制动器常用几种摩擦材料介绍

制动器常用几种摩擦材料介绍
制动器常用几种摩擦材料介绍

制动器常用几种摩擦材料介绍

目前,国内外用于制动的摩擦材料主要有石棉树脂(国家法规已限制使用)型摩擦材料、无石棉树脂型摩擦材料、金属纤维增强摩擦材料、半金属纤维增强摩擦材料和混杂纤维增强摩擦材料等,国内以半金属纤维增强摩擦材料的应用最为普遍。上述这些摩擦材料的基本成分是增强纤维摩擦材料的生产过程一般为:原料储存→称重→混合→预成型(常温模)→高温压模→样品修饰处理→检视→包装出厂。 1.2石棉、钢纤维及克维拉(芳纶纤维)制动片的典型配方 a.石棉制动片配方一般为:50%石棉、15%树脂、20%耐磨粒、15%填充料。 b.钢纤维制动片配方一般为:30%钢纤维、15%树脂,10%氧化锌,10%金属粉,15%陶瓷,10%橡胶粒、10%石墨。 c.芳纶纤维制动片配方一般为:5%芳纶纤维、15%金属粉、15%耐磨粒、15%树脂、50%填充料。2、摩擦材料中各组分的作用 2.1增强纤维纤维在摩擦材料中作为增强剂,对制动片的强度、摩擦和磨损性能起着重要作用。表1给出了几种常用纤维的物理性能,表2对几种常用纤维的优缺点进行了比较。摩擦材料中增强纤维的选择,通常要结合车辆的具体使用条件及经济性两方面来考虑。 2.2粘结剂树脂和纤维材料、填充料等各组分能否良好粘结,取决于树脂对这些材料的浸润性能以及与它们形成化学键的可能性。目前,摩擦材料最常用的粘结剂是各种酚醛树脂及其改性树脂,常用酚醛树脂的性能如表3所示,它的作用是将增强纤维与其他组分粘合在一起。粘结剂是摩擦材料的基体,直接影响到材料的各种性能,因此粘结剂应满足以下性能要求。 a.在一般温度(100℃以下)下,保证摩擦材料有足够的机械强度(抗击强度、冲击强度、压缩强度、剪切强度以及一定的伸长率)。 b.当制动摩擦表面温度在200~300℃时,树脂不发生粘流、分解,应保持一定的强度,以支持摩擦表面层的工作要求,且与对偶件有良好的贴合性。 c.粘结剂的弹性模量不宜过高,以保证既有良好的贴合性又有较高的耐热性。 d.尽可能高的热分解温度,分解物少,不产生不良影响(即热衰退和过恢复现象,残存物仍有一定的摩擦性能),并适应高速制动表面温度(>400℃)较高的要求。树脂作为粘结剂是摩擦材料组成的核心。其性能对制动片起着重要作用。提高树脂的耐温性即提高它的热分解温度、延缓其分解及氧化速率,可以使制动片在高温情况下具有稳定的摩擦性能。普通酚醛树脂的分解温度一般低于350℃,在600℃时几乎全部失重;三聚氰胺改性、腰果壳油改性及其联合改性酚醛树脂,各种NBR 改性酚醛树脂的剧烈分解起始温度为350-400℃,到600℃时大部分失重超过50%;圣泉海沃斯特种改性酚醛树脂及某种硼改性酚醛树脂的剧烈分解起始温度高于450℃,至600℃失重不超过30%;华东理工大学研制的改性酚醛树脂xyl-850和xyl-950剧烈分解起始温度达到435.5-483.5 0C。另外,树脂的柔韧性对摩擦材料也有重要作用。作为摩擦材料的基体,柔韧的树脂界面层有利于吸收冲击能,提高制动片的冲击强度;有利于降低制动片的硬度,使之与对偶件贴合良好;有利于减少制动噪声;有利于减弱对偶件的损伤. 2.3填料填料不仅可改善摩擦材料的物理力学性能(如导热性、热胀率、密度、强度、刚度及硬度等),而且还可以调节摩擦性能和降低成本等。按照化学成分填料可分为有机填料(如橡胶粉、沥青、腰果壳粉、热塑性树脂或热固性树脂等)、无机填料(如Si02,A1203,Fe203,BaS04,MOS2,石墨、铬铁矿,Mg0,Zr02,钾长石等)、金属填料(如钢丝、铜屑、铸铁粉、铝粉、锌粉等)。表4列举了一些常用摩擦填料及其主要作用。按照对材料摩擦性能的调节作用可以把填料分为减摩填料、增摩或摩阴填料。减摩填料以提高材料的耐磨性、降低摩擦因数、减少制动噪声为目的,主要有MoS石墨、低熔点金一属等。增摩或摩阻填料以改善材料的物理力学性能、增加材料摩擦阻力、稳定摩擦因数和提高材料的耐磨性为目的,主要有金属粉以及有机摩擦粉。为了提高摩擦材料的综合性能,减摩填料和增摩填料将根据具体使用要求按一定比例混合使用。

于国内纸基摩擦材料的发展现状分析

关于国内纸基摩擦材料的发展现状分析 纸基摩擦材料具有静、动摩擦系数比值小,运转平稳柔和、低噪音、无震动、吸收能量强和环保低成本等特点。克服了传统粉末冶金铜基摩擦材料动摩擦系数低,静、动摩擦系数比值大,运转震动大等缺点。由于纸基摩擦材料的居多优点,从70年代开始摩擦材料生产厂家大多数都先后纷纷研制或挖人才效仿制造。经历三十多年的漫长过程,虽然已经形成一定规模的生产量,逐渐被用户接受,已经广泛应用于摩托车、自行车、汽车、叉车、拖拉机、工程机械、船舶、起重机械、民用家电等的湿式离合器或制动器中。但是大多数产品还处于小批量生产阶段,生产设备简陋,以手工操作为主或借用传统的粉末冶金摩擦片的加工方法,产品的机械性能和摩擦磨损性能稳定性、统一性较差,如尺寸公差、外观、色差、空隙率、均匀度等方面与国外先进产品相比还存在着一定差距。本人多年关注纸基摩擦材料的发展,并且参与纸基摩擦材料的生产设备和生产工艺的研究,对近几年来我国纸基摩擦材料的发展状况有比较浅草了解,提出个人看法仅供参考。 一.纸基摩擦材料的成本优势 粉末冶金铜基摩擦材料由于生产厂家不断发展和扩大,竞争日趋激烈,加之有色金属是不可再生资源,价格不断上涨,以铜粉为例2000年后平均每年涨幅在15%以上,而成品价格由于各生产厂家的竞争因素基本不变,随着社会发展近年来工厂某些运作成本不断提高,所以粉末冶金摩擦材料的生产成本不断提高。利润空间越来越小,目前铜基摩擦材料大多数产品基本上不存在技术知识产权价格因素和品牌价格因素。近年来生产摩擦材料的民营个私企业不断涌现,而且迅速形成规模生产,这类企业相对运作成本较低对市场的冲击较大。所以对规模型生产摩擦材料的老企业经受着越来越严谨的考验,必须重视企业的内功修炼,一方面保持和提高产品质量占居行业的品牌地位,进行设备

开关的所有种类及特征

开关的所有种类及特征 几开几控: 几开:表示一个面板上有几个按键。 单控:普通的按键开关。 单控开关: 单控开关在家庭电路中是最常见的,也就是一个开关控制一件或多件电器,根据所联电器的数量又可以分为单控单联、单控双联、单控三联、单控四联等多种形式。如:厨房使用单控单联的开关,一个开关控制一组照明灯光;在客厅可能会安装三个射灯,那么可以用一个单控三联的开关来控制。 奇胜E3000银灰带LED指示灯单联单控开关 双控:双控开关可以与另一个双控开关共同控制一个灯。进屋开灯,回卧室关灯便是使用双控开关。

双控开关 双控开关在家庭电路中也是较常见的,也就是两个开关同时控制一件或多件电器,根据所联电器的数量还可以分双联单开、双联双开等多种形式。双开关用得恰当,会给家居生活带来很多便利。如:卧室的照明灯,一般可以在进门的门旁边安装一个开关控制,然后在床头上再接一个开关同时控制这个顶灯,那么,进门时可以用门旁的开关打开灯,关灯时直接用床头的开关就可以了,非常的方便,尤其是冬天天冷时更显得实用。 奇胜E3000凝白色带LED指示灯双联双控开关 一位双路换向开关: 又称中途开关、三控开关、多控开关。可安在两个双控开关中间,三个开关共同控制一个灯。 报警开关: 适用于智能小区、酒店、写字楼等场所,当发生紧急情况时,按下面板上的红色紧急按钮,通知控制中心,达到报警的目的。

主要参数: 输出一对无源触点:1A 250V 适用环境温度:-10到50摄氏度 适用环境湿度:小于等于92% 调速开关: 调节风扇速度。功率:100W 调光开关: 本开关主要用于调节白炽灯(普通钨丝灯泡)的亮度,节约电能。产品性能指标: 工作电压:AC 220V(+/-)10%,50Hz 负载总功率:小于等于500W 负载:白炽灯 注:不能用来控制日光灯或荧光灯 调光/调速开关 调光开关,主要是靠灯泡的纯电阻负载来实现的。一般最常见的就是改变灯泡的亮度的调光开关,但现在市场的调光开关的功能也越来越多,不仅可以控制泡灯的亮度以及开启、关闭的方式,而且有些调光还可以随意改变光源的照射方向,这些对于日常生活中是很有帮助的。比如:可以在开灯时让灯光逐渐变亮,也可在关灯时让灯光慢慢变暗,直到关闭。 调速开关,主要是靠电感性负载来实现的。一般调速开关是配合电扇使用的,可以通过安装调速开关来改变电扇的转速。

摩擦材料和制动器间的热传导试验方法 编制说明

《摩擦材料和制动器间的热传导试验方法》 编制说明 一、工作简况 1.任务来源 本标准根据国家标准化管理委员会《关于下达第一批推荐性国家标准计划的通知》(国标委发【2019】11号)制定,计划号为:20190750-T-609。本标准由中国建筑材料联合会提出,由全国非金属矿产品及制品标准化技术委员会(SAC/TC406)归口。 2.主要工作过程 随着汽车产业在全球范围内的高速发展,对摩擦材料的性能要求越来越高,欧美工业化发达国家环保意识的普遍提高,对其使用条件也越来越苛刻。汽车摩擦材料是汽车制动器、离合器和摩擦传动装置的关键材料,材料性能的好坏关系着制动系统运行的可靠性和稳定性。制动器衬片在与制动盘制动摩擦时,造成刹车片磨损的因素主要是机械摩擦和热力作用,热力作用产生的较高温度容易使刹车片的基体材料-树脂软化分解,从而加剧机械磨损,因此研究摩擦材料的热传导性能和温度分布有着非常深远的现实意义,一方面适应了汽车产业的进一步发展,另一方面将克服摩擦材料在使用过程中温度分布难以实测的矛盾,尽可能全面地对汽车刹车片使用安全进行评价。 接到制定订任务后,迅速成立标准起草小组。预期在2020年完成标准报批等工作。在标准的前期调研阶段,由于国内没有相关的摩擦材料热传导试验标准,因此一方面和业内主要技术专家进行了初步的联络和探讨,另一方面查阅相关技术文件、借鉴国外技术资料,并结合国内摩擦材料发展现状和特点,制定适合国情、适合现阶段发展的摩擦材料热传导试验标准。 2019年12月16日?20日在江苏省无锡市锡州花园酒店召开了全国非金属矿制品标准化技术委员会标准审议会和研讨会,邀请业内专家和邀请河北、浙江、山东、湖北、广东、福建等地区的领军企业技术骨干,对该标准草案进行研讨,经过小组讨论和分析,依据业内专家提出的意见和建议,形成了征求意见稿。二、标准编制原则和主要内容确定依据

高分子聚合物摩擦材料

高分子聚合物摩擦材料 作者:林荻淳 目录 1.摩擦磨损形式及机理 2.摩擦副材料设计要求 3.高分子聚合物摩擦特征 4.影响高分子聚合物摩擦性能因素 5.改善高分子聚合物摩擦磨损性能的方法 6.高分子聚合物摩擦材料选料标准及工程考虑因素 7.小结 1.摩擦磨损形式及机理: (1)粘着磨损 (2)磨料磨损 (3)疲劳磨损 (4)腐蚀磨损 2.摩擦副材料设计要求: 不仅要求具有耐磨性,还要求减摩性。 (1)足够的承载能力。在一定的工作条件下抗压强度、抗塑性形变能力、抗疲劳性能,以及相应的高温性能高温抗拉强度、高温抗蠕变性、高温抗疲劳强度 (2)良好的表面性能。即要有一定的塑性形变能力和良好的适应性,包括顺应性、嵌入性和磨合性。顺应性是指轴承材料靠表面的弹塑性变形补偿对中误差和顺应其他几何误差的能力。嵌入性是指轴承材料能嵌藏污物、颗粒以减轻挂上或磨料磨损的能力。磨合性是指轴承材料经短期轻载运转后能减少表面粗糙度使摩擦副表面相吻合的性质。 (3)良好的物理、化学性能。搞得导热性和热容量,热膨胀系数小、对边界润滑膜的吸附性强,抗腐蚀性好,以利于摩擦热导出防止咬合,以利于边界润滑膜的形成和保护 理想的滑动摩擦副简单图示: 2.2高分子材料与金属材料对比: 2.2.1高分子材料特点: 1、密度小 2、强度低,比强度搞 3、低弹性模量,高弹性 4、优良的减摩、耐磨、自润滑属性 5、可加工性好 6、导热性差 2.2.2金属材料特点: 1、弹性模量大、抗拉强度高

2、导热性高 3、表面硬度高 4、高温综合性能好,高温下抗拉轻度、抗蠕变性好 2.2.3摩擦中形变机理差异: 金属材料与高聚物材料在形变行为方面最大的差异是前者表现出弹塑性形变,而后者粘性行为对形变影响极大。与金属材料相比,聚合物导热性差,摩擦过程中产生的热量容易在接触区域积累,导致摩擦界面温度上升、摩擦过程中接触区域的温度对聚合物材料的摩擦学性能影响巨大。 3.高分子聚合物摩擦特征 3.1高分子聚合物摩擦特征:: 3.2高分子聚合物摩擦机理: 4.影响高分子聚合物摩擦系数、磨损的主要因素 4.1高分子聚合物影响摩擦性能内部因素: 4.1.1分子的化学结构(对称性,对称性增加摩擦系数降低。静摩擦系数与摩擦面的预取向有很大关系。特别地,带有环状结构的耐热性聚合物的摩擦系数与摩擦方向没有对应关系。) 4.1.2凝聚态的结构,结晶度(结晶度对不同聚合物的摩擦系数、磨损影响不同,较高结晶度获得较高弹性模量,增强抗拉抗蠕变能力)、分子链取向(影响较小,同拉伸方向降低摩擦系数、垂直拉伸方向增加摩擦系数) 4.1.3共聚共混成分。 4.2影响高分子聚合物摩擦性能外部因素: 4.2.1温度 4.2.2载荷 5.改善高分子聚合物摩擦磨损性能的方法: 5.2高分子聚合物改性 5.2.1 共聚共混 5.2.2 侧链改性

盘式制动器课程设计方案

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 L1=L?(1?60%)=962mm L2=L?60%=1443mm (9)、轮胎参数:165/70R13; 轮胎有效半径r e为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径r e=(240 2 +165×70%)=235.5mm (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则 满足制动性能要求的制动减速度由:S=1 3.6(τ2‘+τ2“ 2 )μ0+μ02 25.92 a bmax 计算最大减速度 a bmax,其中μ0=U =50Km/h;S=15m;τ2‘= 0.05s;τ2“=0.2s。经计算得 最大减速度 a bmax≈7.47m s2 ?

关于摩擦材料

无石棉摩擦材料分为以下几类: a 半金属摩擦材料,应用于轿车和重型汽车的盘式刹车片。其材质配方组成中通常含有30%~50%左右的铁质金属物(如钢纤维、还原铁粉、泡沫铁粉)。半金属摩擦材料因此而得名。是最早取代石棉而发展起来的一种无石棉材料。其特点:耐热性好,单位面积吸收功率高,导热系数大,能适用于汽车在高速、重负荷运行时的制动工况要求。但其存在制动噪音大、边角脆裂等缺点。 b NAO摩擦材料。从广义上是指非石棉-非钢纤维型摩擦材料,但现盘式片也含有少量的钢纤维。NAO摩擦材料中的基材料在大多数情况下为两种或两种以上纤维(以无机纤维,并有少量有机纤维)混合物。因此NAO摩擦材料是非石棉混合纤维摩擦材料。通常刹车片为短切纤维型摩擦块,离合器片为连续纤维型摩擦片。 c 粉末冶金摩擦材料。又称烧结摩擦材料,系将铁基、铜基粉状物料经混合、压型,并在在高温下烧结而成。适用于较高温度下的制动与传动工况条件。如:飞机、载重汽车、重型工程机械的制动与传动。优点:使用寿命长;缺点:制品价格高,制动噪音大,重而脆性大,对偶磨损大。 d 碳纤维摩擦材料。系用碳纤维为增强材料制成的一类摩擦材料。碳纤维具有高模量、导热好、耐热等特点。碳纤维摩擦材料是各种类型摩擦材料中性能最好的一种。碳纤维摩擦片的单位面积吸收功率高及比重轻,特别适合生产飞机刹车片,国外有些高档轿车的刹车片也使用。因其价格昂贵,故其应用范围受到限制,产量较少。在碳纤维摩擦材料组分中,除了碳纤维外,还使用石墨,碳的化合物。组分中的有机粘结剂也要经过碳化处理,故碳纤维摩擦材料也称为碳——碳摩擦材料或碳基摩擦材料。 编辑本段5 摩擦材料的技术要求 5.1 适宜而稳定的摩擦系数 摩擦系数是评价任何一种摩擦材料的一个最重要的性能指标,关系着摩擦片执行传动和制动功能的好坏。它不是一个常数,而是受温度、压力、摩擦速度或表面状态及周围介质因素等影响而发生变化的一个数。理想的摩擦系数应具有理想的冷摩擦系数和可以控制的温度衰退。由于摩擦产生热量,增高了工作温度,导致了摩擦材料的摩擦系数发生变化。 温度是影响摩擦系数的重要因素。摩擦材料在摩擦过程中,由于温度的迅速升高,一般温度达200℃以上,摩擦系数开始下降。当温度达到树脂

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

摩擦材料行业分析

综述: 经过“十一五”期间的努力,摩擦密封材料行业取得了长足的进步。国际化步伐进一步加快,新技术研究、新产品开发、新材料应用、新设备换代、新工艺创造成绩斐然。行业总体规模和经济效益有了显著增长,2010年摩擦密封材料行业总产值由“十一五”初期的56.7亿元增加到101.51亿元,产品出口交货值由16.2亿元增加到37.14亿元,分别增长了79.03%和129.26%。 1.国外概况 1.1行业结构合理,产能集中度较高,跨国和跨地区经营进一步发展,产品生产逐步转移到劳动力便宜的发展中国家和地区进行,尤其注重向中国市场的转移。大部分主机配套集中在为数不多的零部件集团,如:辉门、霍尼韦尔、泰明顿、阿基波罗等。 1.2无石棉、少金属的环保型摩擦材料(又称NAO型摩擦材料)已经开始向市场推广; 消费者对制动噪音越来越重视,制动噪音已经成为区分车辆制动性能的关键因素之一,各大摩擦材料厂和制动系统生产厂家开始联合研究和开发低噪音制动系统,并取得了很多工程技术上的突破;通过控制产品压缩量来降低噪音已经成为各大摩擦材料厂质量控制的重要手段。 1.3欧美一些国家已经就限制摩擦材料中有害重金属组分及铜的含量进行立法。在可以预见的将来,摩擦材料中重金属组分的含量将会成为摩擦材料出口欧美的一项贸易限制。 1.4生产设备自动化控制和精密度较高,部分工序实现了连续化生产;因而生产效率比较高;原材料生产企业普遍具有相当规模且质量稳定,并能够根据用户需要对所供产品进行精加工和新的开发。 1.5大型摩擦材料企业拥有雄厚的科研力量和先进的研究测试设备,科研开发的资金投入普遍占到销售额的3~5%,有的甚至更高一些。他们不仅深入研究摩擦材料的表观和微观结构及性能,同时非常重视摩擦材料和对偶件及制动系统的整体匹配性研究。 1.6 把产品质量标准和测试方法标准作为一种日常工作,不断进行研究。国际同行对欧洲和北美地区采用的不同测试方法进行了有效的协调统一,标准全球化日趋成熟。 2 .国内概况 2.1 基本情况 随着我国国民经济的快速发展,汽车、摩托车、机械、铁路、石油、化工、船舶、航空、矿山、冶金等诸多领域对摩擦密封材料行业提出了更高的要求。铁路运输不断提速;城市轨道交通大量发展;汽

摩擦材料

摩擦材料(盘式片、鼓式片、制动蹄) ——指点行业运作迷津 (一)摩擦材料的应用领域及重要性 摩擦材料是用于运动中起传动、制动、减速、驻车等作用的功能配件,主要用于汽车、火车、飞机、摩托车、工程机械、船舶机械等的制动器、离合器中的刹车片、离合器面片、闸瓦(片)等,其中60%以上用于汽车工业。 汽车用制动器衬片俗称“刹车片”,按用途可分为两类:行车制动和驻车制动刹车片。行车制动又分为盘式制动和鼓式制动刹车片。 汽车用制动刹车片在汽车工业中属于关键的安全件,汽车的制动和驻车都离不开它,刹车片质量的优劣直接关系到使用者的生命财产安全,摩擦材料质量性能的好坏,直接影响这整车、整机的使用效果,虽然在主机中所占成本较小,但功能和地位十分显赫。 (二)摩擦材料行业现状 A—国外摩擦材料行业现状 1897年,在英国,一个名叫Aerber Frood的人创造行的发明了摩擦材料,并成立了FERODO公司,从此奠定了摩擦材料的发展基石。 100多年的发展,现状国外发达国家的刹车片行业已经发展到了一个全新的高度,无论是在制动刹车片的生产设备、技术及工艺上,还是在产品的质量个管理等方面均处于世界绝对领先地位,刹车片的生产已经精细化、完美化,甚至于艺术品化。 最重要的,同时也是中国摩擦材料行业基本上很难做到的一点:发达国家的刹车片生产企业和整车汽车生产商对刹车片的开发是同步的,从刹车片的选定到出样品,要经过噪声检测、台架试验、匹配试验以及冬、夏季路试等反复测试,直到其性能均达到要求并稳定后,才批量生产。 目前,从世界范围来看,摩擦材料行业早已经品牌化、规模化、标准化。对于先进的生产刹车片的技术工艺而言,国外大致分为三块:北美(半金属配方);欧洲(少金属配方)日本(NA——无石棉有机物配方)。国外行业规范,想进入其市场,刹车片生产企业的设备、技术、工艺、产品的质量都应匹配,同时通过其市场的质量认证标准。 B—中国摩擦材料行业现状 据不完全统计,我国国内现有摩擦材料生产企业超过600多家(若包括无生产许可证或小作坊式的,估计有800多家以上),销售产值约180亿人民币,其中70%产品为汽车用摩擦材料占30%,国外需求的摩擦材料占70%,产值前50各生产企业中,国外、合资、独资占30家。

盘式制动器说明书

第二章可控自冷盘式制动器 K P Z— / ?? ?? 制动器副数?规格 ?? ?制动盘直径 ?? ?制动 ?? ?盘式 ?? ?可控 ?? ?KPZ型号含义 1.可控盘闸系统的选用型号含义 2. 结构特征与工作原理 2.1 机械系统结构及工作原理 ?? ?1 电动机;2 联轴器;3 牵引体;4 传动轮;5 联轴器;6 垂直轴减速器;7 制动盘;8 弹簧;9 活塞;10 闸瓦; 11 油管 图1 制动装置布置图 自冷盘式可控制动装置主要由制动盘,液压制动器(含活塞、闸瓦、弹簧等),底座,液压站等组成,图1是制动装置在系统中的布置示意图。它主要由制动盘7和液压制动器(8,9,10)等组成。盘式制动装置的制动力是由闸瓦10与制动盘7摩擦而产生的。因此调节闸瓦对制动盘的正压力即可改变制动力。而制动器的正压力N 的大小决定于油压P与弹簧8的作用结果。当机电设备正常工作时,油压P达最大值,此时正压力N为0,并且闸瓦与制动盘间留有1-1.5mm的间隙,即制动器处于松闸状态。当机电设备需要制动时,根据工况和指令情况,电液控制系统将按预定的程序自动减小油压以达到制动要求。 2. 盘式制动器的安装说明: 2.1 盘式制动器主机的安装: 盘式制动装置安装前要准确测定位置及距离。通常制动盘与减速器的某一低速轴相连,也可以直接与驱动轮连接实现各种工作制动。 安装制动器时制动闸座与底座安装必须对中安装。制动盘安装后要求盘面的旋转跳动量≤0.1mm,闸盘与闸瓦的平行度≤0.2mm。盘式制动器在松闸状态下,闸瓦与制动盘的间隙为1~1.5mm;制动时,闸瓦与制动盘工作面的接触面积不应小于80%。

安装于减速机倒数二轴上安装于滚筒轴上 电动机; 2-联轴器; 3-牵引体; 4-传动轮; 5-联轴器; 6-减速器; 7-制动盘; 8, 9, 10-液压制动器; 11-油管 图2 制动装置安装布置示意图 其中制动盘安装分两种情况,1、胀套联接2、键连接 2.2 盘式制动装置的连接方式 胀套联接 KZP自冷盘式可控制动装置胀套联接 胀套示意图 表3 安装尺寸表 和无损伤。在清洗后的胀套结合面上均匀涂一层薄润滑油(不含二硫化钼等极压添加剂),预装到滚筒轴上。把制动盘推移到滚筒轴上,使达到设计规定的位置,然后按胀套拧紧力矩的要求将胀套螺钉拧紧。 拧紧胀套螺钉的方法: (1) 使用扭矩扳手,按对角、交叉的原则均匀的拧紧。 (2) 拧紧螺钉时按以下步骤拧紧: a. 以1/3MAX值拧紧 b. 以2/3MAX值拧紧 c. 以MAX值拧紧 d. 以MAX值检查全部螺钉 安装完毕后,在胀套外漏端面及螺钉头部涂上一层防锈油脂,并进行整体二次灌浆。

生产无石棉摩擦材料的部分原料介绍(徐仁泉编译)

生产无石棉摩擦材料的部分原料介绍(徐仁泉编译)1无水氧化铝Aluminum Oxide (Anhydrous) 2氢氧化铝Aluminum Oxide (Hydrated) 3铝粉Aluminum Granules 4硅酸铝Aluminum Silicate 5煅烧氧化铝Fused Alumina (Alundum) 6硫化锑Antimony Trisulphide 7重晶石Barytes 8玄武岩纤维:Basalt Fibers 9铁黑Iron Oxide (Magnetite) 10黄铜末brass chip 11青铜粉Bronze Powder 12碳酸钙Calcium Carbonate (Whiting) 13氢氧化钙Calcium Hydroxide (Lime) 14 Calferox 15氧化铬Chromium Oxide 16铜纤维Copper Fiber 17铜粉Copper Powder 18丁氰橡胶Acrylonitrile Butadiene Rubber 19天然橡胶Natural Rubber 20丁苯橡胶Styrene Butadiene Rubber21Enviroblend 21 Enviroblend 22短切玻璃纤维:Chopped Glass Fiber 23云母Mica

24丙稀氰Polyacrlonitrile (PAN) 25岩石棉:Rockwool 26蛭石Vermiculite 27硅灰石Wollastonite 28鳞片石墨Flake Graphite 29石墨Graphite 30二硫化钼Molybdenum Disulphide 31合成石墨Synthetic Graphite 32氧化镁Magnesium Oxide (Magnesia) 33氧化锌Zinc Oxide 34脱模剂Mould Release 35微粉:Mu Powder 36铁红Red Iron Oxide (Ferric Oxide) 37石油焦Petroleum Coke 38烟煤Sea Coal 39硼改性树脂Boric Acid Resins 40液体腰果由树脂Cashew Nut Shell Liquid Resins 41甲酚树脂Cresylic Resins 42橡胶改性酚醛树脂Elastomer Modified Phenolic Resins 43金属氧化物改性酚醛树脂Metal Oxide Modified Phenolics 44线形酚醛树脂Novolak 45油改性树脂:Oil-Modified Resins 46一步法酚醛树脂Resol Resins 1无水氧化铝Aluminum Oxide (Anhydrous)

常见几种开关电源工作原理及电路图

常见几种开关电源工作原理及电路图

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。 单端反激式开关电源使用的开关管VT1 承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。 3.单端正激式开关电源 单端正激式开关电源的典型电路如图四所示。这种电路在形式上与单端反激式电路相似,但工作情形不同。当开关管VT1导通时,VD2也 导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。

制动器摩擦片材料有哪些种类

制动器摩擦片材料有哪些种类 前言随着汽车的高速化和大型化,对制动器性能的要求越来越高。制动器性能与它本身的结构以及这一摩擦副的材料有关,而在很大程度上依靠摩擦片的材料。所以,研制了多种摩擦片,但绝大多数是以石棉为主要成分,加入各种提高摩擦性能的添加剂,与树脂一起制成。在摩擦片的使用范围内,要求摩擦力稳定而且大、耐磨性好、并且质量稳定。但是,含有这类有机物的材料具有难以解决的特性——那就是通常当温度升高时,摩擦力要发生复杂的变。 在大多数情况下,摩擦材料都是同各种金属对偶起摩擦的。一般公认,在干摩擦条件下,同对偶摩擦系数大于0.2的材料,称为摩擦材料。材料按其摩擦特性分为低摩擦系数材料和高摩擦系数材料。低摩擦系数材料又称减摩材料或润滑材料,其作用是减少机械运动中的动力损耗,降低机械部件磨损,延长使用寿命。高摩擦系数材料又称摩阻材料(称为摩擦材料)。 1.按工作功能分可分为传动与制动两大类摩擦材料。如传动作用的离合器片,系通过离合器总成中离合器摩擦面片的贴合与分离将发动机产生的动力传递到驱动轮上,使车辆开始行走。制动作用的刹车片(分为盘式与鼓式刹车片),系通过车辆制动机构将刹车片紧贴在制动盘(鼓)上,使行走中的车辆减速或停下来。 2.按产品形状分可分为刹车片(盘式片、鼓式片)、刹车带、闸瓦、离合器片、异性摩擦片。盘式片呈平面状,鼓式片呈弧形。闸瓦(火

车闸瓦、石油钻机)为弧形产品,但比普通弧形刹车片要厚的多,25~30mm范围。刹车带常用于农机和工程机械上,属软质摩擦材料。离合器片一般为圆环形状制品。异性摩擦片多用于各种工程机械方面,如摩擦压力机,电葫芦等。 3.按产品材质分可分为石棉摩擦材料、无石棉摩擦材料两大类。A、石棉摩擦材料分为以下几类:a、石棉纤维摩擦材料,又称为石棉绒质摩擦材料。生产:各种刹车片、离合器片、火车合成闸瓦、石棉绒质橡胶带等。b、石棉线质摩擦材料。生产:缠绕型离合器片、短切石棉线段摩擦材料等。c、石棉布质摩擦材料。生产:制造层压类钻机闸瓦、刹车带、离合器面片等。d、石棉编织摩擦材料。生产:制造油浸或树脂浸刹车带。石油钻机闸瓦等。B、无石棉摩擦材料分为以下几类:a、半金属摩擦材料。应用于轿车和重型汽车的盘式刹车片。其材质配方组成中通常含有30%~50%左右的铁质金属物(如钢纤维、还原铁粉、泡沫铁粉)。半金属摩擦材料因此而得名。是最早取代石棉而发展起来的一种无石棉材料。其特点:耐热性好,单位面积吸收功率高,导热系数大,能适用于汽车在高速、重负荷运行时的制动工况要求。但其存在制动噪音大、边角脆裂等缺点。b、NAO摩擦材料。从广义上是指非石棉-非钢纤维型摩擦材料,但现盘式片也含有少量的钢纤维。NAO摩擦材料中的基材料在大多数情况下为两种或两种以上纤维(以无机纤维,并有少量有机纤维)混合物。因此NAO摩擦材料是非石棉混合纤维摩擦材料。通常刹车片为短切纤维型摩擦块,离合器片为连续纤维型摩擦片。c、

刹车片材料基本知识、摩擦材料和发展方向

摩擦材料 一、概论 摩擦材料是一种应用在动力机械上,依靠摩擦作用来执行制动和传动功能的部件材料。它主要包括制动器衬片(刹车片)和离合器面片(离合器片).刹车片用于制动,离合器片用于传动。 任何机械设备与运动的各种车辆都必须要有制动或传动装置。摩擦材料是这种制动或传动装置上的关键性部件。它最主要的功能是通过摩擦来吸收或传递动力。如离合器片传递动力,制动片吸收动能.它们使机械设备与各种机动车辆能够安全可靠地工作。所以说摩擦材料是一种应用广泛又甚关键地材料. 摩擦材料是一种高分子三元复合材料,是物理与化学复合体。它是由高分子粘结剂(树脂与橡胶)、增强纤维和摩擦性能调节剂三大类组成及其它配合剂构成,经一系列生产加工而制成的制品。摩擦材料的特点是具有良好的摩擦系数和耐磨损性能,同时具有一定的耐热性和机械强度,能满足车辆或机械的传动与制动的性能要求.它们被广泛应用在汽车、火车、飞机、石油钻机等各类工程机械设备上。民用品如自行车、洗衣机等作为动力的传递或制动减速用不可缺少的材料。 二、摩擦材料发展简史 自世界上出现动力机械和机动车辆后,在其传动和制动机构中就使用摩擦片.初期的摩擦片系用棉花、棉布、皮革等作为基材,如:将棉花纤维或其织品浸渍橡胶浆液后,进行加工成型制成刹车片或刹车带。其缺点:耐热性较差,当摩擦面温度超过120℃后,棉花和棉布会逐渐焦化甚至燃烧.随着车辆速度和载重的增加,其制动温度也相应提高,这类摩擦材料已经不能满足使用要求。人们开始寻求耐热性好的、新的摩擦材料类型,石棉摩擦材料由此诞生。 石棉是一种天然的矿物纤维,它具有较高的耐热性和机械强度,还具有较长的纤维长度、很好的散热性,柔软性和浸渍性也很好,可以进行纺织加工制成石棉布或石棉带并浸渍粘结剂。石棉短纤维和其布、带织品都可以作为摩擦材料的基材。更由于其具有较低的价格(性价比),所以很快就取代了棉花与棉布而成为摩擦材料中的主要基材料。1905年石棉刹车带开始被应用,其制品的摩擦性能和使用寿命、耐热性和机械强度均有较大的提高。1918年开始,人们用石棉短纤维与沥青混合制成模压刹车片。20世纪20年代初酚醛树脂开始工业化应用,由于其耐热性明显高于橡胶,所以很快就取代了橡胶,而成为摩擦材料中主要的粘结剂材料。由于酚醛树脂与其他的各种耐热型的合成树脂相比价格较低,故从那时起,石棉-酚醛型摩擦材料被世界各国广泛使用至今. 20世纪60年代,人们逐渐认识到石棉对人体健康有一定的危险性。在开采或生产过程中,微细的石棉纤维易飞扬在空气中被人吸入肺部,长期间处于这种环境下的人们比较容易患上石棉肺一类的疾病。因此人们开始寻求能取代石棉的其它纤维材料来制造摩擦材料,即无石棉摩擦材料或非石棉摩擦材料。20世纪70年代,以钢纤维为主要代替材料的半金属材料在国外被首先采用。80年代-90年代初,半金属摩擦材料已占据了整个汽车用盘式片领域。20世纪90年代后期以来,NAO(少金属)摩擦材料在欧洲的出现是一个发展的趋势.无石棉,采用两种或两种以上纤维(以无机纤维为主,并有少量有机纤维)只含少量钢纤维、铁粉.NAO(少金属)型摩擦材料有助于克服半金属型摩擦材料固有的高比重、易生锈、易产生制动噪音、伤对偶(盘、鼓)及导热系数过大等缺陷。目前,NAO(少金属)型摩擦材料已得到广泛应用,取代半金属型摩擦材料。2004年开始,随汽车工业飞速发展,人们对制动性能要求越来越高,开始研发陶瓷型摩擦材料.陶瓷型摩擦材料主要以无机纤维和几种有机纤维混杂组成,无石棉,无金属。其特点为: 1.无石棉符合环保要求; 2.无金属和多孔性材料的使用可降低制品密度,有利于减少损伤制动盘(鼓)和产生制动噪音的粘度。 3.摩擦材料不生锈,不腐蚀; 4.磨耗低,粉尘少(轮毂)。 三、摩擦材料分类 在大多数情况下,摩擦材料都是同各种金属对偶起摩擦的。一般公认,在干摩擦条件下,同对偶摩擦系数大于0.2的材料,称为摩擦材料。 材料按其摩擦特性分为低摩擦系数材料和高摩擦系数材料.低摩擦系数材料又称减摩材料或润滑材料,其作用是减少机械运动中的动力损耗,降低机械部件磨损,延长使用寿命。高摩擦系数材料又称摩阻材料(称为摩擦材料). 1。按工作功能分可分为传动与制动两大类摩擦材料。如传动作用的离合器片,系通过离合器总成中离合器摩擦面片的贴合与分离将发动机产生的动力传递到驱动轮上,使车辆开始行走。制动作用的刹车片(分为盘式与鼓式刹车片),系通过车辆制动机构将刹车片紧贴在制动盘(鼓)上,使行走中的车辆减速或停下来. 2。按产品形状分可分为刹车片(盘式片、鼓式片)、刹车带、闸瓦、离合器片、异性摩擦片。盘式片呈平面状,鼓式片呈弧形。闸瓦(火车闸瓦、石油钻机)为弧形产品,但比普通弧形刹车片要厚的多,25~30mm范围。刹车带常用于农机和工程机械上,属软质摩擦材料。

盘式制动器设计说明书

错误!未找到引用源。盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻

蹄块摩擦材料配方

制动器摩擦片材料介绍 目前,国内外用于制动的摩擦材料主要有石棉树脂(国家法规已限制使用)型摩擦材料、无石棉树脂型摩擦材料、金属纤维增强摩擦材料、半金属纤维增强摩擦材料和混杂纤维增强摩擦材料等,国内以半金属纤维增强摩擦材料的应用最为普遍。上述这些摩擦材料的基本成分是增强纤维摩擦材料的生产过程一般为: 原料储存→称重→混合→预成型(常温模)→高温压模→样品修饰处理→检视→包装出厂。 1、石棉、钢纤维及克维拉(芳纶纤维)制动片的典型配方 a.石棉制动片配方一般为:50%石棉、15%树脂、20%耐磨粒、15%填充料。 b.钢纤维制动片配方一般为:30%钢纤维、15%树脂,10%氧化锌,10%金属粉,15%陶瓷,10%橡胶粒、10%石墨。 c.芳纶纤维制动片配方一般为:5%芳纶纤维、15%金属粉、15%耐磨粒、15%树脂、50%填充料。 2、摩擦材料中各组分的作用 2.1增强纤维 纤维在摩擦材料中作为增强剂,对制动片的强度、摩擦和磨损性能起着重要作用。 2.2粘结剂树脂和纤维材料、填充料等各组分能否良好粘结,取决于树脂对这些材料的浸润性能以及与它们形成化学键的可能性。目前,摩擦材料最常用的粘结剂是各种酚醛树脂及其改性树脂,常用酚醛树脂的性能如表3所示,它的作用是将增强纤维与其他组分粘合在一起。粘结剂是摩擦材料的基体,直接影响到材料的各种性能,因此粘结剂应满足以下性能要求。 a.在一般温度(100℃以下)下,保证摩擦材料有足够的机械强度(抗击强度、冲击强度、压缩强度、剪切强度以及一定的伸长率)。 b.当制动摩擦表面温度在200~300℃时,树脂不发生粘流、分解,应保持一定的强度,以支持摩擦表面层的工作要求,且与对偶件有良好的贴合性。

把常见的几种开关电源结构和原理供大家参考

把常见的几种开关电源结构和原理供大家参考: 1.正激电路 电路的工作过程: 2开关S开通后,变压器绕组N1两端的电压为上正下负,与其耦合的N2绕组两端的电压也是上正下负.因此VD1处于通态,VD2为断态,电感L的电流逐渐增长; 2 S关断后,电感L通过VD2续流,VD1关断.S关断后变压器的激磁电流经N3绕组和VD3流回电源,所以S关断后承受的电压为 . ?变压器的磁心复位:开关S开通后,变压器的激磁电流由零开始,随着时间的增加而线性的增长,直到S关断.为防止变压器的激磁电感饱和,必须设法使激磁电流在S关断后到下一次再开通的一段时间内降回零,这一过程称为变压器的磁心复位. 正激电路的理想化波形: 变压器的磁心复位时间为: Tist=N3*Ton/N1 输出电压:输出滤波电感电流连续的情况下: Uo/Ui=N2*Ton/N1*T 磁心复位过程:

2.反激电路 反激电路原理图 反激电路中的变压器起着储能元件的作用,可以看作是一对相互耦合的电感. 工作过程: 2S开通后,VD处于断态,N1绕组的电流线性增长,电感储能增加; 2S关断后,N1绕组的电流被切断,变压器中的磁场能量通过N2绕组和VD向输出端释放.S 关断后的电压为:us=Ui+N1*Uo/N2 反激电路的工作模式: 2电流连续模式:当S开通时,N2绕组中的电流尚未下降到零. 输出电压关系:Uo/Ui=N2*ton/N1*toff 2电流断续模式:S开通前,N2绕组中的电流已经下降到零. 输出电压高于上式的计算值,并随负载减小而升高,在负载为零的极限情况下, ,因此反激电路不应工作于负载开路状态. 反激电路的理想化波形

鼓式制动器的分类

鼓式制动器的分类、组成及工作情况 鼓式制动器多为内张开双马式,因制动蹄张开机构的形式、张开力作用点和制动蹄支撑点的布置等不同,使得制动器的工作性能也不同。根据制动时两蹄对制动鼓作用的径向力是否平衡,用液压轮缸张开的鼓式制动器可分为:简单非平衡式、平衡式和自动增力式三种。 简单非平衡式制动器 简单非平衡式制动器的特点是:两制动蹄的支撑点都位于蹄的下端,而张开力的作用点在蹄的上端,共用一个轮缸张开,且轮缸活塞直径是相等的。 制动时,两个制动蹄在相等的张开力的作用下,分别绕各自的支承点向外偏转,直至其摩擦片压紧制动鼓的内圆工作面。与此同时,制动鼓对两制动蹄分别作用有法向力。以及相应的切向力,即摩擦力。但前后两蹄的作用效果是不相同的。 前蹄:摩擦力产生绕支承点的力矩的方向与张开力产生的绕支承点的力矩方向是相同的,使前蹄对制动鼓的压紧力增大,从而使该蹄所产生的制动力距自动增大,这种制动蹄称为助势蹄或领蹄 后蹄:摩擦力产生绕支承点的力矩的方向与张力产生的绕支承点的力矩方向是相反的,使后蹄对制动蹄的压紧力减小,从而使该蹄所产生的制动力距自动减小,这种制动蹄称为减势蹄或从蹄。 虽然前后两蹄所所受的张开力相等,但因摩擦力所起到的作用是正负关系,且两轮缸活塞又是浮动的,结果使两蹄所受到制动鼓的法向力不等,因此称为简单非平衡式制动器。多用于轻型汽车的后轮制动器。 汽车倒车时,由于制动鼓的旋转方向的改变,领蹄和从蹄的位置发生改变,但效果是一致的。 平衡式制动器 平衡式制动器的制动底板上所有固定元件,如制动蹄、制动轮缸、回位弹簧等都是对称布置的。前进制动时,两制动蹄都为领蹄,其制动效能大于简单非平衡式制动器。倒车制动时,两制动蹄都为从蹄,其制动效能比简单非平衡式制动器差。 自动增力式制动器结构 将两蹄用推杆浮动铰接,利用液压张开力促动,使两蹄产生助势作用,还充分利用前蹄的助势推动后蹄,使总的摩擦力距进一步增大,此为“自动增力式”。

相关文档
最新文档