制冷器具中制冷充注量计算

制冷器具中制冷充注量计算
制冷器具中制冷充注量计算

制冷器具中制冷充注量计算

————————————————————————————————作者:————————————————————————————————日期:

制冷器具中制冷剂充注量的计算

作者:时阳发布人:mxlly 发布时间:2006-12-18 10:15:15

浏览次数:217

【关键词】制冷器,制冷剂

【摘要】讨论了制冷器具中制冷剂充注量与制冷量的关系以及系统中各部分制冷剂的状态和数量.提出以计算的方法来确定制冷剂充注量以及单相区、两相区工质数量,并给出了计算公式.采用这一方法可减少充注量优化实验时间,已成功运用于新产品开发.

浏览字体设置:- 10pt + 10pt 12pt 14pt 16pt

0引言

绝大部分制冷器具中的制冷系统采用毛细管进行节流,此类制冷系统具有结构简单、运转可靠

等优点.但因毛细管属不可调节的节流元件,因此,此类制冷系统中制冷剂充注量对系统性能特别

是制冷量有很大影响.

制冷剂充注量的确定一般以实验方法为主.有些文献介绍了利用经验公式来计算[1],但经验公

式通用性不强,准确程度差.随着制冷系统中各设备数学模型的完善和计算机的广泛应用,制冷器具

中绝大部分设备的设计和优化可在计算机上进行.在新产品开发过程中,制冷剂充注量的确定成了

实验工作量最大的环节,约占全部实验工作量的40%.因此,如能以计算的方法确定充注量,以实验

加以验证,在生产中将有相当大的应用价值.

1制冷剂充注量与制冷量的关系

对于以毛细管节流的制冷系统,制冷量与能效比呈正相关关系,因此仅需讨论充注量与制冷量

的关系.这类系统的制冷循环在lg p—h图上的表示如图1.如系统中的制冷剂充注量过少,则不能在

毛细管进口处保持液封,冷凝压力上升后,循环成为1—2—3—5′—6′—7—1.此时毛细管流阻急

剧上升,流量下降,制冷剂又开始在冷凝器聚集,使循环恢复至1—2—3—4—5—6—7—1.但恢复后

流阻下降,液封又被破坏.如此反复振荡,系统不能稳定工作,平均制冷量很小.

图1 制冷循环

在保证毛细管进口液封的条件下,系统中压缩机制冷循环的特性为[2]

Q0=f1(t k,t0)Q0s

N t=f2(t k,t0)N ts

对于给定的压缩机,以上两式可表述为[3]

Q0=a0t2k+a0t k+a3t k t0+a4t20+a5t0+a6

N t=b1t2k+b2t k+b3t k t0+b4t20+b5t0+b6

当t k越低、t0越高时,Q0越大.同时,N t越小,能效比越高.

制冷剂在冷凝器中沿管长的热流密度与温差分布见图2.其换热由3段组成,即

Q k=2π(K1cθ1c l1c+K kθk l k+K3cθ3c l3c)r i

图2 冷凝器换热示意

冷凝器管长是恒定的,即

l c=l1c+l k+l3c=const

虽然K1c较小,但基本不变,而θ1c较大,且有

K1cθ1c≈K kθk

Q k基本恒定,对换热影响也较小.随着制冷剂充注量的增大,液体占用冷凝管内容积增加,l3c 增

大,则必有l k减小,θk增大,于是t k上升,Q0下降.

制冷剂在蒸发器中沿管长的换热密度与温差分布如图3所示.它也由两段组成,即

Q0=(K0θ0l0+K7eθ7e l7e)f ie

图3 蒸发器换热示意

蒸发器换热管长也是恒定的,即

l e=l0+l7e=const

当制冷剂充注不足时,θ0增大,Q0减小;当充注量过多时,由于流阻的增大,虽l7e减小,θ0仍将增大,t0下降,Q0仍下降.

在一台KF—25空调器上用不同的充注量进行实验,相对充注量G/G opt与相对制冷量Q0/Q0max 存

在图4所示关系,与上述分析一致.

图4 充注量与制冷量的关系

2单相段工质量的计算

制冷剂在系统中状态不断变化,根据其状态可将系统分几段,逐段计算出系统各部分的制冷剂

量后即可得出充注量.

毛细管的变工况特性与压缩机相反,以毛细管节流的制冷系统,冷凝器中必须存一定的制冷剂

液体.为保证系统能在变工况条件下正常工作,当毛细管流量最大时,冷凝器应能保持液封.此时制

冷剂为过冷液体,温度、比容变化不大,可选取出口处参数进行计算.于是

冷凝器至毛细管的管路中制冷剂量为

G4=f i4l4/v3

细管内部容积很小,容纳的制冷剂可忽略不计.

制冷剂在毛细管至蒸发器的管路中处于湿蒸气区,其干度基本维持节流后初始干度不变,可

为单相处理,即

G5=f i5l5(1-x b)/v1b

为保证变工况时压缩机不吸入湿蒸气,蒸发器内必须有一段过热长度,但因制冷剂蒸气的比容

为饱和液体的近百倍,这部分制冷剂与蒸发器至压缩机的管路、压缩机至冷凝器的管路以及压缩机

内部的蒸气之和不足15g,在计算时可忽略不计.

3两相段工质量的计算

制冷剂在冷凝器与蒸发器中均是管内流动,稳定工作时可视为无相间滑移的定常流动,两相区

干度近似呈线性变化

x=(1-x b)l x/l+x b

由干度的定义,有

对于一个长度微元,则

d G=d V v/v v+d V1/v1 f i d l x=d V v+d V1

于是

如图1和图3,冷凝器和蒸发器的两相段管长分别为

4润滑油中的制冷剂

制冷器具均采用夹带回油,制冷剂与润滑油完全或部分互溶.制冷剂气体在油中的溶解度与压

力和温度有关,可表示为

y=c1p3+c2p2+c3p+c4t3+c5t2+c6t+c7

通常,溶解度随压力上升而增大,随温度上升而减小.当溶解度求出后,根据压缩机的注油量,可得出

溶解于油中的制冷剂量

G6=my/(1-y)

5验证与结论

应用上述计算方法,对一台经多次实验仍未达到适当充注量的KFR—35型空调器进行计算,将充

注量由1.30kg减小为1.10kg,系统各部分制冷剂量见表1.

表1 系统各部分制冷剂量表

组成部分

代号

G k G k G k G k G k G k合计

数量/g 343.62 295.12 37.29 141.37 51.84 100.05 1100.98 经实验验证后,将充注量调整到1.14kg,制冷量由3240W上升到3480W,能效比由2.63提高到2.76,达到优级标准.计算误差为3.5%,充注量优化实验仅进行2次,时间与费用均大幅下降.

由以上讨论可得出如下结论:

1)制冷剂充注量与制冷量之间存在最佳匹配关系,且制冷量最大时能效比最高.

2)用计算的方法确定充注量,准确程度高,能减少70%的实验工作量.

作者简介:时阳男,44岁,副教授

作者单位:郑州轻工业学院机电科学与工程系郑州450002

周国峰工作单位为华北水利水电学院

参考文献

1徐传宙,时阳,湛清平.制冷器具原理与技术.北京:中国轻工业出版社,1996.36~38 2雅柯勃松ВБ著.小型制冷机.王士华译.北京:机械工业出版社,1982.88~90

3谭国芳,刘剑峰.空调器模拟设计中的压缩机性能拟合.制冷,1997(1):46~50

符号说明

a,b,c—系数C—比热容f—流通截面g—质量流量G—充注量h—焓K—传热系数l—长度m—注油量N—功率

p—压力

q—热流密度

Q—热量

r—传热管半径

t—温度

v—比容积

V—容积

x—干度

y—溶解度

θ—温差

下标

b—初始的

c—冷凝器

d—低温的

e—蒸发器

h—高温的

i—内部的

k—凝结

l—液体的

o—蒸发

s—名义的

v—蒸气的

x—局部的

max—最大的

opt—

空调系统制冷剂最佳充注量试验研究

研究报告 第20100161号 日立电器 R410A空调系统制冷剂最佳充注量试验研究 技术体系 压缩机开发部 开发一室 君一波 探讨期间:2010 年 6 月~2010 年 7 月 报告日期: 2010年7月

摘要 建立了空调系统制冷剂最佳充注量的数学模型,分析了制冷剂充注量和电子膨胀阀开度对变频 空调制冷量、功率、EER、蒸发温度、吸气温度、过热度的影响及原因。提出了空调系统最佳匹配特 性的原则,制冷系统存在最佳充注量,通过调节压缩机的运行频率实现容量调节,通过调节电子膨 胀阀使蒸发器出口趋近饱和状态,此时蒸发器过热度趋近于0,制冷量及EER达到最佳值。 关键词:制冷剂充注量、电子膨胀阀、制冷量、过热度、EER 目录 绪言 (3) 1.空调系统制冷剂量数学模型 (4) 1.1 引言 (4) 1.2 制冷剂量数学模型 (4) 2. 试验系统及方法介绍 (5) 2.1 试验系统 (5) 2.2 实验目的及方法 (9) 2.3 空调系统流程及两器分析 (10) 3. 实验结果与分析 (12) 3.1 电子膨胀阀特性变化曲线 (12) 3.1.1温度特性变化曲线 (12) 3.1.2制冷量、功率、能效比的变化曲线 (13) 3.2 制冷剂充注量特性变化曲线 (14) 3.3 空调系统最优效率的匹配方法 (15) 4. 小结及展望 (16) 4.1 小结 (16) 4.2 展望 (17) 5. 主要参考文献及资料 (17) 6. 致 (17)

绪言 (一)研究的动机 制冷剂充注量与制冷装置的工作特性是紧密相关的,如果充注量过大, 将引起蒸发温度、冷凝温度上升, 由于冷凝器和蒸发器参与换热的有效面积减小, 蒸发器不能将冷量充分发挥出来;如果充注量过小, 蒸发、冷凝压力都下降, 蒸发器的传热温差增加了, 而制冷剂的制冷量却减少了, 系统工作特性也不符合要求。 目前SHEC的正在大力开发R410A冷媒的定频及变频压缩机,压缩机与空调系统的匹配的研究显得更为重要。对一定容量的压缩机而言,在空调系统的匹配中,一般通过调节制冷剂充注量、毛细管长度或电子膨胀阀开度来寻找系统运行最佳效率状态。在实际调节过程中,即使空调系统节流装置要求使用毛细管,也先是用电子膨胀阀对系统进行调节,找到运行的最佳点后,再更换相应的毛细管来匹配。 目前,国有关于R22毛细管长度与制冷剂充注量方面的研究与报道,但对于R410A空调器方面的研究较少。因此,研究空调器性能参数随电子膨胀调节和制冷剂充注量变化的规律,具有重大的实践意义。 (二)研究经过 理论分析阶段: 阅读关于制冷剂充注量及空调系统运行特性方面的文献,探讨如何开展试验。探讨的结果是:采用ASA804变频压缩机,格力26级2级能效空调系统,节流装置采用电子膨胀阀。 实验准备及实施阶段:在公司的焓差室实施实验,为了保证实验数据的真实性及可靠性,必须连续运行空调系统,中间停机次数尽量少。在一个充注量下将膨胀阀开度从小调节到大,机组连续运行,每个工况运行4个小时左右待稳定后采集数据。每个充注量下采样点约16-20个,共6个充注量。 数据分析阶段: 总结电子膨胀阀及制冷剂充注量的特性变化规律。结合理论分析变化原因。找到调节空调系统的最佳效率点的依据和方法。 (三)研究对象 ASA804SD压缩机和格力KFR-26GW/E(26541)FdNA空调系统,原机的节流装置是毛细管,为了能够快速简便地调节制冷剂流量,实验中采用电子膨胀阀作为节流装置。 (四)研究的目标 通过对R410A空调系统制冷剂充注量机和电子膨胀阀特性理探讨完成后,能够为R410A空调最优效率的压缩机匹配提供方法和依据,提高压缩机与空调系统匹配的工作效率。

如何根据压缩机的制冷量计算冷凝器及蒸发器的面积

如何根据压缩机的制冷量配冷凝器散热面积? 帖子创建时间: 2013年03月04日08:34评论:1浏览:2520投稿 1)风冷凝器换热面积计算方法 制冷量+压缩机电机功率/200~250=冷凝器换热面例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2 2)水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2 蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 3)制冷量的计算方法:=温差×重量/时间×比热×设备维护机构 例如:有一个速冻库 1)库温-35℃ 2)速冻量1T/H 3)时间2/H内 4)速冻物质(鲜鱼) 5)环境温度27℃ 6)设备维护机构保温板计算:62℃×1000/2/H×0.82×1.23=31266 kcal/n 可以查压缩机蒸发温度CT =40 CE-40℃制冷量=31266 kcal/n 冷凝器换热面积大于蒸发器换热面积有什么缺点 如果通过加大冷凝风扇的风量可以吗 rainbowyincai |浏览1306 次 发布于2015-06-07 10:19 最佳答案 冷凝器换热面积大于蒸发器换热面积的缺点: 1、高压压力过低;

2、压机走湿行程,易液击,通过加大蒸发器风扇的风量。风冷

冷凝器和蒸发器换热面积计算方法: 1、风冷凝器换热面积计算方法:制冷量+压缩机电机功率/200~250=冷凝器换热面积 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527 W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2。 2、水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2,蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

空调器制冷剂最佳充注量确定

空调器制冷剂最佳充注量确定 每一种空调器的设计都存在着如何确定制冷剂充注量的问题,特别是在采用毛细管作节流装置的空调器中,由于毛细管的调节能力较热力膨胀阀差,充注量的变化对其性能影响更大。目前这方面的研究较少,缺少成熟的理论计算方法,各生产厂家只好采取试验手段,依据经验估计值进行多次试验,以最终确定最佳充注量。这种重复的工作不仅费钱,也费时费力。为了使确定最佳充注量变得简单可行,本文在系统稳态性能模拟的基础上,对分体式空调器的最佳充注量进行了计算,并提出了确定系统最佳充注量的原则:当空调器的结构尺寸和工作条件一定,制冷量达到设计要求时,系统的能效比最大。此时,空调器及各部件处于最佳工作状态。本人曾对KFR-32GW/H分体挂壁式空调器反复做试验,理论计算和试验结果很吻合。 1充注量计算 制冷剂在制冷系统中的状态可分为单相和两相两种,这两部分的制冷剂质量计算应分别考虑。 1.1单相区质量计算 单相区制冷剂密度计算较为简单,处于单相区的各部分制冷 剂质量可通过积分计算。 (1) 式中m1为制冷剂质量,kg;ρ为密度,kg/m3;V为容积,m3;Pv为压力,Pa;Tv为制冷剂温度,K。 单相区制冷剂主要存在于蒸发器过热区、冷凝器过冷区、连接管路、压缩机壳体内、过滤器和润滑油中,故单相区制冷剂质量为: (2) 式(2)中各参数的下标含义为:filt过滤器,pipe管路,oil润滑油,com压缩机,V单相区容积。 考虑到压缩机、过滤器、接管内制冷剂温度变化不大,故式(2)中采用平均温度来计算密度。润滑油中溶解的制冷剂量,可根据油质量及制冷剂的溶解度

进行计算。 1.2两相区质量的计算 充注量计算的难点在于两相区中制冷剂量的确定,其关键是两相区空泡系数的计算。在两相区空泡系数修正模型的研究和验证方面,不少学者已经做了大量工作。笔者在此基础上,结合空调器的实际工作条件,在稳态工况下,假设换热器两相区单位面积热负荷一定,选用Hughmark模型计算两相区的制冷剂量。其数学表达式为: (3) 式中α为空泡系数,x为干度,β、kH为系数,其中kH=f(z)具体见表1。 (4) 式中G为质量流速,kg/(m2·s);μ为粘度,Pa·S;Di为管内径,m。 此模型系数计算中包括α,所以在计算α时必须经过迭代,计算量较大。 两相区中制冷剂量m2: (5) 式中ls为两相区长度,m;l为制冷剂管长,m。 制冷剂的总充注量m为各部分充注量之和: m=m1+m2(6) 2充注量对空调器性能的影响及试验结果

压缩机制冷量、容积效率、能效比.

容积效率 容积效率(volumetric efficiency)指的是在进气行程时气缸真实吸入的混和气体积除以汽缸容积。这代表了引擎的吸气能力。容积效率对于扭力有决定性的影响,容积效率越大,引擎扭力越佳。影响容积效率的变因有很多,如引擎转速,汽缸头进气道的流量,气门截面积的大小,凸轮轴的设计,进气岐管的长度,燃料雾化的程度等等等。 现今采用喷射供油的四行程引擎,其容积效率皆已达到90%。若进气岐管的长度经过校调,便可以在特定的转速域达到超过100%的容积效率。在进气口处加装涡轮增压器(tu rbocharger),也可以增加容积效率。 某些汽车杂志常把容积效率定义为每升的排气量可以产生多少匹马力,这是错误的。真正的容积效率单位如同其他的效率单位,是百分比,而非hp/L。 容积效率表示液压泵或液压马达抵抗泄露的能力,等于泵(马达)的实际流量与泵(马达)的理论流量之比。它与工作压力、液压泵或马达腔中的摩擦副间隙大小、工作液体的粘度以及转速有关。 因液体的泄露、压缩等损失的能量称为容积损失。 活塞式压缩机的输气系数在一定意义上可以理解为容积效率。压缩机输气系数是这样定义的:压缩机实际容积流量与理论容积流量之比。 输气系数(λ)可以用下式表示: λ=λVλpλtλl 其中,λV——容积系数,与余隙容积有关; λp——压力系数,与吸气过程的压力损失有关; λt——温度系数,与压缩机气缸内温度有关; λl——气密系数,与压缩机的密封程度有关。 输气系数在一定意义上可以理解为容积效率。 能效比 能效比是在额定工况和规定条件下,空调进行制冷运行时实际制冷量与实际输入功率之比。这是一个综合性指标,反映了单位输入功率在空调运行过程中转换成的制冷量。空调能效比越大,在制冷量相等时节省的电能就越多。 1基本定义 1.1能效比数值定义 在制冷和降噪之外,在日益追求环保和节能的今天,用电量的多少也是大家所关注的。对于消费者来说,选择节能空调可将日后使用过程中的电费一点一滴的节省下来,无疑是精明的选择。在这方面涉及两个技术关键词:能效比和变频。能效比是指空调器在制冷运行时,

制冷压缩机的基本性能参数计算

制冷压缩机的基本性能参数计算 一、实际输气量(简称输气量) 在一定工况下, 单位时间内由吸气端输送到排气端的气体质量称为在该工矿下的压缩机质量输气量 ,单位为。若按吸气状态的容积计算,则其 容积输气量为,单位为。于是 二、容积效率? 压缩机的容积效率是实际输气量与理论输气量之比值 (4-2) 它是用以衡量容积型压缩机的气缸工作容积的有效利用程度。 三、制冷量 制冷压缩机是作为制冷机中一重要组成部分而与系统中其它部件,如热交换器,节流装置等配合工作而获得制冷的效果。因此,它的工作能力有必要直观地 用单位时间内所产生的冷量——制冷量来表示,单位为,它是制冷压缩机 的重要性能指标之一。 (4-3) 式中 -制冷剂在给定制冷工况下的单位质量制冷量,单位为; -制冷剂在给定制冷工况下的单位容积制冷量,单位为。 为了便于比较和选用,有必要根据其不用的使用条件规定统一的工况来表示压缩机的制冷量,表4-1列出了我国有关国家标准所规定的不同形式的单级小型往复式制冷压缩机的名义工况及其工作温度。根据标准规定,吸气工质过热所吸收的热量也应包括在压缩机的制冷量内。 表4-1 小型往复式制冷压缩机的名义工况

四、排热量 排热量是压缩机的制冷量和部分压缩机输入功率的当量热量之和,它是通过系统中的冷凝器排出的。这个参数对于热泵系统中的压缩机来讲是一个十分重要的性能指标;在设计制冷系统的冷凝器时也是必须知道的。 图4-1 实际制冷循环 从图4-1a所示的实际制冷循环或热泵循环图可见,压缩机在一定工况下的 排热量为: 从图4-1b的压缩机的能量平衡关系图上不难发现 上两式中 -压缩机进口处的工质比焓; -压缩机出口处的工质比焓; -压缩机的输入功率; -压缩机向环境的散热量。 表2-2列举了美国制冷协会ARI520-85标准所规定的用于热泵中的压缩机的名义工况。 表2-2 热泵用压缩机的名义工况(美国制冷协会ARI520-85标准)环境温度35度 五、指示功率和指示效率

冷凝器换热面积计算方法

冷凝器换热面积计算方法 (制冷量+压缩机功率)/200~250=冷凝器换热面 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃ 制冷量12527W+压缩机功率11250W 23777/230=气冷凝器换热面积103m2 水冷凝器换热面积与气冷凝器比例=概算1比18;(103/18)= 6m2 蒸发器的面积根据制冷量(蒸发温度℃×Δt进气温度) 制冷量=温差×重量/时间×比热×安全系数 例如:有一个速冻库1库温-35℃,2冷冻量1ton/H、3时间2/H内,4冷冻物品(鲜鱼);5环境温度27℃; 6安全系数1.23 计算:62℃×1000/2/H×0.82×1.23=31266kcal/n 可以查压缩机蒸发温度CT=40;CE-40℃;制冷量=31266kcal/h NFB与MC选用 无熔丝开关之选用 考虑:框架容量AF(A)、额定跳脱电流AT(A)、额定电压(V), 低电压配线建议选用标准 (单一压缩机) AF 取大于AT 一等级之值.(为接点耐电流的程度若开关会热表示AF选太小了) AT(A ) = 电动机额定电流×1 .5 ~2 .5(如保险丝的IC值) (多台压缩机) AT(A )=(最大电动机额定电流×1 .5 ~2 .5)+ 其余电动机额定电流总和 IC启断容量,能容许故障时的最大短路电流,如果使用IC:5kA的断路器,而遇到10kA的短路电流,就无法承受,IC值愈大则断路器内部的消弧室愈大、体积愈大,愈能承受大一点的故障电流,担保用电安全。要搭配电压来表示220V 5KA 电压380V时IC值是2.5KA。

电磁接触器之选用 考虑使用电压、控制电压,連续电流I t h 之大小(亦即接点承受之电流大小),連续电流I th 的估算方式建议为I t h=马达额定电流×1.25/√ 3。 直接启动时,电磁接触器之主接点应选用能启闭其额定电流之10倍。 额定值通常以电流A、马力HP或千瓦KW标示,一般皆以三相220V电压之额定值为准。 电磁接触器依启闭电流为额定电流倍数分为: (1).AC1级:1.5倍以上,电热器或电阻性负载用。 (2).AC2B级:4倍以上,绕线式感应电动机起动用。 (3).AC2级:4倍以上,绕线式感应电动机起动、逆相制动、寸动控制用。 (4).AC3级:闭合10倍以上,启断8倍以上,感应电动机起动用。 (5).AC4级:闭合12倍以上,启断10倍以上,感应电动机起动、逆相制动、寸动控制用。 如士林sp21规格 ◎额定容量CNS AC3级 3相 220~240V→kW/HP/A:5.5/7.5/24 380~440V→kW/HP/A:11/15/21 压缩功率计算 一. 有关压缩机之效率介绍: 1.体积效率(EFF V) :用以表示该压缩机泄漏或阀门间隙所造成排出的气体流量 减少与进入压缩机冷媒因温度升高造成比体积增加之比值 体积效率(EFF V)=压缩机实际流量/压缩机理论流量 体积效率细分可分为二部分 (1)间隙体积效率 ηvc=V′ / V V′:实际之进排气量 V :理论之排气量 间隙体积效率一般由厂商提供,当压缩机之压缩比(PH / PL)增大,即高压愈高或低压愈低,则膨胀行程会增长,ηvc减少。 (2)过热体积效率 ηvs=v / v′

制冷系统制冷剂充注量的控制和分析

文从实践出发,总结了制冷系统维修过程中制冷剂充注量的控制方法及与充注量有关的故障分析思路,为一线维修人员提供了实用可行的维修经验和故障分析技巧。 关键词:制冷剂充注量控制分析 一、前言 制冷设备在出厂时都做了性能测试,给出了制冷剂充注量的参考值。家用电冰箱、空调器在工厂用定量加氟仪加入制冷剂,部分商用制冷机组在出厂时也定量加氟了。大型氨制冷系统用高压储液罐储液,上面有液位指示器,根据指示液位高度控制加氨就行了。这些设备在制冷剂充注量的控制方面不需要维修人员动很多脑筋。但是,许多大型中央空调机组和工业冷水机组要现场充注制冷剂,家用冰箱空调器在维修过程中也要现场充注制冷剂。有些设备铭牌上有充注量参考值,有些设备因为使用蒸发器的种类不同,制冷剂充注量不同,就没有给出充注量参考值。无论有否充注量参考值,在维修安装现场,由于条件限制,技术人员往往不用定量加氟仪,也不习惯按定量称重充注制冷剂,因为多数情况下,是系统制冷剂部分泄漏了要补充,泄漏量多少是无法精确计算的。所以大多是凭经验充入制冷剂。 在维修实践中经常出现制冷剂充注量不当而使设备运转不正常。那么怎样控制制冷剂加注量,加入量不当又会引起哪些故障呢?本文将从这两个方面对不同制冷系统进行分析探讨。 二、制冷剂充注量的控制 1、水冷冷水机组制冷剂充注量的控制 在中央空调和工业生产工艺降温中,水冷冷水机组使用比较普遍。这种机组由压缩机、卧式壳管式冷凝器、热力膨胀阀、卧式壳管式蒸发器及必要辅件组成一体。结构紧凑,操作控制方便,安装调试简单,在市场上受到欢迎。 对于没有设置高压储液器和低压汽液分离器的制冷系统,制冷剂充注量的控制尤为重要。因为这种制冷系统是冷凝器兼作高压储液器,制冷剂加多了会储存在冷凝器中,淹没冷凝器散热簇管,使散热面积减小,冷凝压力升高,导致制冷量下降。 对于这类制冷机组制冷剂充注量的控制,在充注过程中,一摸冷凝器外壳温度,冷凝器出液口上口以上发热,出液口上口以下发凉就可以了(发热说明有压缩机高温排气在里面冷凝,发凉说明里面是液体空间);二看吸气压力,要与蒸发器内冷媒水温度相对应(也就是与蒸发温度相对应);三看压缩机回气管温度,高温机组回气管应发凉结露,但结露到压缩机回气阀就可以了;低温机组回气管应结霜,但霜结到压缩机回气阀就可以了。如果结露或者结霜到压缩机外壳,液态制冷剂就会进曲轴箱,会引起压缩机跑油和液击。对于封闭式压缩机来说还会使电机接线端子短路。虽然大部分封闭式机组接线端子用密封胶密封了,但由于密封效果的不确定性,短路的可能性还是存在的。 2、风冷冷水机组制冷剂充注量的控制 风冷冷水机组因不需要循环水系统,在户式中央空调和小型商用制冷系统中使用普遍,由于使用风冷冷凝器,其制冷剂充注量控制与水冷冷凝器有区别,就是在充注过程中要摸散热器翅片温度,在夏天,工作过程中散热翅片全部面积应发热,如果上部发热,下部发凉,说明制冷剂充多了,发凉部分储存了液体制冷剂。冬天由于环境温度低,即使充注量正常,散热器下部也可能发凉,那么用这种方法就无法判断了。其他特征与水冷式机组相同。

冷库制冷量的计算

概述:库温0℃,库内容积324立方,筐装新鲜水果,容积系数0.44,贮藏吨位31.3吨,进货量8.0%,冷却加工时间24.0小时 对容量为100吨以下的小型冷库,冷却加工时间X运转率(压缩机的每昼夜实际运行时间)可考虑采用12-16小时(即小于24小时X运转率的值) 库 一、冷库计算说明: 1.此冷库为鲜果蔬类冷库,冷库负荷热量计算时应包括鲜果蔬呼吸热和鲜果蔬通风换气热! 2.库外温度26.0℃,库外相对湿度71.0%,库外空气密度1.139kg/m3,库外露点温度20.3℃,库板防结露厚度23mm<地点-陕西榆林> 3.库内温度0.0℃,库内相对湿度90.0%,库内冷空气密度1.288kg/m3,库内外传热温差26.0℃ 4.库体尺寸:长X宽X高=10.000 X 12.000 X 3.000米,库板厚度100毫米,库内容积324立方,库体外表面积372平方,净面积11 5.6平方,净高2.80米,地面无通风加热设备,无空气幕 5.库板保温材料:聚氨酯泡沫,密度40.0公斤/立方,热传导率0.030w/m℃,传热系数0.300w/m2℃ 6.货物种类:筐装新鲜水果,容积系数0.44,货物密度220公斤/立方,贮藏吨位31.3吨,进货量8.0%=2.5吨,冷却加工时间24.0小时 7.货物参数:苹果,冻前比热3.85kj/kg℃,冻后比热2.09kj/kg℃,含水率85.0%(实际冻结水分0.0%),冰点温度-2.0℃,冻结率0.0% 货物入库温度14.0℃,终了温度2.0℃,入库焓热355.04kj/kg,终了焓热308.84kj/kg,货物放热量46.00kj/kg 8.热量方面: ①库体漏热=库体外表面积X传热温差X传热系数X库底面温度修正系数=372X26.0X0.300X0.74=2152W ②货物热量=进货量X货物放热量/冷却加工时间=2.5X1000X46.00/24.0/3.6=1331W (X1000/3.6为单位转换常数以下同) ③其它材料热=(包装工具<瓦愣纸>比热X进货量X工具占货比例+铝比热X铝重量+钢比热X钢重量+铜比热X铜重量)X(货入库温度-库内温度)/冷却加工时间 =(1.47X2.5X1000X0.25+0.46X0.00+0.88X0.00+0.39X0.00)X(14.0-0.0)/24.0/3.6=149W ④总操作热=开门热量+照明热量+人工操作热=1598+276+923=2797W 其中开门热量=开门换气次数X库内容积X库内外的空气热量差/24小时=4.0X324X29.59/24=1598W 照明热量=库内面积X单位面积照明=120X2.3=276W 人工操作热=工作人数X工作时间/24小时X人均热量+新风热=1X3.0/24X280+888=923W 注:新风热由原来的24小时平均计算改为每小时最大值(比原来算法要大),加工间、包装间等有操作人员长期停留的需要新风,其余冷间可不计。 ⑤冷风机热=冷风机功率X冷风机台数+电加热除霜=1.50X1000X3+0=4500W 排管间电机热=排管间功率=0.00X1000=0W ★注意:冷风机的最终功率必须和计算得出的冷风机面积相匹配,否则需要不断调整功率以保持和面积一致 排管间如果有风机功率,请注意是否为排管+风机形式(搁架排管有时配风机),一般情况下没有风机 一般电动机的功率因数为0.86,即实际运行功率为额定装机功率的0.86,同时考

制冷器具中制冷剂充注量的计算

制冷器具中制冷剂充注量的计算 作者:时阳发布人:mxlly 发布时间:2006-12-18 10:15:15 浏览次数:217 【关键词】制冷器,制冷剂 【摘要】讨论了制冷器具中制冷剂充注量与制冷量的关系以及系统中各部分制冷剂的状态和数量.提出以计算的方法来确定制冷剂充注量以及单相区、两相区工质数量,并给出了计算公式.采用这一方法可减少充注量优化实验时间,已成功运用于新产品开发. 浏览字体设置:10pt 绝大部分制冷器具中的制冷系统采用毛细管进行节流,此类制冷系统具有结构简单、运转可靠 等优点.但因毛细管属不可调节的节流元件,因此,此类制冷系统中制冷剂充注量对系统性能特别 是制冷量有很大影响. 制冷剂充注量的确定一般以实验方法为主.有些文献介绍了利用经验公式来计算[1],但经验公 式通用性不强,准确程度差.随着制冷系统中各设备数学模型的完善和计算机的广泛应用,制冷器具 中绝大部分设备的设计和优化可在计算机上进行.在新产品开发过程中,制冷剂充注量的确定成了 实验工作量最大的环节,约占全部实验工作量的40%.因此,如能以计算的方法确定充注量,以实验 加以验证,在生产中将有相当大的应用价值. 1 对于以毛细管节流的制冷系统,制冷量与能效比呈正相关关系,因此仅需讨论充注量与制冷量 的关系.这类系统的制冷循环在lg p—h图上的表示如图1.如系统中的制冷剂充注量过少,则不能在 毛细管进口处保持液封,冷凝压力上升后,循环成为1—2—3—5′—6′—7—1.此时毛细管流阻急 剧上升,流量下降,制冷剂又开始在冷凝器聚集,使循环恢复至1—2—3—4—5—6—7—1.但恢复后 流阻下降,液封又被破坏.如此反复振荡,系统不能稳定工作,平均制冷量很小.

制冷量的计算方法

制冷量的计算方法 制冷量的计算方法风冷凝器水冷凝器换热面积计算方法与压缩机匹配选型 1)风冷凝器换热面积计算方法 (制冷量+压缩机电机功率)/200~250=冷凝器换热面积 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃ 压缩机制冷量=(12527W+压缩机电机功率11250W)/230=23777/230=风冷凝器换热面积103m2 2)水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2 蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 3)制冷量的计算方法:=温差×重量/时间×比热×设备维护机构 例如:有一个速冻库 1)库温-35℃ 2)速冻量1T/H 3)时间2/H内 4)速冻物质(鲜鱼) 5)环境温度27℃ 6)设备维护机构保温板 计算:62℃×1000/2/H×0.82×1.23=31266 kcal/n 可以查压缩机蒸发温度CT=40 CE-40℃制冷量=31266 kcal/n 所谈的是闭式空调冷水系统的阻力组成,因为这种系统是量常用的系统。 1.冷水机组阻力:由机组制造厂提供,一般为60~100kPa。 2.管路阻力:包括磨擦阻力、局部阻力,其中单位长度的磨擦阻力即比摩组取决于技术经济比较。若取值大则管径小,初投资省,但水泵运行能耗大;若取值小则反之。目前设计中冷水管路的比摩组宜控制在150~200Pa/m范围内,管径较大时,取值可小些。 3.空调未端装置阻力:末端装置的类型有风机盘管机组,组合式空调器等。它们的阻力是根据设计提出的空气进、出空调盘管的参数、冷量、水温差等由制造厂经过盘管配置计算后提供的,许多额定工况值在产品样本上能查到。此项阻力一般在20~50kPa范围内。 4.调节阀的阻力:空调房间总是要求控制室温的,通过在空调末端装置的水路上设置电动二通调节阀是实现室温控制的一种手段。二通阀的规格由阀门全开时的流通能力与允许压力降来选择的。如果此允许压力降取值大,则阀门的控制性能好;若取值小,则控制性能差。阀门全开时的压力降占该支路总压力降的百分数被称为阀权度。水系统设计时要求阀权度S>0.3,于是,二通调节阀的允许压力降一般不小于40kPa。

空调制冷量换算

空调制冷量换算 制冷技术中常用单位的换算: 摄氏温度℃=(华氏°F-32)5/9 1千卡/小时(kcal/h)=1.163瓦(W) 1马力(或1匹马功率)=735.5瓦(W)=0.7355千瓦(KW), 1美国冷吨=3024千卡/小时(kcal/h)=3.517千瓦(KW) 1日本冷吨=3320千卡/小时(kcal/h)=3.861千瓦(KW) (注:1冷吨就是使1吨0℃的水在24小所内变为0℃的冰所需要的制冷量。) 冷吨全称是冷冻吨,公制冷冻吨表示1吨0C°的水,在24小时内变为0C°的冰的冷冻能力。由于0C°得水变为0C°的冰时,就得从水中放出冻结潜热。水的冻结潜热为333.62千焦耳/千克。因此,若把1吨0C°的水变为0C°的冰就得放出333.62×1000千焦耳/24小时的热,说以每小时要排除去这些热量所需的制冷量为:(333.62×1000)/24=13900千焦耳/小时。 美国的冷冻吨和公制的比例为1.09127∶1 1千卡 = 4185.851820846焦耳 1瓦=0.86千卡/小时 13.9千焦耳/4.186千焦耳=58.15千卡 58.15千卡/0.86千卡=50.009瓦 于是1冷冻吨大概等于0.05千瓦 例如一台40kw的空调,其制冷量为40*860=3.44万大卡。 民用空调喜欢以P为单位,1P=0.735kw,一般能效比为3.2,及制冷量为2352w,换算成大卡为2022大卡左右。可以说,1P的空调制冷量为2000大卡。 空调一匹=750W功率=2324W制冷功率=0.66冷吨,机子标有制冷功率的先用:制冷功率/3.517KW=冷吨,然后:用电功率/冷吨=每KW用电功率能产生多少冷吨(这个数值不固定,一般在0.6以上,数值越高说明机器越好能耗比越低)不含附属设备如冷却塔、水泵等。

冷水机制冷量计算方式及冷水机选型计算汇总

冷水机制冷量计算方式及冷水机选型计算汇总 (一)如何选用最适合自己的工业冷水机和小型冷水机呢,其实很简单有一个选型公式: 制冷量=冷冻水流量*4.187*温差*系数 1、冷冻水流量指机器的工作时所需冷水流量,单位需换算为升/秒; 2、温差指机器进出水之间的温差; 3、4.187为定量(水的比热容); 4、选择风冷式冷水机时需乘系数1.3,选择水冷式冷水机则乘系数1.1。 5、根据计算的制冷量选择相应的机器型号。 一般习惯对冷水机要配多大的习惯用P来计算,但最主要的是知道额定制冷量,一般风冷的 9.07KW的样子的话选择用3P的机器.依此类推。所以工业冷水机的选用最重要的是求出额定制冷量 (二)冷水机制冷量的计算方式 冷水机制冷量的计算方式,冷水机制冷原理,20kw就可以勒计算方式: 1:体积(升)×升温度数÷升温时候(分)×60÷0.86(系数)=(w) 2:体积(吨或立方米)×升温度数÷升温时候(时)÷0.86(系数)=(kw) 你的数据带冷水机制冷量的计算方式,冷水机制冷原理出来就可以勒4小时10000l×(15-7)÷4h ÷0.86=23255w=23.255kw5小时10吨×(15-7)÷5h÷0.86=18.604kw压缩机和冷水机制冷道理冷凝器的感召我不晓得怎样给你诠释;那个你可以在网上查到的上海田枫实业有限公司(生产冷水机) (三)冷水机选型方法 (三)能量守恒法Q=W入-W出 Q:热负荷(KW) W入:输入功率(KW)例:8KW W出:输出功率(KW)例:3KW 例: Q=W入-W出=8-3=5(kw) (二)时间温升法Q= Cp.r.V.△T/H Q:热负荷(KW) Cp:定压比热(KJ/kg.℃)……4.1868 KJ/kg.℃ r:比重量(Kg/m3)……1000 Kg/m3 V:总水量(m3) 例:0.5 m3 △T:水温差(℃)……△T=T2-T1 例:=5℃H:时间(h) 例:1h 例: Q= Cp.r.V.△T/H=4.1868*1000*0.5*5/3600=2.908(kw) (一)温差流量法Q=Cp.r.Vs.△T Q:热负荷(KW) Cp:定压比热(KJ/kg.℃)……4.1868 KJ/kg.℃

家用空调器制冷剂最佳充注量的确

家用空调器制冷剂最佳充 注量的确 摘要:采用分相模型计算系统中两相区内制冷剂的质量分布,在系统性能模拟的基础上,采用分段累积的方法研究了影响总充注量的因素,提出确定最佳充注量的原则:在制冷量达到要求时,空调器的能效比EER最大。测定了最佳充注量下各部件的状态,试验结果和理论计算吻合较好。关键词:分相模型空调器稳态性能模拟最佳充注量能效比每一种空调器的设计都存在着如何确定制冷剂充注量的问题,特别是在采用毛细管作节流装置的空调器中,由于毛细管的调节能力较热力膨胀阀差,充注量的变化对其性能影响更大。目前这方面的研究较少,缺少成熟的理论计算方法,各生产厂家只好采取试验手段,依据经验估计值进行多次试验,以最终确定最佳充注量。这种重复的工作不仅费钱,也费时费力。为了使确定最佳充注量变得简单可行,本文在系统稳态性能模拟的基础上,对分体式空调器的最佳充注量进行了计算,并提出了确定系统最佳充注量的原则:当空调器的结构尺寸和工作条件一定,制冷量达到设计要求时,系统的能效比最大。此时,空调器及各部件处于最佳工作状态。本人曾对KFR-32GW/H分体挂

壁式空调器反复做试验,理论计算和试验结果很吻合。1 充注量计算制冷剂在制冷系统中的状态可分为单相和两相两种,这两部分的制冷剂质量计算应分别考虑。1.1 单相区质量计算单相区制冷剂密度计算较为简单,处于单相区的各部分制冷剂质量可通过积分计算。(1)式中m1为制冷剂质量,kg;ρ为密度,kg/m3;V为容积,m3;Pv为压力,Pa;Tv为制冷剂温度,K。单相区制冷剂主要存在于蒸发器过热区、冷凝器过冷区、连接管路、压缩机壳体内、过滤器和润滑油中,故单相区制冷剂质量为:(2)式(2)中各参数的下标含义为:filt过滤器,pipe管路,oil润滑油,com压缩机,V单相区容积。考虑到压缩机、过滤器、接管内制冷剂温度变化不大,故式(2)中采用平均温度来计算密度。润滑油中溶解的制冷剂量,可根据油质量及制冷剂的溶解度进行计算。1.2 两相区质量的计算充注量计算的难点在于两相区中制冷剂量的确定,其关键是两相区空泡系数的计算。在两相区空泡系数修正模型的研究和验证方面,不少学者已经做了大量工作。笔者在此基础上,结合空调器的实际工作条件,在稳态工况下,假设换热器两相区单位面积热负荷一定,选用Hughmark模型计算两相区的制冷剂量。其数学表达式为:(3)式中α为空泡系数,x为干度,β、kH为系数,其中kH=f(z)具体见表1。(4)式中G为质量流速,kg/(m2·

制冷系统制冷剂充注量的控制和分析

制冷系统制冷剂充注量的控制和分析 摘要:本文从实践出发,总结了制冷系统维修过程中制冷剂充注量的控制方法及与充注量有关的故障分析思路,为一线维修人员提供了实用可行的维修经验和故障分析技巧。 关键词:制冷剂充注量控制分析 一、前言 制冷设备在出厂时都做了性能测试,给出了制冷剂充注量的参考值。家用电冰箱、空调器在工厂用定量加氟仪加入制冷剂,部分商用制冷机组在出厂时也定量加氟了。大型氨制冷系统用高压储液罐储液,上面有液位指示器,根据指示液位高度控制加氨就行了。这些设备在制冷剂充注量的控制方面不需要维修人员动很多脑筋。但是,许多大型中央空调机组和工业冷水机组要现场充注制冷剂,家用冰箱空调器在维修过程中也要现场充注制冷剂。有些设备铭牌上有充注量参考值,有些设备因为使用蒸发器的种类不同,制冷剂充注量不同,就没有给出充注量参考值。无论有否充注量参考值,在维修安装现场,由于条件限制,技术人员往往不用定量加氟仪,也不习惯按定量称重充注制冷剂,因为多数情况下,是系统制冷剂部分泄漏了要补充,泄漏量多少是无法精确计算的。所以大多是凭经验充入制冷剂。 在维修实践中经常出现制冷剂充注量不当而使设备运转不正常。那么怎样控制制冷剂加注量,加入量不当又会引起哪些故障呢?本文将从这两个方面对不同制冷系统进行分析探讨。 二、制冷剂充注量的控制 1、水冷冷水机组制冷剂充注量的控制 在中央空调和工业生产工艺降温中,水冷冷水机组使用比较普遍。这种机组由压缩机、卧式壳管式冷凝器、热力膨胀阀、卧式壳管式蒸发器及必要辅件组成一体。结构紧凑,操作控制方便,安装调试简单,在市场上受到欢迎。 对于没有设置高压储液器和低压汽液分离器的制冷系统,制冷剂充注量的控制尤为重要。因为这种制冷系统是冷凝器兼作高压储液器,制冷剂加多了会储存在冷凝器中,淹没冷凝器散热簇管,使散热面积减小,冷凝压力升高,导致制冷量下降。 对于这类制冷机组制冷剂充注量的控制,在充注过程中,一摸冷凝器外壳温度,冷凝器出液口上口以上发热,出液口上口以下发凉就可以了(发热说明有压缩机高温排气在里面冷凝,发凉说明里面是液体空间);二看吸气压力,要与蒸发器内冷媒水温度相对应(也就是与蒸发温度相对应);三看压缩机回气管温度,高温机组回气管应发凉结露,但结露到压缩机回气阀就可以了;低温机组回气管应结霜,但霜结到压缩机回气阀就可以了。如果结露或者结霜到压缩机外壳,液态制冷剂就会进曲轴箱,会引起压缩机跑油和液击。对于封闭式压缩机来说还会使电机接线端子短路。虽然大部分封闭式机组接线端子用密封胶密封了,但由于密封效果的不确定性,短路的可能性还是存在的。

冷库制冷量简单的计算公式及两器的配置

冷库制冷量简单的计算公式及两器的配置 体积(升)×升温度数÷升温时间(分钟)×60÷0.86(系数)=(W) 体积(吨或立方米)×升温度数÷升温时间(小时)÷0.86(系数)=(KW) 1、如60立方米的库房,需要制冷温度-18℃,不考虑其它因素,需要用10P压缩机的制冷量(并计算出每立方需要多大的制冷量)。 2、风冷式冷凝器换热面积的计算:制冷量+压缩机电机功率÷(200~250)㎡ 3、水冷式冷凝器与风冷式冷凝器的比例一般为:1:15,如风冷式冷凝器为300㎡,水冷式冷凝器则为:300÷15=20㎡。冷却水质差可适当缩小比例至1:10左右。 4、如60立方米的库房,库温-18℃,风冷式蒸发器(冷风机)的配比一般以压缩机的制冷功率相近。 5、如60立方米的库房,库温-18℃,蒸发器采用吊顶铝排,按库房底面积的两倍配置即可(即库房底面积X2)。 6、如60立方米的库房,库温-18℃,蒸发器至少要分2路(2组),每组(路)的热力膨胀阀阀芯比压缩机的匹数小一号配置。膨胀阀的配置是根据压缩机的制冷量确定的,无需放大20%。 7、铝排蒸发器,应该按照库房容积的大小(即制冷量的大小)分组安装,一般3~5P制冷量为一组。膨胀阀则按蒸发组配置。 8、铝排蒸发面积固定不变,只增大压缩机,虽然单位制冷量增大了,换热速度加快了,但整体换热量是根据蒸发面积进行的,不可能就能因此变成速冻库。 无论何种品牌的压缩机组的选型,都是根据冷库的蒸发温度、冷库有效工作容积来确定,另外还要参考冷冻/冷藏物品的冷凝温度、入库量、货物进出库频率等参数。 通常高温活动冷库制冷量计算公式为:冷库容积×90×1.16+正偏差,正偏差量根据冷冻或冷藏物品的冷凝温度、入库量、货物进出库频率确定,范围在100-400W之间。 中温活动冷库制冷量计算公式为:冷库容积×95×1.16+正偏差,正偏差量范围在200-600W 之间。 低温活动冷库压缩机组制冷量计算公式为:冷库容积×110×1.2+正偏差,正偏差量范围在300-800W之间。

空调制冷剂的充注方法

汽车空调制冷剂加 注方法 不同于一般家用或商用空调,汽车空调的压缩机为半封闭式压缩机,而且汽车空调的使用环境要复杂恶劣得多,高温、油、气、水的污源,颠簸震动,这些因素都会导致汽车 空调制冷剂的泄漏和污染,因而制冷剂的加注是每家维修厂在夏季的重要业务,但不科学的 加注方式,往往会带来许多问题。 一种错误操作是不抽真空直接加注。一些维修厂会把汽车空调中的残余制冷剂直接排放掉,然后直接用表组加注制冷剂,利用制冷剂罐中的压力把制冷剂加入空调系统,同时将系 统中的空气压出来,这样做是十分错误的。因为这并不能确保空调系统中的空气完全排出, 而在空调系统中残余空气可导致以下不良后果: 1.制冷剂加注量不足,因为空气的存在自然要占去一部分空间,不抽空气直接加注,可 能在制冷剂加注未完成时系统压力过高,剩余的制冷剂无法再加入空调中。 2.多余的空气留在系统中会使空调功率减小、制冷效果下降。因为压缩机压缩的一部分 是没有制冷效果的空气,这样导致发动机负荷增高。因而在加注制冷剂之前请务必进行抽真 空的操作。 另一种操作误区是用压缩机抽真空。很多人甚至分不清压缩机与真空泵有什么区别,而把它们统称为泵,其实它们有许多不同。压缩机的工作职责是把低压气体压缩成高压气体, 而真空泵则是要造成系统与大气的一个压力差,它的排气压力不需要太高(即大气压力)。工 作职责的不同,决定了它们的性能表现有很大区别。真空泵相对于一般压缩机主要突出的性 能是要达到极低的极限真空度,而且真空泵的排气远远大于压缩机。为什么要强调这两点 呢?这要从抽真空的另一个目的讲起,对空调抽真空除了为把空调中的空气抽干之外,还要 抽干水份。汽车空调中常会混入水分,水分对整个空调系统的危害是巨大的,一滴水都可能 造成空调管路的阻塞即所谓的“冰堵”,所以空调系统中一定要减少水分的存在,那么在抽 真空时其实除了抽气外,还会利用抽气后达到的负压促成水挥发为水蒸气再通过真空泵强大 的吸力将水分从空调中吸走,从而达到抽取空调中水分的目的。据有关专家论证,抽水的时 间应是抽气的时间10倍,也就是说用真空泵抽真空并不完全是抽气。要达到抽水分的目的 就需要较大的极限真空度和吸排气能力,而压缩机则不具备这样的能力。另外在抽真空的时 间上应该注意:不能表组一达到负压就立即停止抽真空的操作,而应再多抽5~10分钟,以 达到抽取水分的目的。 传统的加注方式就是:先排出残余制冷剂,然后抽真空,最后表组加注。随着时代的发展,技术的进步,人们对环境保护的重视程度越来越高。制冷剂本身对于人类来说是无毒无 害,但对于环境来说却是一个重要的污染源。R12就是导致全球臭氧空洞的罪魁祸首,它的 代替产品R134a虽然在对臭氧层的破坏上不如R12那样严重,但也会污染大气。因而现在世 界上各个国家都对制冷剂的排放有严格的规定和控制,我国也已经签署了“蒙特利尔协定 书”,宣布我国将逐步禁用R12,同时将严格控制其他制冷剂的排放。在这样的背景下,现 在全国各级行管部门纷纷出台文件要求,对于汽车空调中的残余制冷剂不能随意排放,应该 回收。回收制冷剂除了可以带来较好的社会效益外,它身后所蕴含的巨大经济效益也是不容 忽视的。现在除了一些小型的汽车制造商外,各大汽车制造厂在自己生产的汽车都装备了使 用R134a 的空调系统。R134a的平均售价大概在60~65元/公斤,一辆车如果制冷剂低于其

制冷剂充注量的简化计算方法

制冷剂充注量的简化计算方法——工况参数法 1.计算原理 将制冷系统看作一个压力容器,而制冷剂在制冷系统中仅以四种状态出现,即冷凝压力下饱和气体、饱和液体,蒸发压力下饱和气体、饱和液体。而计算时只需要给出制冷系统所需计算部分的内容积,再给出该部分的饱和气体及饱和液体的相对比例及比容,就可以计算出制冷系统在某一工况下运行时需要的制冷剂充注量。 2.计算方法 制冷系统运行压- 焓简图如下: 在计算过程中,我们将做如下简化:将压缩机排气到冷凝器进口之间管路中的制冷剂看作冷凝压力下饱和蒸气;将冷凝器进口到冷凝器出口之间换热管中的制冷剂看作是在冷凝压力下饱和气体及饱和液体按一定比例的混合物(例如饱和液体比例占15%,饱和气体比例占85%,可根据具体情况调整);将冷凝器出口至节流装置进口之间管路中的制冷剂看 作冷凝压力下饱和液体;(假设节流装置到蒸发器进口距离很短,可忽略这一段管路内容积)将蒸发器进口至蒸发器出口之间的换热管中的制冷剂看作是在蒸发压力下的饱和气体及饱和液体按一定比例的混合物(例如蒸发器进口干度为X,出口干度一般可设为1则蒸发器 内平均干度为(x+1)/2 ,即蒸发压力下的饱和气体比例为(x+1)/2 ,蒸发压力下的饱和液体比例为(X+1)/2 );蒸发器出口至压缩机吸气口之间管路(包括气液分离器)中的制冷剂看作是在蒸发压力下的饱和气体。通过以上假设,再计算出制冷系统各部分管路的内容积, 查压- 焓图获得3、4、7、9 四点的比容,就可以计算出该制冷系统在冷凝压力tk 、蒸发压 力t0 运行时所需的制冷剂充注量了。

3.该简化计算方法的优缺点 该简化计算方法的主要优点就是简单明了,手工均可很快计算出结果,而且计算的依据是制冷系统的运行参数,与制冷剂种类无关,所以其计算原理对各种制冷剂均是通用的。其缺点主要是计算精度较差,因为制冷系统运行时制冷剂时时刻刻存在着状态的变化,将其简单地看作只有四种状态显然不能精确地计算出制冷剂充注量,而且如果精确计算各部分管路内容积将会十分繁琐,所以一般情况下均是采取简化的方法,略去一些管路的内容积或是采取一些修正系数;其次,这种简化计算方法无法确定二次节流的中间过程的制冷剂状态,例如制冷时节流状置放在室外机,那么从节流装置到室内机蒸发器这一段管路中(包括连接管)的制冷剂状态如何确定现在还没有好的方法;由于还没有对贮液罐有比较深刻的认识(根据部门检查表:高压贮液罐的出口被制冷剂液体封住制冷系统即可正常工作,但已经有几位同事向我提出,实际上加装贮液罐后制冷系统的充注量明显增加,已经远高于高压贮液罐的出口时制冷系统才能正常工作),所以如何计算带有贮液罐的系统请大家在实践中摸索。 4.计算程序(已修订,计算更加简单): 蒸发器及冷凝器结构参数只计算了翅片管部分的内容积,由于小弯头部分及另一端马鞍座部分的长度并不统一,所以在这里暂不将其计入,而是通过输入一个修正容积的方法加以调 整,或是在最终的计算结果乘以一个修正系数的方法加以调整。计算程序还忽略了吸气管、排 气管、分气管、集汽管等小段管路的内容积,所以最终的计算结果可能会偏小,相对来说,由 于被忽略的内空积相对能力较小的机型占较大比例,所以小能力机型可能误差会偏大,而大能力机型可能会相对较为准确。另,在程序中将冷凝器中液体所占的比例设为30%,如果需要请在计算中自行调整。本程序不适用于带贮液罐系统,也不适用于制冷节流装置放在室外机的情况,这两种情况需要我们在实践中不断摸索总结。

相关文档
最新文档