轴对称锻件成形过程的热力耦合有限元分析技术的研究_鲁世强

轴对称锻件成形过程的热力耦合有限元分析技术的研究_鲁世强
轴对称锻件成形过程的热力耦合有限元分析技术的研究_鲁世强

螺栓连接的有限元分析(汇编)

1 概述 螺栓是机载设备设计中常用的联接件之一。其具有结构简单,拆装方便,调整容易等优点,被广泛应用于航空、航天、汽车以及各种工程结构之中。在航空机载环境下,由于振动冲击的影响,设备往往产生较大的过载,对作为紧固件的螺栓带来强度高要求。螺栓是否满足强度要求,关系到机载设备的稳定性和安全性。 传统力学的解析方法对螺栓进行强度校核,主要是运用力的分解和平移原理,解力学平衡方程,借助理论和经验公式,理想化和公式化。没有考虑到连接部件整体性、力的传递途径、部件的局部细节(如应力集中、应力分布)等等。通过有限元法,整体建模,局部细化,可以弥补传统力学解析的缺陷。用有限元分析软件MSC.Patran/MSC.Nastran提供的特殊单元来模拟螺栓连接,过程更方便,计算更精确,结果更可靠。因此,有限元在螺栓强度校核中的应用越来越广泛。 2 有限元模型的建立 对于螺栓的模拟,有多种模拟方法,如多点约束单元法和梁元法等。 多点约束单元法(MPC)即采用特殊单元RBE2来模拟螺栓连接。在螺栓连接处,设置其中一节点为从节点(Dependent),另外一个节点为主节点(Independent)。主从节点之间位移约束关系使得从节点跟随主节点位移变化。比例因子选为1,使从节点和主节点位移变化协调一致,从而模拟实际工作状态下,螺栓对法兰的连接紧固作用。 梁元法模拟即采用两节点梁单元Beam,其能承受拉伸、剪切、扭转。通过参数设置,使梁元与螺栓几何属性一致。 本文分别用算例来说明这两种方法的可行性。 2.1 几何模型 如图1所示组合装配体,底部约束。两圆筒连接法兰通过8颗螺栓固定。端面受联合载荷作用。

有限元热力学常见概念汇总

Film Coefficient(对流换热系数) 流体与固体表面之间的换热能力,比如说,物体表面与附近空气温差1℃,单位时间单位面积上通过对流与附近空气交换的热量。单位为W/(m^2·℃)。表面对流换热系数的数值与换热过程中流体的物理性质、换热表面的形状、部位、表面与流体之间的温差以及流体的流速等都有密切关系。物体表面附近的流体的流速愈大,其表面对流换热系数也愈大。如人处在风速较大的环境中,由于皮肤表面的对流换热系数较大,其散热(或吸热)量也较大。对流换热系数可用经验公式计算,通常用巴兹公式计算 1、详细内容 对流传热系数也称对流换热系数。对流换热系数的基本计算公式由牛顿于1701年提出,又称牛顿冷却定律。牛顿指出,流体与固体壁面之间对流传热的热流与它们的温度差成正比,即: q = h*(tw-t∞) Q = h*A*(tw-t∞)=q*A 式中: q为单位面积的固体表面与流体之间在单位时间内交换的热量,称作热流密度,单位W/m^2; tw、t∞分别为固体表面和流体的温度,单位K; A为壁面面积,单位m^2; Q为面积A上的传热热量,单位W; h称为表面对流传热系数,单位W/(m^2.K)。 2、理论发展 对流换热系数h的物理意义是:当流体与固体表面之间的温度差为1K时,1m*1m壁面面积在每秒所能传递的热量。h的大小反映对流换热的强弱。 如上所述,h与影响换热过程的诸因素有关,并且可以在很大的范围内变化,所以牛顿公式只能看作是传热系数的一个定义式。它既没有揭示影响对流换热的诸因素与h之间的内在联系,也没有给工程计算带来任何实质性的简化,只不过把问题的复杂性转移到传热系数的确定上去了。因此,在工程传热计算中,主要的任务是计算h。计算传热系数的方法主要有实验求解法、数学分析解法和数值分析解法。 影响对流传热强弱的主要因素有: 1. 对流运动成因和流动状态; 2. 流体的物理性质(随种类、温度和压力而变化); 3. 传热表面的形状、尺寸和相对位置; 4. 流体有无相变(如气态与液态之间的转化)。 3、实例应用 在不同的情况下,传热强度会发生成倍直至成千倍的变化,所以对流换热是一个受许多因素影响且其强度变化幅度又很大的复杂过程。 4、对流换热系数的大致量级: 空气自然对流 5 ~ 25 气体强制对流 20 ~ 100 水的自然对流 200 ~1000 水的强制对流 1000 ~ 15000

T形接头承载能力有限元分析

T形接头承载能力有限元分析 四川神坤装备股份有限公司王大春龙林 摘要:本文采用有限元方法,分析了角焊缝焊接接头的承载能力。结果发现:接头受正拉力时,角焊缝接头的承载能力与焊角尺寸成正比;在接头受压力时,装配间隙对接头承受压力载荷有一点的影响;接头角焊缝的形状对其破断面位置和承载能力有较大的影响。 1 引言 液压支架是大形煤矿综采设备的主要设备,约占综采设备总投资的70﹪,主要由高强度钢板焊接而成,角焊缝T形接头是其结构中最普遍的接头形式,约占总焊缝的90﹪。T形接头的角焊缝形式十分复杂,焊缝中应力分布极不均匀,其破断面位置及其承载能力与焊缝形状和外载荷的作用方向有很大关系。角焊缝的强度测试目前尚无统一的标准,强度试验也比较困难。目前工程上比较通用的计算方法是采用国际焊接学会推荐的角焊缝折合应力公式,该公式假设了破断面与底板成45°角,而实际破断面的位置与接头载荷方向和焊缝的应力状态有很大的关系,与假设的破断面位置会有很大差异。为了更准确的计算复杂角焊缝的强度和应力分布,本文采用大型通用有限元分析软件对T形接头角焊缝的破断面位置和承载能力进行了分析,为优化焊接结构的设计和焊缝的选择提供借鉴。 2 有限元模型 有限元模型对分析结果的准确性和计算速度有很大作用。 2.1 材料模型 由于角焊缝接头结构复杂,应力分布极不均匀,不易通过试验获得材料本构关系。本文材料性能采用对接接头的拉伸性能来获得,见表1,本文不考虑焊缝与母材的材料不均匀性,接头母材为Q690,焊丝为80kg级高强钢专用焊丝。 表1 材料真应力与真塑性应变 本文材料模型包括了接头颈缩前的本构关系,颈缩后不考虑材料硬化性能(即此后应变

第9章 热学基础习题解答

第9章 热力学基础习题解答 9-1 1mol 单原子分子理想气体,在4 atm 、27℃时体积1V =6L ,终态体积2V =12L 。若过程是:(1)等温;(2)等压;求两种情况下的功、热量及内能的变化。 解:(1)等温过程:0=?E 12/ln 2121V V RT dV V RT pdV A Q V V V V T T νν====?? 17282ln 30031.8=?=(J ) (2)等压过程:36472/)(32/12=-=?=?V V p T iR E ν(J ) 2431)(12=-=V V p A (J ) 6078=+?=A E Q P (J ) 9-2 1mol 单原子分子理想气体从300 K 加热到350 K 。(1)体积保持不变;(2)压强保持不变;在这两过程中系统各吸收了多少热量?增加了多少内能?气体对外做了多少功? 解:(1)等体过程:0=V A 3.6232/5031.832/=??=?=?=T iR E Q V ν(J ) (2)等压过程:5.4155031.8)(12=?=?=-=T R V V p A (J ) 10395.4153.623=+=+?=A E Q P (J ) 9-3 将400 J 的热量传给标准状态下的2mol 氢气。(1)若温度不变,氢气的压强、体积各变为多少?(2)若压强不变,氢气的温度、体积各变为多少?(3)若体积不变,氢气的温度、压强各变为多少?哪一过程中它做功最多?为什么?哪一过程中内能增加最多?为什么?

解:(1)8.4410 013.127331.82500 0=???==p RT V ν(L) 等温过程:01/ln V V RT Q T ν= 9.48273 31.82400exp 8.44exp 01=??==RT Q V V ν(L) 916.09.48/8.44/1001===V V p p (atm )=9.27×104(Pa ) (2)等压过程:)(02T T C Q P P -=ν 9.2792732 /31.87240002=+??=+=T C Q T P ν(K ) 9.45273/8.449.279/0022=?==T V T V (L) (3)等体过程:)(03T T C Q V V -=ν 6.2822732 /31.85240003=+??=+=T C Q T V ν(K ) 55003310049.1273/10013.16.282/?=??==T p T p (Pa ) 等温过程做功最多,因为热量全部转化为功。等体过程内能增加最多,因为全部热量用于增加内能。 9-4 一系统由如图所示的a 状态沿acb 到达b 状态,有320 J 热量传入系统,而系统对外做功126 J 。(1)若adb 过程系统对外做功42 J ,问有多少热量传入系统?(2)当系统由b 状态沿曲线ba 返回a 状态时外界对系统做功84 J ,问系统是吸热还是放热?热量是多少? 解: 其中(1)吸热(2)放热。 J) (210126336=-=-=-=?A Q E E E a b J)(25242210)()1(=+=+-=adb a b adb A E E Q J) (29484210)()2(-=--=+-=ba b a ba A E E Q

螺栓连接的有限元分析

1 概述螺栓是机载设备设计中常用的联接件之一。其具有结构简单, 拆装方便,调整容易等优点, 被广泛应用于航空、航天、汽车以及各种工程结构之中。在航空机载环境下,由于振动冲击的影响,设备往往产生较大的过载,对作为紧固件的螺栓带来强度高要求。螺栓是否满足强度要求,关系到机载设备的稳定性和安全性。 传统力学的解析方法对螺栓进行强度校核,主要是运用力的分解和平移原理,解力学平衡方程,借助理论和经验公式,理想化和公式化。没有考虑到连接部件整体性、力的传递途径、部件的局部细节( 如应力集中、应力分布) 等等。通过有限元法,整体建模,局部细化,可以弥补传统力学解析的缺陷。用有限元分析软件 MSC.Patran/MSC.Nastran 提供的特殊单元来模拟螺栓连接,过程更方便,计算更精确,结果更可靠。因此,有限元在螺栓强度校核中的应用越来越广泛。 2 有限元模型的建立 对于螺栓的模拟,有多种模拟方法,如多点约束单元法和梁元法等。 多点约束单元法(MPC)即采用特殊单元RBE2来模拟螺栓连接。在螺栓连接处,设置其中一节点为从节点(Dependent) ,另外一个节点为主节点(Independent) 。主从节点之间位移约束关系使得从节点跟随主节点位移变化。比例因子选为1, 使从节点和主节点位移变化协调一致,从而模拟实际工作状态下,螺栓对法兰的连接紧固作用。 梁元法模拟即采用两节点梁单元Beam其能承受拉伸、剪切、扭转。通过参数设置,使梁元与螺栓几何属性一致。 本文分别用算例来说明这两种方法的可行性。 2.1 几何模型 如图 1 所示组合装配体,底部约束。两圆筒连接法兰通过8 颗螺栓固定。端面受联合载荷作用。

完整word版有限元分析轴对称问题

思考题 5-1 轴对称问题的定义 答:工程中又一类结构,其几何形状、边界条件、所受载荷都对称于某一轴线,这种情况下结构再载荷作用下位移、应变和应力也对称于这个轴线,这种问题成为轴对称问题。 5-2 轴对称问题一般采用的坐标系?作图说明每个坐标分量的物理意义 答:在描述轴对称弹性体问题的应力及变形时常采用圆柱坐标r,θ,z。 各位移分量是那几个自变量的函轴对称问题中每个点有几个位移分量? 5-3 数?的函数,与θ无关。都只是rz答:位移分量u, w, 轴对称问题中的每个点有哪几个应力分量?是那几个自变量的函数。5-4 4答:个应力分量; 5-5 轴对称问题中的每个点有哪几个应变分量?是那几个自变量的函数 答:4个应变分量 轴对称问题是三维问题?二维问题?最简单的轴对称单元是哪种单5-6

元?作图说明等于零。因此轴对称问题是二维问v答:由于轴对称,沿θ方向的环向(周向)位移平面(子午面)正交的截面r z题;三角形环单元。(三角形轴对称单元,这些圆环单元与是三角形) 写出三角形环单元的位移函数。满足完备性要求吗?5-7 答:满足完备性要求。 三角形环单元形函数的表达式?指出形函数的性质。5-8 三角形环单元的应力和应变的特点。其单元刚度矩阵是几阶的?5-9 个正应力分量均随位置变化;答:应力分量:剪应力为常量,其他3个应变分量为常量,环向应变不是常应变,而是与单应变分量:面内(子五面)3 元中各点的位置有关。单元刚度矩阵为六阶。有限元方法求解对称问题的基本步骤?5-10 结构离散化:对整个结构进行离散化,将其分割成若干个单元,单元间彼此通过节点相1. 连; {F}(e){Φ}(e)[K](e) 2.求出各单元的刚度矩阵:[K](e)是由单元节点位移量求单元节点力向量的转移矩阵,其关系式为:{F}(e)= [K](e) {Φ}(e);{Φ}集成总体刚度矩阵 3.[K]并写出总体平衡方程:总体刚度矩阵[K]是由整体节点位移向量求整体节点力向量,此即为总体平衡方程。{F}= [K] {Φ} 的转移矩阵,其关系式为沿某个方向n4.引入支撑条件,求出各节点的位移:节点的支撑条件有两种:一种是节点沿某个方向的位移为一给定值。的位移为零,另一种是节点n 求出各单元内的应力和应变 5. 对于有限元方法,其基本思路和解题步骤可归纳为:建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边

过盈配合的有限元分析

过盈配合的有限元分析 工程力学系 张晨朝 20803001

过盈配合的有限元分析 摘要: 在工程应用中,利用接触有限元法建立了内轴与外套过盈配合的有限元力学模型来判断结构设计是否符合要求。针对内轴和外套的过盈配合状态,采用大型通用有限元ANSYS 软件对组合模具进行了有限元分析, 得出了内轴与外套在过盈配合状态下的应力分布规律及接触面压力分布状况, 找到了应力集中位置和大小。结论表明结构配合尺寸设计没有使结构产生变形, 该结构完全符合产品的设计要求。 关键词: 过盈配合; ANSYS Abstract: In the project application, in order to judge whether the structural design meets the requirement, the finite element and mechanical model of the interference joint between inside lining and outside wrap is established by used contact -finite- element methods. Aimed at condition of the interference joint between inside lining and outside wrap, we carry on the finite element analysis based on ANSYS and attain the stress distribution in interference joint; the pressure distribution in contact face and the location and the size of stress concentration. It is concluded that the structure interference joint size of combined die do not make the mold have distortion and the combined die completely meets the product design requirement. Key words: interference joint; ANSYS 1 引言 过盈配合[1]是机械工业中一种常见的零部件组装方式,齿轮、轴承以及火车车轮等与其装配轴之间的配合大多采用过盈配合。在工作外载荷作用下,能产生足够的摩擦力,以保证配合件之间不发生任何相对的滑动,同时接触应力又不过大,装配件能正常工作。因此,研究配合面之间的接触应力分布规律是十分重要的。机械设备中常用到轴与孔的配合[2],为保护机体(如机架、箱体等)在设备运转中不受磨损,通常压装轴套,由轴套与轴配合。设备运转[3]一定周期轴套磨损后更换轴套即可恢复轴孔原尺寸。轴套的外径与机体通常采用静配合,而轴套内径则与轴保持不同精度的动配合。在机械设计中一般都只标出轴套内外径的尺寸及公差,以此来保证装配后形成要求的配合。由于轴套与机体[4]采用过盈配合,其过盈量(D)形成轴套与机体的装配应力,在这种装配应力的作用下,轴套内径将产生一定的收缩量(△),显然,轴套的收缩量(△)与轴套压入机体时的过盈量(D)密切相关,也与轴套和机体的几何尺寸,即两者的壁厚系数及各自材料性能相关。由于轴套的内孔收缩改变了原来的尺寸,也就改变了内孔与轴的配合关系,以致达不到原来的设计要求,容易出现间隙过小,有时甚至试车温度升高而抱轴,严重时会出现轴孔小于轴而不能装配的现象。 2 轴套装配收缩量的理论计算 工程力学中, 一般将外径与内径之比值之大于1.1的圆筒视为厚壁圆筒, 其比值为壁厚系数。在机械零件中,前述机体件之比值分布在1.1~1.5,均属厚壁圆筒,轴套类零件之比值大致分布在1.05~1.35之间。据此,可将轴套压入机体形成的结构简化为两端开口的厚壁圆筒中过盈配合组合圆筒问题。 将铜套镶入座孔在机械装配中经常遇到。过盈配合的铜套直接按图纸加工镶入座孔时,铜套对座孔为过盈配合,常温下压入或打入,内孔就收缩,改变了原来间隙配合的性质,只能重新铰孔或镗孔,才能达到孔尺寸公差要求。为保证套孔和轴的间隙配合,其内孔尺寸公差确定至关重要。 2.1 计算原理 过盈配合的铜套内径加工尺寸的计算[5]依据有四点: (1) 铜套在常温下镶入座孔后,其金属密度变化不大,可以略去不计。

轴对称问题有限元法分析报告

轴对称问题的有限元 模拟分析

一、摘要: 轴对称问题是弹性空间问题的一个特殊问题,这类问题的特点是物体为某一平面绕其中心轴旋转而成的回转体。由于一般形状是轴对称物体,用弹性力学的解析方法进行应力计算,很难得到精确解,因此采用有限元法进行应力分析,在工程上十分需要,同时用有限元法得到的数值解,近似程度也比较好。 轴对称问题的有限元分析,可以将要分析的问题由三维转化为二维平面问题来解决。先是结构离散,然后是单元分析,再进行总纲集成,再进行载荷移置,最后是约束处理和求解线性方程组。分析完成之后用ABAQUS软件建模以及分析得出结果。 关键字:有限元法轴对称问题ABAQUS软件 二、前言: 1、有限元法领域介绍: 有限单元法是当今工程分析中获得最广发应用的

数值计算方法,由于其通用性和有效性,受到工程技术界的高度重视,伴随着计算机科学和技术的快速发展,现在已经成为计算机辅助设计和计算机辅助制造的重要组成部分。 由于有限元法是通过计算机实现的,因此有限元程序的编制以及相关软件的研发就变得尤为重要,从二十世纪五十年代以来,有限元软件的发展按目的和用途可分为专用软件和大型通用商业软件,而且软件往往集成了网络自动划分,结果分析和显示等前后处理功能,而且随着时间的发展,大型通用商业软件的功能由线性扩展到非线性,由结构扩展到非结构等等,这一系列强大功能的实现与运用都要求我们对有限元法的基础理论知识有较为清楚的认识以及对程序编写的基本能力有较好掌握。 2、研究报告目的: 我们小组研究的问题是:圆柱体墩粗问题。毛坯的材料假设为弹塑性,弹性模量210000MPa,泊松比0.3,塑性应力应变为

第二章 压电复合材料有限元分析方法

第二章压电复合材料有限元分析方法 2.1 1—3型压电复合材料常用的研究方法 第一、理论研究,包括利用细观力学和仿真软件进行数值分析的方法。人们对1-3型压电复合材料宏观等效特征参数进行研究时,从不同角度出发采用了形式多样的模型和理论,其中夹杂理论和均匀场理论具有代表性。夹杂理论的思想是,从细观力学出发,将1-3形压电复合材料的代表性体积单元(胞体)作为夹杂处理。求解过程中,使用的最著名的两个模型为:Dilute模型和Mori-Tanaka模型。夹杂理论的优点是其解析解能较好地反映材料的真实状况,解精度较高;缺点是其解题和计算过程烦琐,有时方程只能用数值方法求解。均匀场理论的思想是基于均匀场理论和混合定律,同时借助1-3型压电复合材料的细观力学模型导出其宏观等效特征参数。其基本的研究思路是:假设组成复合材料的每一相中力场和电场均匀分布,结合材料的本构方程得到1-3型压电复合材料的等效特征参数。Smith,Auld采用此理论研究了1-3型压电柱复合材料的弹性常数、电场、密度等等效特征参数。Gordon,John采用此理论研究了机电耦合系数、耗损因子、电学品质因子等等效特征参数。Bent, Hagood和Yoshikawa等基于此理论对交叉指形电极压电元件等效特征参数进行了研究。均匀场理论优点在于物理模型简单,物理概念清晰,计算也不复杂,并具有相当的精度和可靠性;不足在于其假设妨碍了两相分界面上的协调性。有限元作为一种广泛应用于解决实际问题的数值分析方法,将其引入压电复合材料研究中具有重要的意义。John,Gordon等用有限元方法分析了1-3型压电柱复合材料中压电柱为方形柱、圆形柱、二棱柱时的力电耦合系数及其波速特性,得到了压电柱在几何界面不同的情况下的等效力电耦合系数及等效波速曲线。 第二、实验研究。Helen,Gordon等对1-3型压电复合材料的宏观等效特征参数进行了理论和实验研究,结果表明两者符合良好;LVBT等运用了1-3型压电复合材料进行了声学方面的控制取得了良好的效果;John,Bent等对压电纤维复合材料的性能进行了深入的研究,结果显示压电纤维复合材料在高电场、大外载荷环境下具有优良的传感和作动性能。参数辨识研究是试验研究中重要的一种方法,基本思路是:分析1-3型压电纤维复合材料的响应特性,从中得到其等效宏观的模态和弹性波的传播特性参数。Guraja,Walter等采用的就是这种方法,他们研究了1-3型压电纤维复合材料薄板、厚板、变截面板的响应特性,得到了其相应的声波传播速度c,频率f,机械品质因素Q等参数的表达式,为1-3型压电纤维复合材料在超声波方面的应用提供了依据。 综合对比以上的研究方法,夹杂理论得出的结果比较接近实际结果,但是计算烦琐,而且对于高体积百分比的复合材料其计算结果跟实际相差较大;均匀场理论计算较为简单,但是模糊了两相材料之间的界面作用;实验研究方法是最接近实际的一种方法,但是由于实验条件、测试技术等一系列因素的制约使其不能广泛应用十实际中。由于交叉指形电极压电复合材料的复杂性,利用上面提到的夹杂理论和均匀场理论的方法,很难得到压电元件整体模型的性能状况。而数值研究有限元法,利用先进的分析软件ANSYS进行压电复合材料性能分析,可以超越目前现有的生产工艺和测试技术水平得到比较准确的分析结果,又可以减小压电元件的设计周期,减少实验制作压电元件的材料浪费和设备损耗。 2.2 有限元分析方法概述 有限元法(又称为有限单元法或有限元素法)是利用计算机进行数值模拟分析的方法。诞生于20世纪50年代初,最初只应用于力学领域中,现在广泛应用于结构、热、流体、电磁、声学等学科的设计分析及优化,有限元计算结果已成为各类工业产品设计和性能分析的

大学物理第九章 热力学基础 试题

第9章 热力学基础 一、选择题 1. 对于准静态过程和可逆过程, 有以下说法.其中正确的是 [ ] (A) 准静态过程一定是可逆过程 (B) 可逆过程一定是准静态过程 (C) 二者都是理想化的过程 (D) 二者实质上是热力学中的同一个概念 2. 对于物体的热力学过程, 下列说法中正确的是 [ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B) 摩尔热容量的大小与所经历的过程无关 (C) 在物体内, 若单位体积内所含热量越多, 则其温度越高 (D) 以上说法都不对 3. 有关热量, 下列说法中正确的是 [ ] (A) 热是一种物质 (B) 热能是物质系统的状态参量 (C) 热量是表征物质系统固有属性的物理量 (D) 热传递是改变物质系统内能的一种形式 4. 关于功的下列各说法中, 错误的是 [ ] (A) 功是能量变化的一种量度 (B) 功是描写系统与外界相互作用的物理量 (C) 气体从一个状态到另一个状态, 经历的过程不同, 则对外作的功也不一样 (D) 系统具有的能量等于系统对外作的功 5. 理想气体状态方程在不同的过程中有不同的微分表达式, 式p V M R T d d =μ 表 示 [ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 绝热过程 6. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式 V p M R T d d = μ 表示 [ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 绝热过程 7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式0d d =+V p p V 表

基于NX有限元分析实验报告

有限元分析及应用 专业:机械 姓名:你喝 学号:2 0 1 3 X X 指导老师:没意义 工字梁热力学与结构学耦合分析

有限元分析(FEA,Finite Element Analysis)将物体划分成有限个单元,这些单元之间通过有限个节点相互连接,单元看作是不可变形的刚体,单元之间的力通过节点传递,然后利用能量原理建立各单元矩阵;在输入材料特性、载荷和约束等边界条件后,利用计算机进行物体变形、应力和温度场等力学特性的计算,最后对计算结果进行分析,显示变形后物体的形状及应力分布图。有限元分析的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 热——结构耦合分析是指求解温度场对结构中应力、应变和位移等物理量的影响,热——结构耦合问题是结构分析中较常见的一类耦合分析问题。由于结构温度场的分布不均会引起结构的热应力,或者是结构件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素。为此需要先进行相应的热分析,然后再进行结构分析。在NX环境中进行热——结构耦合分析,首先进行热分析求得结构的温度场,然后再进行结构分析,并将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布。 1.模型建立 2.热分析 新建FEM和仿真 点击开始按钮,选择“高级仿真”,激活高级仿真模块。在仿真导航器中选择“新建FEM 和仿真” 解算方案 网格收集器 添加材料属性,从材料清单中选择“Steel”,单击“确定” 划分网格 添加约束(进入仿真环境) 所有外表面添加对流约束,环境温度为45,对流系数为100W/m^2-C 添加热约束 在工字梁顶端设置65恒温 解算方案求解

第九章热力学基础

第九章 热力学基础 一、 选择题. 1.理想气体经历如图所示的a b c 平衡过程,则该 系统对外作功A ,从外界吸收的热量Q 和内能的增量△E 的正负情况如下: (A) △E>0,Q>0,A<0. (B) △E>0, Q>0,A>0. (C) △E>0,Q<0,A<0. (D) △ E<0 , Q<0 , A>0. ( ) 2. 一定量的理想气体分别由初态a 经①过程a b 和 由初态a ’经②过程 a ’c b 到达相同的终态b ,如P —T 图所示,则两个过程中气体从外界吸收的热量Q 1,Q 2的关系为: (A) Q 1<0 ,Q 1>Q 2 . (B) Q 1>0 ,Q 1>Q 2 . (C) Q 1<0 ,Q 10 ,Q 1

5.一定量某理想气体所经历的循环过程是:从初态 (V。,T。)开始,先经绝热膨胀使其体积增大1 ,最后经等 倍,再经等容升温回复到初态温度T 温过程使其体积回复为V。,则气体在此循环过 程中 (A) 对外作的净功为正值. (B) 对外作的净功 为负值. (C) 内能增加了. (D) 从外界净吸的热量 为正值. ( ) 6.关于温度的意义,有下列几种说法: (1)气体的温度是分子平均平动动能的量度 (2)气体的温度是大量气体分子热运动的集体表现,具有统计意 义 (3)温度的高低反映物质内部分子运动剧烈程度的不同 (4)从微观上看,气体的温度表示每个气体分子的冷热程度 上述说法中正确的是 ( ) A、(1)、(2)、(4) B、(1)、(2)、(3) C、(2)、(3)、(4) 7.在V p图上有两条曲线abc和adc,由此可以得Array出以下结论: (A)其中一条是绝热线,另一条是等温线; (B)两个过程吸收的热量相同; (C)两个过程中系统对外作的功相等; (D)两个过程中系统的内能变化相同。 () 8.在功与热的转变过程中,下面的那些叙述是正确 的? (A)能制成一种循环动作的热机,只从一个热源吸 取热量, 使之完全变为有用功;

轴对称问题的有限元分析

第1节基本知识 本节的有限元对象为轴对称问题,目的是学习将3D问题转化为2D问题分析的轴对称方法,涉及如何选取轴对称单元、建模规律、载荷的施加方法和后处理技术。 一、轴对称问题的定义 轴对称问题是指受力体的几何形状、约束状态,以及其它外在因素都对称于某一根轴(过该轴的任一平面都是对称面)。轴对称受力体的所有应力、应变和位移均对称于这根轴。 二、用ANSYS解决2D轴对称问题的规定 用ANSYS解决2D轴对称问题时,轴对称模型必须在总体坐标系XOY平面的第一象限中创建,并且Y轴为轴旋转的对称轴。 求解时,施加自由约束、压力载荷、温度载荷和Y方向的加速度可以像其它非轴对称模型一样进行施加,但集中载荷有特殊的含义,它表示的是力或力矩在360°范围内的合力,即输入的是整个圆周上的总的载荷大小。同理,在求解完毕后进行后处理时,轴对称模型输出的反作用力结果也是整个圆周上的合力输出,即力和力矩按总载荷大小输出。 在ANSYS中,X方向是径向,Z方向是环向,受力体承载后的环向位移为零,环向应力和应变不为零。 常用的2D轴对称单元类型和用途见表11-1。 表11-1 2D轴对称常用结构单元列表

的高阶单的高阶单 在利用ANSYS进行有限元分析时,将这些单元定义为新的单元后,设置单元配置项KEYOPT(3)为Axisymmetric(Shell51和Shell61单元本身就是轴对称单元,不用设置该项),单元将被指定按轴对称模型进行计算。 后处理时,可观察径向和环向应力,它对应的是SX与SZ应力分量,并且在直角坐标系下观察即可。 可以通过轴对称扩展设置将截面结果扩展成任意扇型区域大小的模型,以便更加真实地观察总体模型的各项结果。 轴对称问题有限元分析实例 2D节2第

有限元法的应用现状研究

有限元法的应用现状研究3 于亚婷,杜平安,王振伟 (电子科技大学机械电子工程学院,四川成都 610054) 摘要:有限元法(FEM:Finite Element Method)作为一种最有效的数值方法,在工程实际中得到了广泛、深入的应用。以应用为主线,首先回顾了FEM的发展历程,然后从FEM的应用过程和应用领域两个方面详细地论述了FEM应用的有关问题,并例举了相关的应用实例。最后总结了FEM的国内外应用现状及研究热点问题。 关键词:有限元法;应用过程;应用领域;现状 中图分类号:TP391.7 文献标识码:A 文章编号:1001-2354(2005)03-0006-04 1 F EM的发展历程 FEM作为求解数学物理问题的一种数值方法,已经历了50余年的发展。20世纪50年代,它作为处理固体力学问题的方法出现。1943年,Courant第一次提出单元概念[1]。1945~1955年,Argyris等人在结构矩阵分析方面取得了很大进展[1]。1956年,Turner、Clough等人把刚架位移法的思路推广应用于弹性力学平面问题[1]。1960年,Clough首先把解决弹性力学平面问题的方法称为“有限元法”[1],并描绘为“有限元法= Rayleigh Ritz法+分片函数”。几乎与此同时,我国数学家冯康也独立提出了类似方法。 FEM理论研究的重大进展,引起了数学界的高度重视。自20世纪60年代以来,人们加强了对FEM数学基础的研究。如大型线性方程组和特征值问题的数值方法、离散误差分析、解的收敛性和稳定性等。 FEM理论研究成果为其应用奠定了基础,计算机技术的发展为其提供了条件。20世纪70年代以来,相继出现了一些通用的有限元分析(FEA:Finite Element Analysis)系统,如SA P、ASKA、NASTRAN等,这些FEA系统可进行航空航天领域的结构强度、刚度分析,从而推动了FEM在工程中的实际应用。 20世纪80年代以来,随着工程工作站的出现和广泛应用,原来运行于大中型机上的FEA系统得以在其上运行,同时也出现了一批通用的FEA系统,如ANSYS-PC、N ISA,SU PER SA P等[3]。20世纪90年代以来,随着微机性能的显著提高,大批FEA系统纷纷向微机移植,出现了基于Windows的微机版FEA系统。 经过半个多世纪的发展,FEM已从弹性力学平面问题扩展到空间问题、板壳问题;从静力问题扩展到动力问题、稳定问题和波动问题;从线性问题扩展到非线性问题;从固体力学领域扩展到流体力学、传热学、电磁学等其他连续介质领域;从单一物理场计算扩展到多物理场的耦合计算。它经历了从低级到高级、从简单到复杂的发展过程,目前已成为工程计算最有效的方法之一。 2 F EM应用的有关问题 2.1 FEM的应用过程 FEM应用于实际问题须经历以下过程,如图1所示 。 图1 FEM的应用过程 (1)问题的数学描述。对问题客观规律的数学描述(通常是微分方程及边界条件)是建立有限元方程的前提。单元特性矩阵和整体有限元方程都是基于数学模型建立的。常见的弹性力学基本方程、运动方程、热传导方程等都是对客观现象的数学描述。 (2)有限元方程的建立。利用变分原理,通过离散、单元分析、整体分析等过程,建立数学模型的有限元方程,它通常是一组易于用数值方法求解的代数方程。 (3)算法研究。有限元方程的计算量庞大,须有有效的算法来保证计算效率和精度,同时考虑对计算条件的要求。如求解大型线性方程组的带宽法、波前法,求解大型特征值问题的分块Lanczos法等。 第22卷第3期2005年3月 机 械 设 计 J OU RNAL OF MACHIN E DESIGN Vol.22 No.3 Mar. 2005 3收稿日期:2004-07-22;修订日期:2004-09-02 基金项目:四川省学术与技术带头人培养基金资助项目(2200104) 作者简介:于亚婷(1979-),女,陕西人,电子科技大学博士研究生,研究方向:CAD/CAM/CA E有限元法应用等。

第9章_热力学基础

ang第9章热力学基础题目无答案 一、选择题 1. 对于准静态过程和可逆过程, 有以下说法.其中正确的是 [ ] (A) 准静态过程一定是可逆过程 (B) 可逆过程一定是准静态过程 (C) 二者都是理想化的过程 (D) 二者实质上是热力学中的同一个概念 2. 对于物体的热力学过程, 下列说法中正确的是 [ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B) 摩尔热容量的大小与所经历的过程无关 (C) 在物体内, 若单位体积内所含热量越多, 则其温度越高 (D) 以上说法都不对 3. 有关热量, 下列说法中正确的是 [ ] (A) 热是一种物质 (B) 热能是物质系统的状态参量 (C) 热量是表征物质系统固有属性的物理量 (D) 热传递是改变物质系统内能的一种形式 4. 关于功的下列各说法中, 错误的是 [ ] (A) 功是能量变化的一种量度 (B) 功是描写系统与外界相互作用的物理量 (C) 气体从一个状态到另一个状态, 经历的过程不同, 则对外作的功也不一样 (D) 系统具有的能量等于系统对外作的功 5. 理想气体状态方程在不同的过程中有不同的微分表达式, 式p V M R T d d = μ 表示 [ ] (A) 等温过程(B) 等压过程 (C) 等体过程(D) 绝热过程 6. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式 V p M R T d d = μ 表示 [ ] (A) 等温过程(B) 等压过程 (C) 等体过程(D) 绝热过程

7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式0d d =+V p p V 表示 [ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 绝热过程 8. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 则式 V p p V M R T d d d += μ 表示 [ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 任意过程 9. 热力学第一定律表明: [ ] (A) 系统对外作的功不可能大于系统从外界吸收的热量 (B) 系统内能的增量等于系统从外界吸收的热量 (C) 不可能存在这样的循环过程, 在此过程中, 外界对系统所作的功 不等于系统传给外界的热量 (D) 热机的效率不可能等于1 10. 对于微小变化的过程, 热力学第一定律为d Q = d E +d A .在以下过程中, 这三者同时为正的过程是 [ ] (A) 等温膨胀 (B) 等容膨胀 (C) 等压膨胀 (D) 绝热膨胀 11. 对理想气体的等压压缩过程,下列表述正确的是 [ ] (A) d A >0, d E >0, d Q >0 (B) d A <0, d E <0, d Q <0 (C) d A <0, d E >0, d Q <0 (D) d A = 0, d E = 0, d Q = 0 12. 功的计算式A p V V = ?d 适用于 [ ] (A) 理想气体 (B) 等压过程 (C) 准静态过程 (D) 任何过程 13. 一定量的理想气体从状态),(V p 出发, 到达另一状态)2 , (V p . 一次是等温压缩到2V , 外界作功A ;另一次为绝热压缩到2 V , 外界作功W .比较这两个功值的大小是 [ ] (A) A >W (B) A = W (C) A <W (D) 条件不够,不能比较

对称结构有限元分析

对称结构有限元分析 ----3节点三角形单元的分析 一问题分析(对称框架线弹性实体的静力平衡问题) 图是一个方形弹性实体,单位边长、单位厚度、承受等效竖向压力2 1m,其中边界条 KN 件暗示着存在两组相对称的平面,因此现考虑的仅是问题的。每个节点上的自由度号码代表了各自在x和y方向上可能的位移。 结构和单元信息NELS NCE NN NIP 8 2 9 1 AA BB E V

.5 .55 1.E6 .3 约束节点自由度信息NR 5 K , NF(:,K), I=1,NR 10 1 4 0 1 7 0 0 8 1 9 1 0 载荷信息LOADED_NODES 3 (K, LOADS(NF(:,K)), I=1 , LOADED_NODES) 1 .0 -.25 2 .0 -.5 3 .0 -.25 333 3节点三角形单元网络的总体节点和单元编号 3节三角形单元局部坐标系中节点和自由度编号

二理论基础(有限元方法原理) 通过弹性力学变分原理建立弹性力学问题有限元方法表达格式的基本步骤。最小位能原理的未知场变量是位移,以结点位移为基本未知量,并以最小位能原理为基础建立的有限元为位移元。它是有限元方法中应用最为普遍的单元,也是本书主要讨论的单元。 对于一个力学或无力问题,在建立其数学模型以后,用有限元方法对它进行分析的首要步骤是选择单元形式。平面问题3结点三角形单元是有限元方法最早采用,而且至今仍经常采用的单元形式。我们将以它作为典型,讨论如何应用广义坐标建立单元位移模式与位移插值函数,以及如何根据最小位能原理建立有限元求解方程的原理、方法与步骤,并进而引出弹性力学问题有限元方法的一般表达格式。对于前一问题,着重讨论选择广义坐标和有限元位移模式的一般原则和建立其位移插值函数的一般步骤。对于后一问题,着重讨论单元刚度矩阵和单元载荷向量的形式,总体刚度矩阵和总体载荷向量集成的原理和方法,以及它们各自的特性。 作为一种数值方法,有限元解的收敛性无疑是十分重要的问题,以后将讨论解的收敛准则及其物理意义,所阐明的原则在以后还将得到进一步的应用和具体化。 在建立了有限元的一般表达格式以后,原则上可以将它推广到平面问题以外的其他弹性力学问题和采用任何形式的单元。轴对称问题具有很广泛的应用领域,轴对称问题3结点三角形 单元的表达格式可以看作是平面问题此种单元表达格式的直接推广。 一)弹性力学平面问题的有限元格式 结点三角形单元是有限元方法中最早提出,并且至今仍广泛应用的单元,由于三角形单元对复杂边界有较强的适应能力,因此很容易将一个二维离散成有限个三角形单元,如图1所示。在边界上以若干段直线近似原来的曲线边界,随着单元增多,这种拟合将趋于精确。我们在讨论如何应用有限元方法分析各类具体问题的开始,将以平面问题3结点三角形单元 为例来阐明弹性力学问题有限元分析的表达格式和一般步 1.1)单元位移模式及插值函数的构造 典型的3节点三角形单元节点编码i,j,m ,以逆时针方向编码为正向。每个节点有位移分量如图所示。 ?? ? ???=i i v u i a (i,j,m) 每个单元有6个节点位移即6个节点自由度,亦即 [ ] T m m j j i i m j i e v u v u v u a a a =??? ? ??????=a 1.2) 单元的位移模式和广义坐标 在有限元方法中单元的位移模式或称位移函数一般采用多项式作为近似函数,因为 多项式运算简便,并且随着项数的增多,可以逼近任何一段光滑的函数曲线。多项式的选取由低次到高次。

第五章 非线性有限元分析原理及基于ABAQUS软件的实现

第五章非线性有限元分析原理及基于ABAQUS软件的实现 5.1.1 ABAQUS主要模块 ABAQUS 由两个主分析模块ABAQUS/Standard 和ABAQUS/Explicit,以及与ABAQUS/Standard 组合的两个特殊用途的分析模块ABAQUS/Aqua 和ABAQUS/Post构成,同时包含两个交互作用的图形模块ABAQUS/Pre 和ABAQUS/Post,从建模的前处理到显示模拟计算结果的后处理过程中,它们提供了丰富的友好的图形界面交互作用工具。 5.1.1.1 ABAQUS/Standard ABAQUS/Standard是一个通用分析模块,在数值方法上采用有限元方法常用的隐式积分。它能够求解广泛的线性和非线性问题,包括结构的静态、动态问题、热力学场和电磁场问题等。对于通常同时发生作用的几何、材料、和接触非线性可以采用自动控制技术处理用户自己也可以控制。 5.1.1.2 ABAQUS/Explicit ABAQUS/Explicit是一个在数值方法上采用有限元显式积分的特殊模块,它利用对时间的显示积分求解动态有限元方程。它适合于分析诸如冲击和爆炸这样短暂瞬时的动态问题。 5.1.1.3 ABAQUS/CAE ABAQUS/CAE是一个友好的ABAQUS运行环境(Complete ABAQUS Environment),一个能够对ABAQUS 分析任务进行建模、管理、监控,同时又可以对ABAQUS分析结果进行可视化后处理的环境。该模块根据结构的几何图形生成网格,将材料和截面的特性分配到网格上,并施加载荷和边界条件,并建立必要的分析布。建模完成后,ABAQUS/CAE可以进一步将生成的模型(以输入文件的形式存在)提交给ABAQUS/Standard或者ABAQUS/Explicit分析模块,然后进行后台运行,并对运行情况进行监测,然后对计算结果(即输出数据库)进行后处理。 ABAQUS/CAE 的后处理对计算结果的描述和解释提供了范围很广的选择,除了必要的云图、矢量图和动画显示之外,还可以用列表,曲线等其他常用工具来完成对结果数据的处理。该模块还可以提供了完整全面的CAD 系统以及其他建模工具;提供高效率处理大模型的能力;包含交互环境,可以用于用户自主开发应用。 5.1.2.1离散化的几何形体 在ABAQUS中,有限单元和节点定义了ABAQUS所模拟的物理结构的基本几何形状。模型中的每一个单元都代表了物理结构的离散部分,即许多单元依次相连组成了结构,单元之间通过公共节点彼此相互连结。这些单元和节点的集合称为网格。网格中的单元类型、形状、位置和所有的单元总数都会影响模拟计算的结果。通常,网格的密度越高,计算结果就越精确。随着网格密度的增加,分析结果会收敛到唯一解,但用于分析计算所需的时间和费用也会增加,这之间有个权衡的选择。这部分通常在ABAQUS 中的PART 模块中定义。ABAQUS/CAE 中的各模块见图5-2所示: 5.1.2.2单元特性 ABAQUS 拥有广泛的单元库,主要包括实体单元、壳单元、梁单元、刚性单元,质量单元和弹簧单元,还有具有特殊性能的单元。 5.1.2.3材料数据 在分析时,必须对所有的单元指定材料特性。ABAQUS 具有相当丰富的材料模型库,可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混凝土、可压缩的弹性泡沫材料以及各种地质材料(土和岩石等)。另外,ABAQUS 还具有二次开发接口,为用户添加各种符合实际工程的材料提供方便,使用FORTRAN语言进行编程。这部分通常在ABAQUS中的MATERIAL模块中定义。 5.1.2.4载荷和边界条件 载荷使物理结构产生了一定的变形,因而产生应力。最常见的载荷形式包括:点载荷、表面压力载荷、体力、热载荷。变形分为大变形分析和小变形分析。应用边界条件可以使模型的某一部分受到约束从而保持固定(零位移)或有移动但位移值大小一定(非零位移)。 在静态分析中,需要满足足够的边界条件以防止模型在任意方向上的刚体位移。否则,没有约束的刚体位移会导致刚度矩阵产生奇异,在求解阶段将会发生问题,并可能引起模拟过程过早中断,ABAQUS/Stanard 也将发出数值奇异或主元素为零的警告信息。此时,用户必须检查是否整个或者部分模型缺少限制刚体平移或转动的约束。 5.1.2.5分析类型

相关文档
最新文档