正弦定理和余弦定理讲义

正弦定理和余弦定理讲义
正弦定理和余弦定理讲义

正弦定理和余弦定理讲

正弦定理和余弦定理

1.正弦定理:________=________=________=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =________________;(2)a =__________,b =__________,c =

__________;(3)sin A =________,sin B =__________,sin C =________等形式,以解决不同的三角形问题.

2.余弦定理:a 2=________________,b 2=________________,c 2=________________.余弦定理可以变形为:cos A =________________,cos B =____________,cos C =__________.

3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1

2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .

4.在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、二解、无解,应注意区分. 余弦定理可解决两类问题: (1)已知两边及夹角或两边及一边对角的问题;(2)已知三边问题. 解三角形时,三角形解的个数的判断

在△ABC A 为锐角

A 为钝角或直

图形

关系式 a =b sin A b sin A

a ≥

b a >b 解的个数

一解

两解

一解

一解

1.正、余弦定理和三角形面积公式是本节的重点,利用三角形内角和、边、角之间的关系,三角函数的变形公式去判断三角形的形状,求解三角形,以及利用它们解决一些实际问题.

2.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π

2中互补和互余的情况,结合诱导公式可以减少角的种数.

3.正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C -2sin B ·sin C ·cos A ,可以进行化简或证明.

4.根据所给条件确定三角形的形状,主要有两种途径:

(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换. 失误与防范

在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解或无解,所以要进行分类讨论. 1.(课本精选题)在△ABC 中,若A =60°,a =3,则

a +

b +c

sin A +sin B +sin C

=________.

2.(2010·北京)在△ABC 中,若b =1,c =3,C =2π

3,则a =________. 3.(课本改编题)在△ABC 中,a =15,b =10,A =60°,则cos B =________.

4.△ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知c =3,C =π

3,a =2b ,则b 的值为________.

5.已知圆的半径为4,a、b、c为该圆的内接三角形的三边,若abc=162,则三角形的面积为

题型一利用正弦定理求解三角形

1在△ABC中,a=3,b=2,B=45°.求角A、C和边c.

2已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=3,A+C=2B,则角A的大小为________.

题型二利用余弦定理求解三角形

1在△ABC中,a、b、c分别是角A、B、C的对边,且cos B

cos C=-

b

2a+c.

(1)求角B的大小; (2)若b=13,a+c=4,求△ABC的面积.

2在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos A

2=

25

5,AB

·AC

=3.

(1)求△ABC的面积; (2)若b+c=6,求a的值.

题型三正、余弦定理的综合应用

1(2011·浙江)在△ABC中,角A,B,C所对的边分别为a,b,c.已知sin A+sin C=p sin B (p∈R),

且ac=1 4b2.

(1)当p=5

4,b=1时,求a,c的值; (2)若角B为锐角,求p的取值范围.

2在△ABC中,内角A,B,C所对的边长分别是a,b,c.

(1)若c=2,C=π

3,且△ABC的面积为3,求a,b的值;

3在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.

课后作业 A 一、选择题

1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B 等于( )

A .-1

2 C .-1 D .1

2.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等腰三角形或直角三角形 3.在△ABC 中,若∠A =60°,b =1,S △ABC =3,则a +b +c sin A +sin B +sin C 的值为

( )

二、填空题

4.(2011·北京)在△ABC 中,若b =5,∠B =π4,sin A =1

3,则a =________.

5.(2011·福建)若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________. 6.在△ABC 中,若AB =5,AC =5,且cos C =9

10,则BC =________. 三、解答题

7.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,A 是锐角,且3b =2a ·sin B . (1)求A ; (2)若a =7,△ABC 的面积为103,求b 2+c 2的值.

8.在△ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c .已知a 2-c 2=2b ,且sin B =4cos A sin C ,求b .

B

一、选择题

1.△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a,则b

a等于

()

A.2 3 B.2 2

2.如图,在△ABC中,D是边AC上的点,且AB=AD, 2AB=3BD,BC=2BD,则sin C的值为()

3.(2010·湖南)在△ABC中,角A,B,C所对的边长分别为a,b,c.若∠C=120°,c=2a,则()

A.a>b B.a

C.a=b D.a与b的大小关系不能确定

二、填空题

4.在△ABC中,a、b、c分别为∠A、∠B、∠C的对边长,已知a,b,c成等比数列,且a2-c2=ac-bc,则∠A=________,△ABC的形状为__________.

5.(2010·江苏)在锐角△ABC中,角A、B、C的对边分别为a、b、c.若b

a+a

b=6cos C,则

tan C

tan A+

tan C

tan B的值是______.

6.在△ABC中,角A,B,C所对的边分别为a,b,c,若其面积S=1

4(b2+c2-a2),则A=

________.

三、解答题

7.在△ABC中,a,b,c分别为内角A,B,C的对边,且2a sin A=(2b+c)sin B+(2c+b)sin C.

(1)求A的大小; (2)若sin B+sin C=1,试判断△ABC的形状.

8.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,4sin 2B +C 2-cos 2A =7

2. (1)求∠A 的度数; (2)若a =3,b +c =3,求b 、c 的值.

正弦定理和余弦定理

正弦定理和余弦定理 高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C = c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形: cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、 r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: [1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA·tanB·tanC ;在锐角三角形中,cos A

正弦定理和余弦定理

04—正弦定理和余弦定理 利用正弦定理解三角形 (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角.由于三角形的形状不能唯一确定,会出现两解、一解和无解三种情况. [例1] (1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =1 2 b ,且 a > b ,则B =( ) A.π6 B.π3 C.2π3 D.5π 6 (2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π 6,则b =________. [解析] (1)利用正弦定理的变形,得a =2R sin A ,b =2R sin B ,c =2R sin C ,代入a sin B cos C +c sin B cos A =12b 中,得2R sin A ·sin B cos C +2R sin C sin B cos A =12×2R sin B ,所以sin A cos C +sin C cos A =12,即sin(A +C )=12,所以sin B =12.已知a >b ,所以B 不是最大角,所以B =π6 . (2)在△ABC 中,∵sin B =12,0b .又a +c =2b ,所以c =a -8,所以a 大于c ,则A =120°. 由余弦定理得a 2=b 2+c 2-2bc cos A =(a -4)2+(a -8)2-2(a -4)·(a -8)·????-12,所以a 2-18a +56=0. 所以a =14或a =4(舍去).故选B. (2)由余弦定理得cos C =a 2+b 2-c 22ab ,将其代入a cos C +32c =b 中得,a ×a 2+b 2-c 22ab +3 2 c =b ,化简 整理得b 2+c 2-a 2=3bc ,于是cos A =b 2+c 2-a 22bc =32,所以A =π6.[答案] (1)B (2)π 6 利用正、余弦定理解三角形 [例3] 设△ABC 1,A =2B . (1)求a 的值;(2)求sin ??? ?A +π 4的值. [解] (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B .由正、余弦定理,得a =2b ·a 2+c 2-b 2 2ac .因为b =3,c =1,所以a 2=12,a =2 3. (2)由余弦定理,得cos A =b 2+c 2-a 22bc =9+1-126=-1 3 .因为0

(完整版)正弦定理与余弦定理练习题

正弦定理与余弦定理 1.已知△ABC 中,a=4,ο 30,34==A b ,则B 等于( ) A .30° B.30° 或150° C.60° D.60°或120° 2.已知锐角△ABC 的面积为33,BC=4,CA=3,则角C 的大小为( ) A .75° B.60° C.45° D.30° 3.已知ABC ?中,c b a ,,分别是角C B A ,,所对的边,若0cos cos )2(=++C b B c a ,则角B 的大小为( ) A . 6 π B . 3 π C . 32π D .6 5π 4.在?ABC 中,a 、b 、c 分别是角A 、B 、C 的对边.若 sin sin C A =2,ac a b 322=-,则B ∠=( ) A. 030 B. 060 C. 0120 D. 0150 5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知a=5,c=10,A=30°,则B 等于( ) A .105° B.60° C.15° D.105° 或 15° 6.已知ABC ?中,75 6,8,cos 96 BC AC C ===,则ABC ?的形状是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .钝角三角形 7.在ABC ?中,内角,,A B C 的对边分别为,,a b c ,且2B C =,2cos 2cos b C c B a -=,则角A 的大小为( ) A . 2π B .3π C .4π D .6 π 8.在△ABC 中,若sin 2 A +sin 2 B <sin 2 C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 9.在ABC ?中,sin :sin :sin 3:2:4A B C =,那么cos C =( ) A. 14 B.23 C.23- D.14 - 10.在ABC ?中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等腰或直角三角形 11.在△ABC 中,cos 2 =,则△ABC 为( )三角形. A .正 B .直角 C .等腰直角 D .等腰 12.在△ABC 中,A=60°,a=4,b=4 ,则B 等于( ) A .B=45°或135° B .B=135° C .B=45° D .以上答案都不对 13.在ABC ?,内角,,A B C 所对的边长分别为,,.a b c 1 sin cos sin cos ,2 a B C c B A b += 且a b >,则B ∠=( )

正弦定理与余弦定理地综合应用

正弦定理与余弦定理的综合应用 (本课时对应学生用书第页 ) 自主学习回归教材 1.(必修5P16练习1改编)在△ABC中,若sin A∶sin B∶sin C=7∶8∶13,则cos C=. 【答案】-1 2 【解析】由正弦定理知a∶b∶c=7∶8∶13,再由余弦定理得cos C= 222 78-13 278 + ??=- 1 2. 2.(必修5P24复习题1改编)在△ABC中,角A,B,C的对边分别为a,b,c.若a2-b23bc,sin C3B,则角A=. 【答案】π6 【解析】由sin C 3B得c3b,代入a2-b23得a2-b2=6b2,所以a2=7b2,a7b, 所以cos A= 222 - 2 b c a bc + = 3 ,所以角A= π 6.

3.(必修5P20练习3改编)如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°方向、距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度 为n mile/h. (第3题) 【答案】 176 4.(必修5P26本章测试7改编)设△ABC的角A,B,C的对边分别为a,b,c.若a sin A+c sin C2sin C=b sin B,则角B=. 【答案】45° 【解析】由正弦定理得a2+c22ac=b2,再由余弦定理得b2=a2+c2-2ac cos B,故cos B=2 , 因此B=45°. 5.(必修5P19例4改编)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等比数列,则角B的取值围为. 【答案】 π0 3?? ???,

正弦定理和余弦定理详细讲解

高考风向 1.考查正弦定理、余弦定理的推导; 2.利用正、余弦定理判断三角形的形状和解三角形; 3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.

学习要领 1.理解正弦定理、余弦定理的意义和作用; 2.通 过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 基础知识梳理 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可 以变形:(1)a ∶b ∶c =sin_A ∶sin _B ∶sin _C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2 =b 2 +c 2 -2bc cos_A ,b 2 =a 2 +c 2 -2ac cos_B ,c 2 =a 2 +b 2 -2ab cos_C .余弦 定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab .

3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半 径),并可由此计算R 、r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: A 为锐角 A 为钝角或直角 图形 关系式 a =b sin A b sin A b 解的个数 一解 两解 一解 一解 [难点正本 疑点清源] 1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA ·tanB ·tanC ;在锐角三角形中,cos A

正弦定理余弦定理

第七节 正弦定理、余弦定理应用举例 时间:45分钟 分值:75分 一、选择题(本大题共6小题,每小题5分,共30分) 1.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( ) A .a km B.3a km C.2a km D .2a km 解析 利用余弦定理解△ABC .易知∠ACB =120°,在△ACB 中,由余弦 定理得AB 2=AC 2+BC 2-2AC ·BC cos120°=2a 2-2a 2×? ?? ??-12=3a 2, ∴AB =3a . 答案B 2.张晓华同学骑电动自行车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是( ) A .2 2 km B .3 2 km

C .3 3 km D .2 3 km 解析 如图,由条件知AB =24×15 60=6,在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,所以∠ASB =45°.由正弦定理知BS sin30°=AB sin45°,所以BS =AB sin45°sin30°=3 2. 答案B 3.轮船A 和轮船B 在中午12时离开海港C ,两艘轮船航行方向的夹角为120°,轮船A 的航行速度是25海里/小时,轮船B 的航行速度是15海里/小时,下午2时两船之间的距离是( ) A .35海里 B .352海里 C .353海里 D .70海里 解析 设轮船A 、B 航行到下午2时时所在的位置分别是E ,F ,则依题意有CE =25×2=50,CF =15×2=30,且∠ECF =120°, EF =CE 2+CF 2-2CE ·CF cos120° = 502+302-2×50×30cos120°=70. 答案D 4.(2014·济南调研)为测量某塔AB 的高度,在一幢与塔AB 相距20 m

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等; (3)方位角 指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数. 【助学·微博】 解三角形应用题的一般步骤 (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有

时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1.(2012·江苏金陵中学)已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________. 解析 记三角形三边长为a -4,a ,a +4,则(a +4)2=(a -4)2+a 2-2a (a -4)cos 120°,解得a =10,故S =12×10×6×sin 120°=15 3. 答案 15 3 2.若海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里. 解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°) .解得BC =56(海里). 答案 5 6 3.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/时. 解析 由正弦定理,得MN =68sin 120°sin 45°=346(海里),船的航行速度为3464= 176 2(海里/时). 答案 176 2 4.在△ABC 中,若23ab sin C =a 2+b 2+c 2,则△ABC 的形状是________. 解析 由23ab sin C =a 2+b 2+c 2,a 2+b 2-c 2=2ab cos C 相加,得a 2+b 2= 2ab sin ? ????C +π6.又a 2+b 2≥2ab ,所以 sin ? ????C +π6≥1,从而sin ? ????C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形. 答案 等边三角形

(完整版)正弦定理余弦定理应用实例练习含答案

课时作业3应用举例 时间:45分钟满分:100分 课堂训练 1.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C间的距离是() A.103海里B.106海里 C.52海里D.56海里 【答案】 D 【解析】如图,∠A=60°,∠B=75°, 则∠C=45°, 由正弦定理得: BC=AB·sin A sin C =10×sin60° sin45° =5 6. 2.如图所示,设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为()

A .502m B .503m C .252m D.2522m 【答案】 A 【解析】 因为∠ACB =45°,∠CAB =105°,所以∠ABC =30°,根 据正弦定理可知,AC sin ∠ABC =AB sin ∠ACB ,即50sin30°=AB sin45°,解得AB =502m ,选A. 3.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A ,B 间距离是35m ,则此电视塔的高度是________m. 【答案】 521 【解析】 如图所示,塔高为OC ,则∠OAC =60°,∠AOB =180°-30°=150°,∠CBO =45°,AB =35,

设电视塔高度为h m,则OA=3 3h,OB=h,在△AOB中由余弦定理可得AB2=OA2+OB2-2OA·OB·cos∠AOB, 即352=(3 2+h2-2×33h×h×(-32) 3h) 解得h=521. 4.如图所示,海中小岛A周围38海里内有暗礁,一船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险? 【分析】船继续向南航行,有无触礁的危险,取决于A到直线BC的距离与38海里的大小,于是我们只要先求出AC或AB的大小,再计算出A到BC的距离,将它与38海里比较大小即可.

正弦定理与余弦定理

第28讲 正弦定理与余弦定理 1.在△ABC 中,a 2=b 2+c 2+bc ,则角A 等于(C) A .60° B .45° C .120° D .30° 因为cos A =b 2+c 2-a 22bc =-12, 又因为0°

正弦定理和余弦定理(解三角形)

解三角形 1.内角和定理:在ABC ?中,A B C ++= π;sin()A B +=sin C ;cos()A B +=cos C -,cos 2A B +=sin 2C 2.面积公式: ①ABC S ?=21aha =21bhb =2 1chc (ha 、hb 、hc 分别表示a 、b 、c 上的高); ②ABC S ?=21absinC =21bcsinA =2 1acsinB ; ③ABC S ?=2R 2sinAsinBsinC.(R 为外接圆半径) ④ABC S ?=R abc 4; ⑤ABC S ?=))()((c s b s a s s ---,?? ? ??++=)(21c b a s ; ⑥ABC S ?=r ·s ,( r 为△ABC 内切圆的半径) 3.三角形中常见的不等式: ①B A B A sin sin ,>>则若(任意三角形) ②锐角三角形中,B A cos sin > 4.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?? ???===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 4.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:222 2cos a b c bc A =+- 2222cos b c a ca B =+- (解三角形的重要工具) 2222cos c a b ab C =+- 形式二:cos A =bc a c b 2222-+ ; cos B =ca b a c 2222-+ ; cosC=ab c b a 22 22-+ 考点1: 运用正、余弦定理求角或边 题型1.求三角形中的某些元素 例1.已知:A.B.C 是ABC ?的内角,c b a ,,分别是其对边长,向量()()1cos ,3--=A m π,??? ? ????? ??-=1,2cos A n π,n m ⊥. (Ⅰ)求角A 的大小;(Ⅱ)若,3 3cos ,2==B a 求b 的长.

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳 Pleasure Group Office【T985AB-B866SYT-

●高考明方向 掌握正弦定理、余弦定理, 并能解决一些简单的三角形度量问题. ★备考知考情 1.利用正、余弦定理求三角形中的边、角问题是高考 考查的热点. 2.常与三角恒等变换、平面向量相结合出现在解答题 中,综合考查三角形中的边角关系、三角形形状的 判断等问题. 3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62 知识点一 正弦定理 (其中R 为△ABC 外接圆的半径) 变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222= ==a b c A B C R R R 变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充) 关于边的齐次式或关于角的正弦的齐次式 均可利用正弦定理进行边角互化。 知识点二 余弦定理

222 222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2?+-=??=+-?+-??=+-?=??=+-???+-?=?? b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充) (1)关于边的二次式或关于角的余弦 均可考虑利用余弦定理进行边角互化。 (2)勾股定理是余弦定理的特例 (3)在?ABC 中,222090?? <+?<

正弦定理和余弦定理

正弦定理和余弦定理 【知识梳理】 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?????===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三: 形式四: 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2222cos a b c bc A =+- 222 2cos b c a ca B =+- 2222cos c a b ab C =+-(解三角形的重要工具) 形式二: 【典型例题】 111sin sin sin 222ABC S ab C bc A ac B ?===::sin :sin :sin a b c A B C =sin ,sin ,sin 222a b c A B C R R R ===222cos 2b c a A bc +-=222cos 2a c b B ac +-=222 cos 2a b c C ab +-=

题型一:利用正弦定理解三角形 1.在ABC ?中,若5b =,4B π∠=,1sin 3A =,则a = . 2.在△ABC 中,已知a = 3,b =2,B=45°,求A 、C 和c . 题型二:利用余弦定理解三角形 1.设ABC ?的内角C B A 、、所对的边分别为c b a 、、.已知1=a ,2=b ,4 1cos = C . (Ⅰ)求ABC ?的周长;(Ⅱ)求()C A -cos 的值. 2. 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-c a b +2.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.

正弦定理和余弦定理

正弦定理和余弦定理 正弦定理、余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2(a +b +c )r (r 是三角形内切圆半径),并可由此计算R 、r 选择题 在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个 D .无法确定 解析 ∵b sin A =6×2 2=3,∴b sin A

A .x >2 B .x <2 C .2<x <2 2 D .2<x <2 3 解析 若三角形有两解,则必有a >b ,∴x >2, 又由sin A =a b sin B =x 2×2 2<1,可得x <22,∴x 的取值范围是2<x <2 2. 已知锐角三角形的边长分别为1,3,x ,则x 的取值范围是( ) A .(8,10) B .(22,10) C .(22,10) D .(10,8) 解析 因为3>1,所以只需使边长为3及x 的对角都为锐角即可,故??? 12+x 2>32, 12+32>x 2 , 即80,所以220,于是有cos B <0,B 为钝角,所以△ABC 是钝角三角形. 在△ABC 中,cos 2B 2=a +c 2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( ) A .等边三角形 B .直角三角形 C .等腰三角形或直角三角形 D .等腰直角三角形 解析 ∵cos 2B 2=1+cos B 2,cos 2B 2=a +c 2c ,∴(1+cos B )·c =a +c , ∴a =cos B ·c =a 2+c 2-b 22a ,∴2a 2=a 2+c 2-b 2,∴a 2+b 2=c 2,∴△ABC 为直角三角形. 在△ABC 中,已知b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定 解析 由正弦定理得b sin B =c sin C ,∴sin B =b sin C c =40×3 2 20=3>1. ∴角B 不存在,即满足条件的三角形不存在. 若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形

正弦定理余弦定理

正弦定理和余弦定理 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角A 、B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为0 60,则底边长=( ) A .2 B . 2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0 015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0 150 二、填空题 1. 在Rt △ABC 中,C=0 90,则B A sin sin 的最大值是______________ 2.在△ABC 中,若=++=A c bc b a 则,2 2 2 ________ 3.在△ABC 中,若====a C B b 则,135,30,20 _________ 4.在△ABC 中,若sin A ∶sin B ∶sin C=7∶8∶13,则C=_____________ 5.在△ABC 中,,26-=AB ∠C=300,则AC+BC 的最大值是____ 三、解答题 1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?

正弦定理与余弦定理(最好)

正弦定理与余弦定理 1 ?在ABC 中,BC 3,A 30 ,B 45 ,则AC 2. 在ABC中角A, B,C所对的边分别为a,b,C.a 3 3, c 2, B -,则b 6 ABC的面积为 3. 在ABC中角A, B,C所对的边分别为a,b,C .已知a 7,b 5,c 3,贝U ABC是() A.锐角三角形B ?直角三角形C?钝角三角形 D.无法确定 4.在ABC中角A,B,C所对的边分别为a,b,c,已知b10,c5、, 6, C 60 ,则B () A. 45° B. 135° C.45°或135° D.60° 三、典例精讲 例1:在ABC中角A,B,C所对的边分别为a,b,c .已知ABC的周长为Z 3 2 ,且sin A sin B .3sinC 4 (1)求边AB的长;(2)若ABC的面积为4 sinC ,求角C的度数. 3

变式1若C -,求ab 的值. 变式2:在锐角ABC中若3a 2csinA求角C的度数. 例2:在ABC中,已知a 3,b 2,B ,求角A,C及边c. 4 四:应用探究 某人在M汽车站的北偏西20的方向上的A处,观察到点C处有一辆汽车沿直线公路向M站行驶。公路的走向是M站的北偏东40 .开始时,汽车到A的距离为31千米,汽车前进20千米到达B处后, 到A的距离缩短了10千米?问汽车还需行驶多远,才能到达M汽车站?

五、咼考模拟 1. (2011年辽宁理4)在ABC中,角A, B,C所对的边分别为a, b, c, as in As in B b cos2 A 则- () a A. 2、、3 B. 2、. 2 C. .,3 D. 2. (2010湖南7)在厶ABC中,角A,B,C所对的边长分别为a,b,c,若C 120 ,c ..2a ,贝(( A. a b B. a b C. a b D.a与b的大小关系不能确定 3. 在ABC中,角A, B所对的边分别为a,b且A 30 ,a 2j2,b 4,那么满足条件的 () A.有一个解 B.有两个解 C.无解 D.不能确定 4. (2010 上海18 )若ABC 的三个内角满足sin A:sin B:sin C 5:11:13 ,则 为_______________________ 三角形. 5. 在ABC中若a,b,c成等比数列,且c 2a,则cosB ______________ . ________ 6. 在ABC中,A 60°, b 1,面积为二3 ,求 a b-c. 2 sin A sin B sin C A 2J5 7. 在ABC中,角A,B,C所对的边分别为a,b,c,且满足cos^ 2 5 uuu umr AB AC 3 . (I )求ABC的面积;(II )若b c 6,求a的值. 72a, △ ABC ABC

正弦定理与余弦定理

精心整理 正弦定理与余弦定理 一、三角形中的各种关系 设ABC ?的三边分别是,,a b c ,与之对应的三个角分别是,,A B C .则有如下关系: 1、三内角关系 三角形中三内角之和为π(三角形内角和定理),即A B C π++=,; 2、边与边的关系 三角形中任意两条边的和都大于第三边,任意两条边的差都小于第三边,即 ,,a b c a c b b c a +>+>+>;,,a b c a c b b c a -<-<-<; 3、边与角的关系 (1)正弦定理 三角形中任意一条边与它所对应的角的正弦之比都相等,即 2sin sin sin a b c R A B C ===(这里,R 为ABC ?外接圆的半径). 注1:(I )正弦定理的证明: 在ABC ?中,设,,BC a AC b AB c ===, 证明:2sin sin sin a b c R A B C ===(这里,R 为ABC ?外接圆的半径) 证:法一(平面几何法): 在ABC ?中,作CH AB ⊥,垂足为H 则在Rt AHC ?中,sin CH A AC = ;在Rt BHC ?中,sin CH B BC =

sin ,sin CH b A CH a B ∴==sin sin b A a B ?=即 sin sin a b A B = 同理可证: sin sin b c B C = 于是有 sin sin sin a b c A B C == 正弦定理指出了任意三角形中三边与其对应角的正弦值之间的一个关系式,也就是任意三角形的边角关系. (Ⅲ)正弦定理适用的范围: (i )已知三角形的两角及一边,解三角形; (ii )已知三角形的两边及其中一边所对应的角,解三角形;

正弦定理和余弦定理

04—正弦定理和余弦定理 突破点(一) 利用正、余弦定理解三角形 利用正弦定理解三角形 利用正弦定理可以解决的两类问题:(1)已知两角和任一边,求其他两边和一角.(2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角.由于三角形的形状不能唯一确定,会出现两解、一解和无解三种情况. [例1] (1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =1 2 b ,且 a > b ,则B =( ) A.π6 B.π3 C.2π3 D.5π 6 (2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π 6 ,则b =________. [解析] (1)利用正弦定理的变形,得a =2R sin A ,b =2R sin B ,c =2R sin C ,代入a sin B cos C +c sin B cos A =12b 中,得2R sin A ·sin B cos C +2R sin C sin B cos A =12×2R sin B ,所以sin A cos C +sin C cos A =12 ,即 sin(A +C )=12,所以sin B =12.已知a >b ,所以B 不是最大角,所以B =π 6 . (2)在△ABC 中,∵sin B =12,0b .又a +c =2b ,所以c =a -8,所以a 大于c ,则A =120°. 由余弦定理得a 2=b 2+c 2-2bc cos A =(a -4)2+(a -8)2-2(a -4)·(a -8)·??? ?-12,所以a 2-18a +56=0. 所以a =14或a =4(舍去).故选B. (2)由余弦定理得cos C =a 2+b 2-c 22ab ,将其代入a cos C +32c =b 中得,a ×a 2+b 2-c 22ab +3 2 c =b ,化简 整理得b 2+c 2-a 2=3bc ,于是cos A =b 2+c 2-a 22bc =32,所以A =π6.[答案] (1)B (2)π6 利用正、余弦定理解三角形 [例3] 设△ABC 1,A =2B . (1)求a 的值;(2)求sin ??? ?A +π 4的值. [解] (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B .由正、余弦定理,得a =2b ·a 2+c 2-b 2 2ac .因为b =3,c =1,所以a 2=12,a =2 3. (2)由余弦定理,得cos A =b 2+c 2-a 22bc =9+1-126=-13.因为0

相关文档
最新文档