体的密度也越大。因此设计不同密度的离子液体,首先选择相应的阴离子来确定大致范围,然后认真选择阳离子对密度进行微调。 2.5 酸碱性[6] 离子液体的酸碱性实际上由阴离子的本质决定。将Lewis酸如A1C13加入到离子液体[bmim]C1中,当A1C13的摩尔分数x(A1C13)<0.5时,离子液体呈碱性;当x(A1C13)=0.5时,为中性,阴离子仅为A1C1-4;当x (A1C13)>0.5时,随着A1C13的增加会有Al2Cl-7和Al3Cl-10等阴离子存在,离子液体表现为强酸性。研究离子液体的酸碱性时,必须注意其“潜酸性”和“超酸性”。例如把弱碱吡咯或N、N’-二甲基苯胺加入到中性[bmim]+A1C1-4中,离子液体表现出很明显的潜酸性。把无机酸溶于酸性氯铝酸盐离子液体中,可观察到离子液体的超强酸性。与传统的超酸系统相比,超酸性离子液体处理起来更安全。 综上所述离子液体具有独特的物理化学特性,而且还可以在一定程度上进行调变。但总体上讲,对离子液体的物理化学性质还了解得相对较少,这也成为今后离子液体研究的主要内容。 3 离子液体的合成 离子液体种类繁多,改变阳离子/阴离子的不同组合,可以设计合成出不同的离子液体。离子液体合成大体上有两种基本方法:直接合成法和两步合成法[7] 。 3.1 直接合成法 通过酸碱中和反应或季铵化反应一步合成离子液体,操作经济简便,没有副产物,产品易纯化。例如,硝基乙胺离

离子液体概述及其应用要点

离子液体概述及其应用 前言:离子液体是仅由阴阳两种离子组成的有机液体,也称之为低温下的熔盐。离子液体具有低蒸汽压,良好的离子导电导热性,液体状态温度范围广和可设计性等优点。离子液体所具备的这些其他液体无法比拟的性质,给大部分传统化工反应提供了新的思路,特别是在绿色化学设计中的应用。本文首先阐述了离子液体的基础知识,而后着重讨论了离子液体在催化及有机合成领域,摩擦领域,生物医药领域中的应用。 主题: 一 离子液体概述 1.1离子液体的发展及性质 20世纪时“离子液体”(IL )仅仅是表示熔融盐或溶盐的一个术语,比如高温盐。现在,术语IL 大部分广泛的用在表示在液态或接近室温条件下存在的熔盐。早在1914年,Walden [1]合成出乙基硝酸铵,熔点为12℃,但当时这一发现并未引起关注。20世纪40年代,Hurley 等人报道了第一个氯铝酸盐离子液体系AlCl3-[EPy]Br 。此后对这一氯铝酸盐离子液体系进行了不断的扩充,包括各种基团修饰,如N-烷基吡啶,1,3-二烷基咪唑等,另外研究了此类离子液体系在电化学,有机合成以及催化领域的应用并有很好的效果[2]。但是由于此类离子液体共同的缺点就是遇水反应生成腐蚀性的HCl ,对水和空气敏感,从而限制了他们的应用。所以直到1992年,Wilkes [3]领导的小组合成了一系列由咪唑阳离子与-4BF ,-6PF 阴离子构成的对水和空气

都很稳定的离子液体。此后在全世界范围内形成了研究离子液体的热潮。这是由于ILs 存在很多优异而特殊的性质。(1)液体状态温度范围广,300℃;(2)蒸汽压低,不易挥发;(3)对有机物,无机物都有很好的溶解性,是许多化学反应能够在均相中完成;(4)密度大,与许多溶剂不溶,当用另一溶剂萃取产物时,通过重力作用,可实现溶剂与产物的分离;(5)较大的可调控性;(6)作为电解质具有较大的电化学窗口,良好的导电性,热稳定性。这些特殊的物理化学性质可以产生许多新应用,同时也会提高现有的科技水平。到目前为止,已经合成并报道了大量的ILs ,图1显示了典型的阳离子结构,阴离子结构和侧基链[4]。我们可以通过选择合适的离子组成从而实现ILs 物理化学性质的设计。比如说咪唑阳离子(1-丁基-3-甲基咪唑阳离子)和-4BF 或-4AlCl 组合,生成的离子液体是亲水性的,而同样的阳离子和 -6PF 或-2NTf 产生的是强憎水性的离子液体。 目前研究较多的是咪唑阳离子和吡啶阳离子与含氟阴离子构成的离子液体。

离子液体及其在化学中的应用

离子液体及其在化学中的应用 随着科技发展和环保意识的增强,清洁、低耗、高效的化学化工反应是发展的必然趋势.由于绝大多数化学反应需要在溶剂中进行,而有机溶剂的用量大、挥发性强是造成化学化工污染的主要原因之一.寻找对环境友好、有利于反应控制的介质和溶剂是目前化学化工需要解决的迫切问题之一.室温离子液体适应这种需要,正在快速为是继超临界CO2之后的新一代绿色溶剂。 一离子液体及其特点 离子液体[1]是指在室温或接近室温呈液态的离子型化合物,也称为低温熔融盐.常见的阳离子有季铵、季、咪唑盐和吡作为离子化合物,离子液体熔点较低的主要原因是:结构的不对称性使离子难以规则紧密地堆积,难以形成晶体或固体. 与传统的溶剂相比,离子液体具有以下3个显著的特性: 1 在室温下,离子液体蒸汽压几乎为零,并且不燃烧、不爆炸、毒性低,溶解性能强,可以较好地溶解多数有机物、无机物和金属配合物.多数离子液体在300e仍能保持液态,因而离子液体液态温度范围大,既可室温使用,也可以高温使用.离子液体作为溶剂,不仅不会造成溶剂损耗和环境污染,而且使用温度范围大,适用范围广.

2) 离子液体具有良好的导电性和较宽的电化学稳定电位窗.离子液体的电化学稳定电位窗比传统溶剂大得多,多数为4V左右,而水在酸性条件下为1.3V,在碱性条件下只有0.4V.因此使离子液体在电化学研究中有着广泛的用途. 3) 离子液体具有可调节的酸碱性,作为反应介质使用极为方便.例如,将Lewis酸AlCl3加入到离子液体氯化1-丁基-3-甲基咪唑中,当AlCl3的摩尔分数x<0.5时,体系呈碱性;当x=0.5时,呈体系呈中性;当x>0.5时,体系表现强酸性[4].同时,还发现离子液体存在/潜酸性0和/超酸性0.例如,把弱碱吡咯或N,N)二甲基苯胺加到中性的离子液体1-丁基 -甲基咪唑四氯铝酸盐中,体系表现出很强的潜酸性[5],如果把无机酸溶于上述离子液体中可观察到超强酸性[6]. 二离子液体在化学中的应用 由于离子液体所具有的独特性能,目前它被广泛应用于化学研究的各个领域中 .1 用作反应溶剂 2.1.1 氢化反应离子液体作为氢化反应的溶剂已有大量的报道[7~9],对于氢化反应,用离子液体替代普通溶剂的优点是:反应速率提高数倍,离子液体和催化剂的混合液可以重复利用.研究表明,离子液体在氢化反应中发挥了溶剂和催化剂的双重

2010-离子液体在分离领域的研究进展

中国科学: 化学 2010年第40卷第10期: 1487 ~ 1495 SCIENTIA SINICA Chimica https://www.360docs.net/doc/cb1165139.html, https://www.360docs.net/doc/cb1165139.html, 《中国科学》杂志社SCIENCE CHINA PRESS 评述 离子液体在分离领域的研究进展 韩彬①②, 张丽华②*, 梁振②, 屈锋①, 邓玉林①, 张玉奎② ①北京理工大学生命学院, 北京 100081 ②中国科学院分离分析化学重点实验室; 中国科学院大连化学物理研究所国家色谱研究分析中心, 大连 116023 *通讯作者, E-mail: lihuazhang@https://www.360docs.net/doc/cb1165139.html, 收稿日期: 2009-11-23; 接受日期: 2009-12-15 摘要室温离子液体, 又称离子液体, 是一种在室温及接近室温的环境中完全以离子状态存在的液态物质. 由于其具有不可燃、蒸汽压极低、黏度大、导电性和溶解能力好、高温稳定等特点, 已被广泛应用于有机合成、催化、电化学、分析化学等领域. 本文侧重介绍离子液体在样品预处理、毛细管电泳、高效液相色谱、气相色谱、质谱等分离领域的最新研究进展, 并对其发展方向进行了展望. 关键词 离子液体样品预处理色谱 分离 1 引言 室温离子液体(room temperature ionic liquids, RTILs), 又称离子液体(ionic liquids, ILs), 是一种在室温及接近室温的情况下完全以离子状态存在的液体. 由一个不对称的大体积阳离子和小体积阴离子组成. 如图1所示, 阳离子主要有咪唑型、吡啶型、季铵型等, 阴离子主要有卤素、四氟硼酸根、六氟磷酸根等. 理论上, 离子液体可由不同的阴阳离子任意组合, 数目庞大. 它们的极性、疏水或亲水性、溶解度、熔点等物理化学性质不仅与阳离子和阳离子的取代基相关, 而且也与阴离子的大小和极性有重要关系[1].因此可以通过阴阳离子的组合或基团修饰来调节上述性质 . 离子液体具有一些传统有机和无机化学试剂不可比拟的优点, 如蒸汽压极低、不易挥发、黏度大、不可燃、导电性和溶解能力好、高温稳定、电化学窗口较宽等[2]. 早期的离子液体研究主要集中在氯化铝型离子液体, 但此类离子液体遇湿敏感, 易产生氯化氢气体, 腐蚀性强. 后来发展了咪唑型、吡啶型等离子液体[3], 应用研究领域扩展到催化合成[4]、电化学[5]、生物传感器[6]、分析化学[7~11]等领域. 图1 离子液体的主要阳离子和阴离子组成示意图 国内外学者曾对2008年以前的离子液体在毛细管电泳[7]、液相色谱[8]、色谱及电迁移技术[9]、分离技术中的应用[10]以及咪唑类离子液体在分析化学中的应用[11]等诸多方面进行了相关综述, 而有关近期离子液体在样品预处理、色谱、质谱等分离领域较为全面的综述尚未见报道. 本文侧重于对离子液体在分离领域中的最新研究进展进行综述. 2 样品预处理 样品预处理是对复杂样品中目标分析物进行提取、浓缩富集、基团保护等的物理化学过程, 它能够改善后续的分离分析和检测结果. 因此对于目标分析物的鉴定、验证和量化分析都至关重要[12].

离子液体应用及其发展

离子液体应用及其发展 罗树琴生化系化学教育2001541 摘要:离子液体也称为室温离子液体或低温盐,通常是指熔点低 于100℃的有机盐。由于完全有例子组成,离子液体有许多不同于常规有机溶剂的性质。离子液体在各方面都有广泛应用前景,目前离子液体的制备和研究正在快速的发展,其应用前景也是相当广阔的。 关键字:离子液体应用发展及前景 离子液体也称为试问离子液体或低温盐,通常是指熔点低于100℃的有机盐。由于完全有例子组成,离子液体有许多不同于常规有机溶剂的性质。如熔点低,不挥发,液程范围宽,热稳定性好。溶解能力强,性质可调,不易燃,电化学窗口宽等。与传统的有机溶剂,水,超临界流体等相比,起黏度低,比热容大,有的对水对空气均稳定,故易于处理,制造较为容易,不太昂贵。是理想的绿色高效溶剂,研究其性质极其应用成了一项热门课题, 1.离子液体的性质 离子液体大多呈无色,完全由阴阳离子组成,但样离子较大,且是有机物。离子液体 1有酸碱性(主要由阳离子决定,可通过调节阳离子来改变其酸碱性), 2亲水性:含C越多亲水性越弱 3热稳定性:较高的稳定性与杂原子氢键,阴阳离子组成相关,其蒸汽压低(可忽略不计),不易挥发,可去取代有机溶剂。 4熔点低:熔点与阴阳离子组成有关,是随阳离子对称性增大而增大的 5溶解性好:可溶解有机物,无机物,聚合物等 6密度:和阴阳离子组成有关,阳离子增多密度变大 7生物降解性:其一降解,相当环保,是绿色的环保剂 8电化学窗口:其可产生5-7V的高电压, 2.离子液体的合成制备 2.1 常规合成法 2.1.1一步法:采用叔胺与卤代烃或脂类物质发生加成反应,或利用叔胺的碱性和酸性发生中和反应而一步生成目标离子液体的方法 2.1.2两步法:两步法的第一步是通过叔胺和卤代烃反应制备出

离子液体应用研究进展

离子液体应用研究进展 何海丽 摘要:手性离子液体作为一种新型的功能材料,近年来逐渐成为研究的热点。重点综述了其在Michael加成、Diels-Alder反应、羟醛缩合反应、Baylis-Hillman加成等不对称合成反应及光谱识别、色谱分离、材料合成等领域的最新应用发展,并指出了限制手性离子液体应用的主要困难和问题,展望了今后的发展方向。 关键词:手性离子液体不对称合成光谱识别色谱分离液晶纳米材料 离子液体是由有机阳离子和无机(或有机)阴离子构成的、在室温(或室温附近)呈液体状态的盐类,通常被称为室温离子液体或室温熔融盐。作为一种可设计的物质,离子液体具有传统溶剂所没有的特殊性能,如热稳定性好、溶解能力强、蒸气压几乎为零、黏度适中、电导率高、催化性能强等,已经广泛应用于有机化学[1]、电化学[2]、生物科学[3]、材料科学[4]及医药领域[5]。手性离子液体作为离子液体的一个重要分支,兼具手性材料和离子液体材料的双重功能,近年来引起了科研工作者的广泛关注。各种结构和功能的手性离子液体不断地被合成出来[6,7],它们在光谱识别、色 谱分离、不对称合成催化及 其液晶复合材料等方面具有广泛的应用。迄今为止,国内已有大量关于手性离子液体合成的文献报道[8,9],本文首次以手性离子液

体的应用为视角,对国内外近年来手性离子液体的应用和发展进行综 述。 1手性离子液体在不对称合成中的应用 不对称合成,也称为手性合成、立体选择性合成,是一种研究将反应物引入一个或多个手性单元的化学反应。而一个成功的不对称合成反应要求具有高的对映选择性(ee值),手性试剂简单易得,并可以循环使用。手性离子液体兼具手性及良好的溶解性能,能较好地满足以上要求,因此成为催化不对称合成反应中新的热点。1.1手性离子液体在不对称Michael加成 反应中的应用 不对称Michael加成反应是最早发展的催化的不对称反应之一,最初的例子可追溯到20世纪70年代。近年来,C-亲核体对多种不饱和羰基化合物和硝基烯烃的加成,引起了许多从事需要将各种硝基官能团转化的研究者的关注[10]。 考虑到合成环境友好型非金属有机催化剂是现在研究的主要趋势,而手性吡咯烷衍生物又是对Michael不对称加成反应最有效的有机催化剂之一,另外由于在含有咪唑基团的离子液体中,C2上氢原子的活泼引起副产物的生成这一大弊端,2008年,Ni等[11]设计并合成出了一系列基于吡啶的手性离子液体(如图1所示),并将它们应用于上述环己酮与硝基烯烃的不对称Michael加成反应中(如图2所示),产率可高达近100%,非对映立体选择性dr(syn/anti)>99%,对映选择性ee>9

离子液体概述及其应用

离子液体概述及其应用前言:离子液体是仅由阴阳两种离子组成的有机液体,也称之为低温下的熔盐。离子液体具有低蒸汽压,良好的离子导电导热性,液体状态温度范围广和可设计性等优点。离子液体所具备的这些其他液体无法比拟的性质,给大部分传统化工反应提供了新的思路,特别是在绿色化学设计中的应用。本文首先阐述了离子液体的基础知识,而后着重讨论了离子液体在催化及有机合成领域,摩擦领域,生物医药领域中的应用。 主题: 一离子液体概述 1.1离子液体的发展及性质 20世纪时“离子液体”(IL)仅仅是表示熔融盐或溶盐的一个术语,比如高温盐。现在,术语IL大部分广泛的用在表示在液态或接近室温条件下存在的熔盐。早在1914年,Walden[1]合成出乙基硝酸铵,熔点为12℃,但当时这一发现并未引起关注。20世纪40年代,Hurley等人报道了第一个氯铝酸盐离子液体系AlCl3-[EPy]Br。此后对这一氯铝酸盐离子液体系进行了不断的扩充,包括各种基团修饰,如N-烷基吡啶,1,3-二烷基咪唑等,另外研究了此类离子液体系在电化学,有机合成以及催化领域的应用并有很好的效果[2]。但是由于此类离子液体共同的缺点就是遇水反应生成腐蚀性的HCl,对水和空气敏感,从而限制了他们的应用。所以直到1992年,Wilkes[3]领导的小组合成了一系列由咪唑阳离子与 BF, 4

-6PF 阴离子构成的对水和空气都很稳定的离子液体。此后在全世界范 围内形成了研究离子液体的热潮。这是由于ILs 存在很多优异而特殊的性质。(1)液体状态温度范围广,300℃;(2)蒸汽压低,不易挥发;(3)对有机物,无机物都有很好的溶解性,是许多化学反应能够在均相中完成;(4)密度大,与许多溶剂不溶,当用另一溶剂萃取产物时,通过重力作用,可实现溶剂与产物的分离;(5)较大的可调控性;(6)作为电解质具有较大的电化学窗口,良好的导电性,热稳定性。这些特殊的物理化学性质可以产生许多新应用,同时也会提高现有的科技水平。到目前为止,已经合成并报道了大量的ILs ,图1显示了典型的阳离子结构,阴离子结构和侧基链[4]。我们可以通过选择合适的离子组成从而实现ILs 物理化学性质的设计。比如说咪唑阳离子(1-丁基-3-甲基咪唑阳离子)和-4BF 或-4AlCl 组合,生成的离子液 体是亲水性的,而同样的阳离子和-6PF 或-2NTf 产生的是强憎水性的离 子液体。目前研究较多的是咪唑阳离子和吡啶阳离子与含氟阴离子构成的离子液体。

离子液体及其应用知识分享

离子液体及其应用

离子液体及其应用 离子液体是指在室温或接近室温下呈现液态的、完全由阴阳离子所组成的盐,也称为低温熔融盐。可制成离子液体/聚合物电解质,作为双电层器和电池的电解质。如高温下的KCI, KOH呈液体状态,此时它们就是离子液体。在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐、有机离子液体等,目前尚无统一的名称,但倾向于简称离子液体。在离子化合物中,阴阳离子之间的作用力为库仑力,其大小与阴阳离子的电荷数量及半径有关,离子半径越大,它们之间的作用力越小,这种离子化合物的熔点就越低。某些离子化合物的阴阳离子体积很大,结构松散,导致它们之间的作用力较低,以至于熔点接近室温。 离子液体种类繁多,改变阳离子、阴离子的不同组合,可以设计合成出不同的离子液体。离子液体的合成大体上有两种基本方法:直接合成法和两步合成法。直接合成法是指通过酸碱中和反应或季胺化反应等一步合成离子液体,操作经济简便,没有副产物,产品易纯化。直接法难以得到目标离子液体,必须使用两步合成法。两步法制备离子液体的应用很多。常用的四氟硼酸盐和六氟磷酸盐类离子液体的制备通常采用两步法。首先,通过季胺化反应制备出含目标阳离子的卤盐;然后用目标阴离子置换出卤素离子或加入Lewis酸来得到目标离子液体。在第二步反应中,使用金属盐MY(常用的是AgY),HY或NH4Y时,产生Ag盐沉淀或胺盐、HX气体容易被除去,加入强质子酸HY,反应要求在低温搅拌条件下进行,然后多次水洗至中性,用有机溶剂提取离子液体,最后真空除去有机溶剂得到纯净的离子液体。 近年来,离子液体作为一类新型的绿色介质,引起全球学术界和工业界的高度重视。离子液体的特点也越来越多的为大家所熟知。不挥发、不可燃、导电性强、室温下离子液体的粘度很大(通常比传统的有机溶剂高1~3个数量级,离子液体内部的范德华力与氢键的相互作用决定其粘度。)、热容大、

离子液体及其应用

离子液体及其应用 离子液体是指在室温或接近室温下呈现液态的、完全由阴阳离子所组成的盐,也称为低温熔融盐。可制成离子液体/聚合物电解质,作为双电层器和电池的电解质。如高温下的KCI, KOH呈液体状态,此时它们就是离子液体。在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐、有机离子液体等,目前尚无统一的名称,但倾向于简称离子液体。在离子化合物中,阴阳离子之间的作用力为库仑力,其大小与阴阳离子的电荷数量及半径有关,离子半径越大,它们之间的作用力越小,这种离子化合物的熔点就越低。某些离子化合物的阴阳离子体积很大,结构松散,导致它们之间的作用力较低,以至于熔点接近室温。 离子液体种类繁多,改变阳离子、阴离子的不同组合,可以设计合成出不同的离子液体。离子液体的合成大体上有两种基本方法:直接合成法和两步合成法。直接合成法是指通过酸碱中和反应或季胺化反应等一步合成离子液体,操作经济简便,没有副产物,产品易纯化。直接法难以得到目标离子液体,必须使用两步合成法。两步法制备离子液体的应用很多。常用的四氟硼酸盐和六氟磷酸盐类离子液体的制备通常采用两步法。首先,通过季胺化反应制备出含目标阳离子的卤盐;然后用目标阴离子置换出卤素离子或加入Lewis酸来得到目标离子液体。在第二步反应中,使用金属盐MY(常用的是AgY),HY或NH4Y时,产生Ag盐沉淀或胺盐、HX气体容易被除去,加入强质子酸HY,反应要求在低温搅拌条件下进行,然后多次水洗至中性,用有机溶剂提取离子液体,最后真空除去有机溶剂得到纯净的离子液体。 近年来,离子液体作为一类新型的绿色介质,引起全球学术界和工业界的高度重视。离子液体的特点也越来越多的为大家所熟知。不挥发、不可燃、导电性强、室温下离子液体的粘度很大(通常比传统的有机溶剂高1~3个数量级,离子液体内部的范德华力与氢键的相互作用决定其粘度。)、热容大、蒸汽压小、性质稳定,对许多无机盐和有机物有良好的溶解性。在与传统有机溶剂和电解质相比时,离子液体具有一系列突出的优点:(1)液

离子液体在色谱分析中的应用

离子液体在色谱分析中的应用 摘要 离子液体作为一种优良溶剂越来越受到人们的关注,它是当前化学研究领域的一个热点,它在化学的各个领域都有研究和应用。本文将对离子液体在气相色谱、液相色谱、毛细管电泳等色谱分析中的应用研究进行综述。并对离子液体在色谱研究应用中的发展进行了展望。 关键词 离子液体 气相色谱 液相色谱 毛细管电泳 综述 离子液体,又被称为室温离子液体或室温熔融盐,是当前化学研究的热点之一。离子液体一般是由特定的体积相对较大的、结构不对称的有机阳离子和体积相对较小的无机阴离子构成的在室温或近室温下呈液态的物质。有机阳离子通常为烷基季铵离子、烷基季磷盐、N-烷基吡啶离子及N ,N-二烷基咪唑离子,常见的阴离子为卤素离子⑴、AlCl -4和含F 、P 、S 的多种离子⑵,如BF 4-、PF 6-、CF 3COO -等。离子液体有一些独特的优点:(1)液体状态温度 范围广,最高可达300℃;(2)蒸汽压极小,不易挥发、不可燃、毒性小;(3)对有机物和无机物都有良好的溶解性;(4)导电性能好,具有较宽的电化学窗口;(5)合成比较简单,可以通过改变其组成调节其物理化学性质。这些为常规溶剂所无法比拟的优点使得离子液体在有机合成、催化、电化学、新材料及分析化学等方面都有极广泛的应用。随着离子液体在化学领域的研究和应用日益广泛,其在色谱方面的应用研究最近发展的也较快,已成为色谱研究的一个热点。本文将对室温离子液体在气相色谱、液相色谱、毛细管电泳等色谱分析中的应用研究进行综述。 1. 离子液体在气相色谱中的应用 离子液体在气相色谱中应用研究做得最出色的是Armstrong 研究小组。1999年Armstrong 与其合作者⑶开始着手研究离子液体作为固定相应用于气相色谱,考查了两种典型离子液体(1-丁基-3-甲基咪唑六氟磷酸盐和氯化1-丁基-3-甲基咪唑)作为涂渍在融熔石英毛细管的固定液膜的性能,发现离子液体的润湿能力和粘度可使其成为多种气相色谱理想的固定液。同时,他们认为离子液体固定相具有两象性,比如:如果它们作为极性固定相能够很好地分离极性化合物;如果它们作为非极性固定相亦能够很好地分离非极性化合物。在反相色谱中,比较了上述离子液体作为常用商业聚硅氧烷柱固定液的性能,发现极性较弱的离子液体对非极性化合物有着较好的分离能力,然而更有趣的是,含强给质子基团的溶质却能够被有效地保留下来。通过线性吉布斯自由能法能够给出合理的解释⑷:氯化1-丁基-3-甲基咪唑总是能够更有效地与给质子型分子和受质子型分子相互作用;1-丁基-3-甲基眯唑六氟磷酸盐更倾向于与非极性分子相互作用。此外,离子液体阴离子部分的不同也会影响室温离子液体作为固定相的选择性和增溶能力。 Armstrong 研究组也进行了相关研究:使用完全甲基化的β-环糊精和2,6-二甲基取代的β-环糊精溶解于离子液体氯化1-丁基-3-甲基咪唑中,制备成可涂渍在毛细管柱上的多元溶剂型固定液,应用于气相色谱的手性分离。研究者比较了其与传统商业环糊精柱的性能,发现前者的手性分离效率远差于后者。对于这个观察结果,其原因很可能是在1-丁基-3-甲基咪唑离子与环糊精空穴之间形成包合配合物,因而阻碍了手性辨认过程。此外,为解决传

离子液体的分类、应用

离子液体的分类、合成与应用 当前研究的离子液体的正离子有4类:烷基季铵离子、烷基季瞵离子、1, 3-二烷基取代的咪唑离子、N-烷基取代的吡啶离子记为。根据负离子的不同可将离子液体分为两大类:一类是卤化盐。其制备方法是将固体的卤化盐与AlCl3混合即可得液态的离子液体,但因放热量大,通常可交替将2种固体一点一点地加入已制好的同种离子液体中以利于散热。此类离子液体被研究得较早,对以其为溶剂的化学反应研究也较多。此类离子液体具有离子液体的许多优点,其缺点是对水极其敏感,要完全在真空或惰性气氛下进行处理和应用,质子和氧化物杂质的存在对在该类离子液体中进行的化学反应有决定性的影响。此外因AlCl3遇水会放出HCl,对皮肤有刺激作用。 另一类离子液体,也被称为新离子液体,是在1992年发现[ emim ] BF4的熔点为12 ℃以来发展起来的。这类离子液体不同于AlCl3离 子液体,其组成是固定的,而且其中许多品种对水、对空气稳定,因此近几年取得惊人进展。[center][center][center]其正离子多为烷基取代的咪唑离子[ R1 R3im ] + ,如[ bmim ] + ,负离子多用BF4-、PF6- ,也有CF3SO3-、(CF3SO2)2N-、C3F7COO-、C4F9SO3、CF3COO- 、(CF SO2)3C- 、(C2F5SO2)3C- 、(C2F5SO2)2N-、SbF6-、AsF6、为负离子的3 离子液体要注意防止爆炸(特别是干燥时)。 离子液体种类繁多,改变阳离子和阴离子的不同组合,可以设计合成出不同的离子液体。一般阳离子为有机成分,并根据阳离子的不同来分类。离子液体中常见的阳离子类型有烷基铵阳离子、烷基钅翁阳

相关文档
最新文档