2020年(发展战略)石墨烯产业发展现状调研

2020年(发展战略)石墨烯产业发展现状调研
2020年(发展战略)石墨烯产业发展现状调研

(发展战略)石墨烯产业发

展现状调研

Acer 宏碁AS4750G-2454G75Mnkk

石墨烯产业发展调研报告

石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元,就是石墨的单层薄片。它是人类已知强度最高、韧性最好、重量最轻、透光率最高、导电性最佳的材料。美国麻省理工学院(MIT)的《技术评论》曾将石墨烯列为2008年10大新兴技术之一。在2009年12月18日出版的《科学》杂志中,“石墨烯研究取得新进展”被列为2009年10大科技进展之一。2010年10月5日,英国曼彻斯特大学教授安德烈·海姆和康斯坦丁·诺沃肖洛夫因在石墨烯(graphene)研究方面的杰出成就而荣获2010年诺贝尔物理学奖。

1.1石墨烯结构及性质

石墨烯的问世引起了全世界的研究热潮。作为单质,它在室温下传递电子的速度比已知导体都快。石墨烯在原子尺度上结构非常特殊,必须用相对论量子物理学(relativistic quantum physics)才能描绘。石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。这种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。

石墨烯是目前已知的最薄的一种材料,单层的石墨烯只有一个碳原子的厚度,这种厚度的石墨烯拥有了许多石墨所不具备的特性。

(1)导电性极强:石墨烯中的电子没有质量,电子的运动速度超过了在其他金属单体或是半导体中的运动速度,能够达到光速的1/300,正因如此,石墨烯拥有超强的导电性。

(2)超高强度:石墨是矿物质中最软的,其莫氏硬度只有1-2级,但被分离成一个碳原子厚度的石墨烯后,性能则发生突变,其硬度将比莫氏硬度10级的金刚石还高,却又拥有很好的韧性,且可以弯曲。

(3)超大比表面积:由于石墨烯的厚度只有一个碳原子厚,即0.335纳米,所以石墨烯拥有超大的比表面积,理想的单层石墨烯的比表面积能够达到2630 m2/g,而普通的活性炭的比表面积为1500 m2/g,超大的比表面积使得石墨烯成为潜力巨大的储能材料。

1.2石墨烯的应用及市场潜力

(1)代替硅生产电子产品

硅让我们迈入了数字化时代,但研究人员仍然渴望找到一些新材料,让集成电路更小、更快、更便宜。在众多的备选材料中,石墨烯最引人瞩目。石墨烯拥有比硅更高的载流子迁移率(即载流子在电场作用下运动速度快慢的量度),是一种性能非常优异的半导体材料,电子在石墨烯中的运行速度能够达到光速的1/300,要比在其他介质中的运行速度高很多,而且只会产生很少的热量。使用石墨烯作为基质生产出的处理器能够达到1THz(即1000GHz)。

全球半导体晶硅的市场发展稳定,根据IEK的预测,石墨烯可替代晶硅应用在芯片领域,石墨烯如果替代十分之一的晶硅制成高端集成电路,市场容量至少在5000亿元以上。

(2)石墨烯锂离子电池开启储能技术新纪元

铅酸电池具有技术成熟、价格较低等优点,但是存在严重铅污染,将被更先进的产品替代。镍氢电池具有可大电流快速充放电、耐过充过放、低温性能好等优点,但能量密度较低使其不能用于纯电动车。锂离子电池能量密度大,循环寿命长,是目前在消费电子领域应用最广泛的电池,但是其功率密度还不够大,电池满充时间需要几个小时,在纯电动车领域的应用碰到了充电难题。超级电容器功率密度高而能量密度低,无法满足续航要求,不能单独用于电动车或其他储能设备。石墨烯锂离子电池解决了“鱼和熊掌不可兼得”的难题,同时满足了能量密度和功率密度要求,开启了储能技术新纪元。

石墨烯锂离子电池可以被应用到消费电子、电动工具、电动自行车、电动汽车和储能等领域。特别是在电动汽车和储能领域,石墨烯锂离子电池具有非常强的竞争力。石墨烯锂离子电池可在几分钟内满充,将加快电动汽车产业化进程。目前的电动汽车,因为充电时间长达几个小时,在市场推广过程中遇到了充电站配套建设成本高和普通消费者对其接受度较低的问题。石墨烯锂离石墨烯能够大幅提升锂离子电池性能,未来将在负极材料领域有广阔的市场前景。根据IEK的预测,石墨烯作为负极材料应用在十分之一的锂离子电池中,其需求量在2500吨以上。更重要的是一分钟充电技术,锂离子可再石墨烯表面和电极之间快速大量穿梭运动的特性,开发出一种新型储能设备—石墨烯电池。它的功率密度比锂电池高100倍,能量储存密度比传统超级电容高30倍。2008-2013年全球的负极材料的需求量将保持年均20%的增长率,到2013年全球的负极材料需求量将达到3.7万吨以上。未来有1%的锂离子电池由使用石墨烯负极材料的需求,那每年对于石墨烯的需求就在250吨以上。

(3)石墨烯促进超级电容器发展

超级电容器超级电容器又称超大容量电容器、金电容、黄金电容、储能电容、法拉电容、电化学电容器或双电层电容器(英文名称为EDLC,即Electric Double Layer Capacitors),是靠极化电解液来存储电能的新型电化学装置。它是近十几年随着材料科学的突破而出现的新型功率型储能元件,其批量生产不过几年时间。超级电容器自面市以来,全球需求量快速扩大,已成为化学电源领域内新的产业亮点。超级电容器在电动汽车、混合燃料汽车、特殊载重汽车、电力、铁路、通信、国防、消费性电子产品等众多领域有着巨大的应用价值和市场潜力,被世界各国所广泛关注。美国《探索》杂志2007年1月号,将超级电容器列为2006年世界七大科技发现之一,认为超级电容器是能量储存领域的一项革命性发展,并将在某些领域取代传统蓄电池。

碳质材料是目前研究和应用很广泛的超级电容器电极材料。用于超级电容器的碳质材料目前主要集中在活性炭(AC)、活性碳纤维(ACF)、炭气凝胶、他纳米管和模板炭等。而自从石墨烯被成功制备以来,人们开始探索这种碳质材料在超级电容器中的应用。

由于石墨烯具有极高的理论比表面积,结构上属于独立存在的单层石墨晶体材料,故石墨烯片层的两边均可以负极电荷形成双电层。且石墨烯片层所特有的褶皱以及叠加效果,可以形成的纳米孔道和纳米空穴,有利于电解液的扩散,因此石墨烯基的超级电容器具有良好的功率特性。

目前中国市场的超级电容器年需求量可达2150万只,约1.2亿瓦时,且每年都在以约50%的速度增长,2011年全球超级电容的市场规模将达到50亿元以上,并保持着20%的增长速率。

005-2005-2010年全球超级电容器市场规模

(4)替代TTO有极大的前景

目前的显示器和触摸屏等器件中的导体材料,主要是使用的氧化铟锡ITO材料。但氧化铟锡的价格高、用量大、易碎、有毒性(与铅的毒性可比),而石墨烯由于由于其特殊的分子结构而有非常高的导电性,而且石墨烯几乎完全透明;这两种性质使得石墨烯本身就是一种性能非常好的透明导体材料,适合用于制作显示器件。石墨烯的另一个特性是具有高韧性,能够拉伸20%而不断裂。使用石墨烯作为导体材料,能够制成可以折叠、伸缩的显示器件。而且石墨烯触摸屏合成对环境无害,需要资源少,并且随着生产工艺的不断改进,生产成本有望大大低于传统氧化铟锡触摸屏石墨烯。2011 年全球仅触摸屏所需要的ITO 导电玻璃就近4500 万片,加上公共查询、医疗仪器和游戏机等方面的应用,预计2012年ITO导电玻璃的市场容量在8500-9500万片,石墨烯将具有很大的替换空间。

以触摸屏为代表的智能机需求强劲增长,带动智能机零部件的生产和销售,其中包括电容屏的生产。据资策会产业情报研究所(MIC)预计,2011年全球智能手机出货量将达到4.52亿台,2012年将增加至6.14亿台,年成长率达35.8%.其中Android平台2011年出货量将达2.06亿台,以46%的市占率成为全球最大的智能手机操作系统,未来预期将维持在50%左右。而iOS与WindowsPhone在相关大厂应用生态体系的支持下,2012年市占率有望达到19%与13%.特别今年是我国千元智能机的普及年,触摸屏的智能机销售将大旺。基数巨大的触摸屏手机的销售,将给石墨烯电容触摸屏带来巨大的发展动力。所以,石墨烯行业存在较大投资机会,值得关注。

石墨烯触摸屏,比现有手机触摸屏更环保、更便宜和更耐用。现有手机触摸屏的工作层中不可缺少的材料为陶瓷材料氧化铟锡。从技术层面上讲,该成果的问世缩短了产业界对石

墨烯材料8-10年产业化的时间预期。今年,该成果可为手机商提供10万片触摸屏,成本比现用材料降低30%.正是由于有上述优势,石墨烯触摸屏的销售将有望从零起步,几何级别增长。所以,石墨烯行业,值得中长期关注。

1.3与石墨烯相关的国内国际政策计划

1.3.1国内:新材料产业在“十二五”期间的发展目标为自给率达到70%。规划安排的每个重点子行业都有望通过5到10年的时间形成千亿元至万亿元的产值规模。未来的行业的产值有望达到数万亿元,留给了投资者较大的预期空间。近期,因为整体市场的弱势,新材料板块的个股多处于横盘整理阶段,而新材料中的石墨烯概念,凭借其独特性,成为市场为数不多的亮点之一。虽然我国现阶段石墨烯的生产技术水平仍处于较低水平,尚不能大规模量产,但作为新材料板块在“十二五”规划出台后的首个热点,有望吸引市场对整个新材料板块的关注,形成良好的带动作用。

1.3.2美国

美国国防部高级研究计划署(DARPA)2008年7月发布了碳电子射频应用项目(总资2 200万美元),主要开发超高速和超低能量应用的石墨烯基射频电路,即用石墨烯制造电脑芯片和晶体管。

美国国家科学基金会(NSF)2009年5月发布了石墨烯基材料超电容应用项目,主要研究内容包括:(1)开发石墨烯基电子材料,提高超级电容器性能,使其具有较高的能量和功率密度;(2)表征石墨烯基电子材料的形态、结构和性能特征;(3)加强对石墨烯基超级电容

器中电化学双层和决定其性能因素的基本认识;(4)调查离子液体作为石墨烯基超级电容器电解液的相容性;(5)开发新型超级电容器电池组装工艺和电池测试方法。项目研发经费为63.4万美元,研究周期为2009年7月1日至2012年7月30日,由得州大学奥斯汀分校具体负责研究和实施。

美国俄亥俄州研究商业化资助项目(ORCGP)资助Nanotek Instruments公司约35万美元用于锂离子电池用纳米石墨烯复合电极的商业化生产。纳米石墨烯复合材料具有较大容量(>2000mAhg-1),是石墨实际容量的6~8倍。实验已经证明这种材料300多个充放电循环后,还能够保持其结构的完整性和良好性能。这种复合阳极材料可用于电动车等能源存储应用的锂离子电池,研究周期为2009年4月28日至2011年4月28日。美国结构材料工业公司(SMI)2009年11月宣布,获得NSF的小型企业技术转移项目(STTR)一期资助,用于开发以石墨烯为基质的高灵敏度NOx探测器。其合作方为康奈尔大学、南卡罗来纳大学,分别提供石墨烯薄膜生长技术和气体探测器表征技术。

1.3.3欧盟及成员国

欧盟FP7框架计划2008年1月发布了石墨烯基纳米电子器件项目。该项目为FP7的联合研究项目,主要研究“超越CMOS”(Beyond CMOS)领域的技术,参加机构包括德国AMO有限公司、意大利大学纳米电子研究组(IUNET)、英国剑桥大学半导体物理组(UCAM DPHYS)、

法国原子能机构(CEA)的LETI和法国STMicroelectronicSAS、爱尔兰科克大学(University College Cork)的Tyndal纳米研究所等组成。项目经费为239万欧元,研究周期为2008年1月1日至2010年12月31日。

欧洲研究理事会(ERC)资助了石墨烯物理性能和应用研究项目。项目研究经费为177.5万欧元,研究周期为3年,负责机构为英国曼彻斯特大学物理与天文学院。该项目有三个主要方向:(1)重点研究石墨烯薄膜和独特的一维性能;(2)模拟无质量相对论粒子的石墨烯电荷载体;(3)石墨烯晶体管的应用研究。

欧洲科学基金会(ESF)2008年12月发布了扩大石墨烯研究在科学和创新方面的影响力的基金申请项目,即欧洲石墨烯项目(EuroGRAPHENE),共有19个国家的20个基金资助机构参与该项目的资助。欧洲石墨烯项目是一个4年期的研究计划,需要欧洲范围内广泛而有深度的合作。该项目主要研究领域包括石墨烯物理性能、机械和电子-机械性能、化学修饰,以及寻找设计石墨烯电子特性的新方法和制备以石墨烯为基础的功能应用器件。

德国科学基金会(DFG)于2009年7月宣布开展石墨烯新兴前沿研究项目,项目时间跨度为6年。该项目的目标是提高对石墨烯性能的理解和操控,以建立新型的石墨烯基电子产品。基金资助领域主要包括:石墨烯基电子设备的制备;石墨烯电子、结构、机械、振动等性能表征与操控;石墨烯纳米结构制备和表征及性能操控;石墨烯与衬底材料、栅极材料相互作用的理解和控制;输运研究(如声子和电子传输、量子传输、弹道输运、自旋输运)、新型装置示范(如场效应器件、等离子器件、单电子晶体管)以及石墨烯的理论研究(如石墨烯电子和原子结构、电子声子运输、自旋、石墨烯机械和振动性能、纳米结构、器件模拟)等。

英国工程和自然科学研究委员会(EPSRC)资助了石墨烯基自旋器件模拟项目,项目承担机构为兰卡斯特大学,项目研究时间跨度为2010年1月1日至2012年12月31日,资助额度为4.9万英镑。EPSRC还资助了石墨烯基晶体管传输模拟项目,项目承担机构也为兰卡斯特大学,时间跨度为2007年10月23日至2010年8月22日,资助额度为19.8万英镑。

1.3.4日本

日本学术振兴机构(JST)2007年就开始了对石墨烯硅材料/器件的技术开发项目的资助。该项目的负责机构为日本东北大学。该项目主要是开发“石墨烯硅”材料/工艺技术,并在此基础上开发先进的辅助开关器件(CGOS)和等离子共振赫兹器件(PRGOS)。这项研究将能实现电荷传输无时间、超高速、大规模集成的器件技术。

1.4文献专利情况

(1)与石墨烯相关研究的论文在2005年以后快速增长,说明该领域已经成为世界各国学者重视的热点。

(2)重视石墨烯相关研究的主要国家有美国、中国、日本、德国、英国、法国及西班牙等。美国在该领域的研究从论文数量和机构分布上占有显著的优势,中国在论文数量方面表现不俗。

(3)国际上石墨烯的研究论文主要分布在高分子物理学、材料科学及应用物理学等学科范围,中国发表的与石墨烯相关的论文主要分布在材料科学、物理化学、纳米技术等学科范围。

(4)国际石墨烯研究的热点主要集中在材料的导电性、导热性、石墨烯的制备研究及纳米材料研究等方向,中国主要集中在纳米材料、材料基础及应用研究等方向。

(5)中国与美国、日本等相比,关于石墨烯的研究起步相对较晚,中国近两年来开始进入了研究活跃期。中国发表的相关论文量表现不俗,但论文质量不高,中国发表的论文有

35.97%尚未被引用过。被引用的总体情况较差,只占国际论文被引的4.84%左右。

(6)从高被引论文分析,中国在石墨烯研究领域的影响正在扩大,部分优秀学者的研究成果已经被国际广泛引用,研究优势初露端倪。

(7)各国目前都在积极进行石墨烯的研究和专利布局,如陶氏化学、通用、三星电子株式会社、施乐公司等等国际大牌厂商都在积极推进石墨烯产业的研究,从2004年至今,国际上关于石墨烯的专利申请已经达到了1400余项,主要在石墨烯的制备、能源领域的应用、显示技术方面的应用、石墨烯纳米材料以及石墨烯复合材料等方面。

1.5国内行业先行者

1.5.1中国宝安

宝安旗下子公司贝特瑞拥有中国天然鳞片状石墨主要产地之一的黑龙江鸡西石墨矿,四年前开始进行石墨烯的研究开发。目前已完成石墨烯制备工艺的小试,正在进行中试,并已提交了该产品相关技术的发明专利申请一项,还没有具体的产量时间表。石墨烯的需要主要还是靠下游驱动,从实验到量产不是短期之内可以看到的,但是对其未来发展前景还是非常乐观的。

1.5.2方大碳素

2010年6月公司公告收购成都炭素有限责任公司100%股权,成都炭素现有4000t/a 特种石墨生产线项目。2010 年11 月公司拟与成都市政府签订战略合作投资建设协议书,

在成都·资阳工业发展区设立方大科技产业园,该园区占地1200 亩,总投资金额约为21.2 亿元,总投资额中包含三个公司拟建项目:在该园区内建立特种石墨生产基地项目,子公司成都蓉光炭素股份有限公司建设项目,在该园区建立新型炭材料研发中心项目。

1.5.3新华锦

新华锦集团投入15至20亿元在平度建设一个集石墨高端研发、高科技深加工、产品集中交易和生态友好型原料开采的自主创新战略高地、战略性新兴产业核心产业平台和新能源新材料产业园,形成年产销额过100亿元的石墨新材料和新能源规模化产业。

1.6风险提示

1. 石墨烯目前还处在研发阶段,各国对于这个新兴材料还处于一个专利布局期,尚还没有出现产业化动向,规模化供应和需求均没有形成,在8-10年内无法形成产业化。制备石墨烯的技术工艺不成熟.从概念到量产路还很长。石墨烯在国内市场上从研发到应用的时间需要5-10年,要达到成熟的产业规模时间要更长,行业仍在量产摸索阶段,目前主要的制备方法有微机械剥离法、外延生长法、氧化石墨还原法和气相沉积法;其中氧化石墨还原法由于制备成本相对较低,是目前主要制备方法。从上市公司发布的相关石墨烯的公告中并没有一家公司成功量产石墨,除了科研院校的实验使用外,企业也多数是处于小试或者中试阶段,并没有形成规模性产业发展。还没有达到一致性的品质,而且成品面积都非常小,不能适应工业化应用。

2. 石墨烯没有形成下游的应用和需求,目前最大的应用还是为各大科研院校的实验使

用;下游需求尚还没有形成,大规模产业应用尚需很长的时间。国内从事石墨烯研究的机构主要为各大科研院校及一些石墨产品生产企业,只能小量生产石墨烯样品,并没有规模化生产的能力。在所有石墨烯概念上市公司中,有关石墨烯的数据多数是概念性的东西,并且研发实力相对薄弱。

3.截止2010年,我国的石墨烯技术研发论文不到美国的一半,在顶尖技术应用推广方面,我国难以获得石墨烯技术转让便利。

4.国内相关上市公司主要都是在炒作概念,参与炒作的资金主要是以私募为主。他们对概念的挖掘会比较充分,估计该板块未来还有炒作空间。”

1.7展望

我国石墨矿储量占世界总量的75%,生产量占世界总产量的72%,石墨是我国少有的集中具有国际竞争优势的矿产之一。石墨烯是目前已知导电性能最出色的材料,目前国内石墨烯价格在2000元/克,接近于黄金价格的十倍左右。但高达2000元/克的产品价格和广阔的市场前景更是让各方对石墨烯研究一直没有停止过。难怪业内人士有如此评价,如果说20世纪是硅的世纪,那么,石墨烯则开创了21世纪的新材料纪元,将给世界带来实质性的变化。

石墨烯的制备,特征,性能及应用的研究

内蒙古工业大学化学工程与工艺徐涛010051

摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的碳! 热潮。分析了近1 年来发表在Science、Nature 等期刊上的关于石墨烯的论文, 对石墨烯制备、表征及应用方面的最新进展进行了综述, 并对各种制备技术及表征手段进行了分析评价。

关键字: 石墨烯, 制备, 表征, 应用, 石墨烯氧化石墨烯(GO) 功能化石墨烯传感器

碳是最重要的元素之一,它有着独特的性质,是所有地球生命的基础。纯碳能以截然不同的形式存在,可以是坚硬的钻石,也可以是柔软的石墨。碳材料是一种地球上较普遍而特殊的材料, 它可以形成硬度较大的金刚石, 也可以形成较软的石墨. 近20 年来, 碳纳米材

料一直是科技创新的前沿领域, 1985 年发现的富勒烯[1]和1991 年发现的碳纳米管(CNTs)[2]均引起了巨大的反响, 兴起了研究热潮. 2004 年, Manchester 大学的Geim 小组[3]首次用机械剥离法获得了单层或薄层的新型二维原子晶体——石墨烯. 石墨烯的发现, 充实了碳材料家族,形成了从零维的富勒烯、一维的CNTs、二维的石墨烯到三维的金刚石和石墨的完整体系. 石墨烯是由碳原子以sp2 杂化连接的单原子层构成的, 其基本结构单元为有机材料中最稳定的苯六元环, 其理论厚度仅为0.35 nm, 是目前所发现的最薄的二维材料[3]. 石墨烯是构成其它石墨材料的基本单元, 可以翘曲变成零维的富勒烯, 卷曲形成一维的CNTs[4-5]或者堆垛成三维的石墨(图1). 这种特殊结构蕴含了丰富而奇特的物理现象, 使石墨烯表现出许多优异的物理化学性质, 如石墨烯的强度是已测试材料中最高的, 达130 GPa[6], 是钢的100 多倍; 其载流子迁移率达1.5×104

cm2·V-1·s-1 [7], 是目前已知的具有最高迁移率的锑化铟材料的2 倍, 超过商用硅片迁移率的10 倍, 在特定条件下(如低温骤冷等), 其迁移率甚至可高达2.5×105 石墨烯的热导率可达5×103W·m-1·K-1, 是金刚石的3 倍[. 另外, 石墨烯还具有室温量子霍尔效应(Hall effect)[10]及室温铁磁性[11]等特殊性质. 石墨烯的这些优异性引起科技界新一轮的“碳”研究热潮, 已有一些综述性文章从不同方面对石墨烯的性质进行了报道.,本文仅根据现有的文献报道对石墨烯的制备方法、功能化以及在化学领域中的应用作一综述

历史背景

想象有那么一张单层的网,每一个网格都是一个完美的六边形,每一个绳结都是一个碳原子。这张网只有一个原子那么厚,可以说没有高度、只有长宽,是二维而不是三维的。这就是石墨烯,它是二维的碳,人类已知的最薄材料,一种正为物理学和材料学带来许多新发现的东西。

由于这种材料是从石墨中制取的,而且包含烯类物质的基本特征——碳原子之间的双键,所以称为石墨烯。实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。层与层之间附着得很松散,容易滑动,使得石墨非常软、容易剥落。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。

科学家在20世纪40年代就对类似石墨烯的结构进行过理论研究,但在此后很长时间里,制取单层石墨烯的努力一直没有成功,有人认为这样的二维材料是不可能在常温下稳定存在的。2004年10月,发表在美国《科学》杂志上的一篇论文推翻了这种认知。在英国曼彻斯特大学工作的安德烈·海姆和康斯坦丁·诺沃肖洛夫,用普通胶带完成了他们的“魔术”。

他们用胶带从石墨上粘下薄片,这样的薄片仍然包含许多层石墨烯。但反复粘上十到二十次之后,薄片就变得越来越薄,最终产生一些单层石墨烯。这个看上去非常简单、一点儿也不高科技的方法,并不是他们的首创。在此之前就有人试过,但没能辨识出单层石墨烯。2004年,英国曼彻斯特大学的安德烈·K·海姆(Andre K. Geim)等制备出了石墨烯。海姆和他的同事偶然中发现了一种简单易行的新途径。他们强行将石墨分离成较小的碎片,从碎片中剥离出较薄的石墨薄片,然后用一种特殊的塑料胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二。不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成——他们制得了石墨烯。

石墨烯的问世引起了全世界的研究热潮。它不仅是已知材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快。石墨烯在原子尺度上结构非常特殊,必须用相对论量子物理学(relativistic quantum physics)才能描绘。

结构性质

石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。石墨烯中各碳原子之间的连接非常柔韧,

当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。

这种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。

石墨烯最大的特性是其中电子的运动速度达到了光速的

1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”(electric charge carrier),的性质和相对论性的中微子非常相似。

研究进展

关于石墨烯的研究最早始于20 世纪70 年代,Clar 等[ 2, 3] 利用化学方法合成一系列具有大共轭体系的化合物, 即石墨烯片。此后, Schmidt 等[ 4, 5] 科学家对其方法进行改进, 合成了许多含不同边缘修饰基团的石墨烯衍生物, 但这种方法不能得到较大平面结构的石墨烯2004 年, Geim 等[ 1] 以石墨为原料, 通过微机械力剥离法得到一系列叫作二维原子晶体( two2dimensional atomic crystals) 的新材料) ) )/ 石墨烯( graphene )0。/ 石墨烯0又名/ 单层石墨片0, 是指一层密集的、包裹在蜂巢晶体点阵上的碳原子, 碳原子排列成

二维结构, 与石墨的单原子层类似( 图1) 。Geim等[ 6]利用纳米尺寸的金制/ 鹰架0, 制造出悬挂于其上的

单层石墨烯薄膜, 发现悬挂的石墨烯薄膜并非/ 二维扁平结构0, 而是具有/ 微波状的单层结构0, 并将石墨烯单层结构的稳定性归结于其在/ 纳米尺度上的微观扭曲0。

石墨烯的理论比表面积高达2 600m2Pg[ 7] , 具有突出的导热性能( 3 000W#m- 1#K- 1 ) 和力学性能( 1 060GPa) [ 8] , 以及室温下较高的电子迁移率( 15 000cm2#V- 1#s- 1 ) [ 9] 。此外, 它的特殊结构, 使其具有半整数的量子霍尔效应、永不消失的电导率等一系列性质, 因而备受关注。

石墨烯的表征

单层石墨烯虽然已经成功制得, 但目前其表征手段还十分有限, 成为制约石墨烯研究的瓶颈之一。由于单层石墨烯理论厚度只有0. 335nm, 在扫描电镜中很难观察到。原子力显微镜是确定石墨烯结构的最直接办法。原子力显微镜可以表征单层石墨烯, 但也存在缺点: 且在表征过程中容易损坏样品; 此外, 由于C 键之间的相互作用, 表征误差达0. 5nm甚至更大, 这远大于单层石墨烯的厚度, 使得表征精度大大降低[18] 。在Raman 光谱中, 石墨烯在1580cm 处的吸收峰强度较低, 而在2700cm 处的吸收峰强度较高, 并且不同层数的石墨烯在2700cm 处的吸收峰位置略有移动。这可能是由于石墨

烯的电子结构发生变化, 从而引起双共振效应的变化[19] 。Ra man 光谱的形状、宽度和位置与石墨烯的层数有关, 这为测量石墨烯层数提供了一个高效率、无破坏的表征手段。但是, 石墨烯拉曼光谱信号弱、难以对其精细结构进行表征。光学显微镜的利用为石墨烯的表征提供了一个快速简便的手段, 使石墨烯得到进一步精确表征成为可能。Cheng等[20] 在反射率计算的基础上, 引入色度学空间概念, 提出了快速、准确、无损表征石墨烯层数的总色差方法。解释了只有在特定基底( Si )底上涂72nm 厚Al2O3 膜) 上石墨烯可见的原因, 提出并实验证实了更利于石墨烯光学表征的基底和光源,提高了光学表征的精度, 为石墨烯层数的快速准确表征、控制制备及物性研究奠定了基础。

石墨烯的制备方法

石墨烯的制备大体可分为物理方法和化学方法。其中, 化学方法研究得较早, 主要是以苯环或其他芳香体系为核, 通过偶联反应使苯环上6 个碳均被取代, 然后相邻取代基之间脱氢形成新的芳香环,如此进行多步反应使芳香体系变大, 但该方法不能合成具有较大平面结构的石墨烯; 物理方法主要以石墨为原料来合成, 不仅原料便宜易得, 而且可得到较大平面结构的石墨烯, 因而目前关于此方面的研究比较多, 国内也有相关综述[ 14, 15] 。3. 1 化学合成) ) ) / 自下而上0合成法Clar 等开创了多环芳烃( PAH) 合成和性能表征的先河, 但产率较低, 此后Halleux 等[ 4] 、Schmidt等[ 5] 、M llen 等[ 16,

对石墨烯产业化现状和未来趋势的认识

对石墨烯产业化现状和未来趋势的认识 ■ 文/姚 磊 北京碳世纪科技有限公司 近几年,石墨烯学术和产业界的许多专家学者已经针对石墨烯卓越的特性及广阔的应用前景,进行了细致、精彩的研究和解读。在此,笔者仅就北京碳世纪科技有限公司(以下简称“碳世纪”)在石墨烯产业化进程中遇到的机会和挑战进行分析。碳世纪主要采用化学法制备石墨烯,笔者本文所谈对石墨烯的认识和理解,也是基于化学法制备的石墨烯而言。另外,笔者在此声明,碳世纪有其特殊性,所遇到的问题不一定具备普遍性。 一、对石墨烯产业化的认识 1.现阶段石墨烯产业化需要的人才 自2004年石墨烯被发现到现在,科学界和产业界对这一新材料的研究已有近10年时间,但石墨烯产业真正的爆发是在近几年,特别是2010年石墨烯发明者获得诺贝尔奖以后。目前,在石墨烯领域还有大量相关工作需要突破,但同时也有大量应用研究成果随之而出,初步具备了产业化的可能性。 现阶段,在技术研发方面需要一 批具备“科学家的头脑、工程师的双 手”、既对石墨烯的性质有着深刻认 识,又对下游应用产品有着良好感觉 的人来完成开创期最关键、最艰难的 几步。 与此同时,产业还需要一些非技 术人员配合技术团队工作。目前,石墨 烯企业还没有发展到靠优厚的薪资来 吸引高素质管理人才加盟的程度。此 时,石墨烯行业的非技术团队更需要 一群乐观、对未来充满希望、不安于现 状、愿意为明天赌一把的人来支撑。 2.石墨烯的界定问题 石墨烯毕竟是微观世界中的纳 米材料。目前,业界还没有一个统一的 标准来界定什么是“石墨烯”。而且,估 计在很长一段时期内这样的标准也难 以出台。科研领域,讲究的是严谨和准 确;产业领域,讲究的是效率和结果。 如何抚平科学和技术之间的鸿 沟?现阶段,不必过多争论什么是石 墨烯。当下的重点工作是在保证能大 规模制备出高质量石墨烯的前提下, 将精力更多地向应用开发倾斜。石墨 烯具备能够很好促进其他材料提升性 能的纳米结构,可以在不破坏材料原 有基础性能的前提下,极大程度提升 该材料某些特殊性能。这一过程,主要 是通过对石墨烯和其他材料复合的方 式及对石墨烯片径的控制来实现。 “要做有用的石墨烯,而不是纯粹 的石墨烯。”化学法制备的石墨烯具备 上述特质。 3.石墨烯产业化过程中遇到的问题 目前,碳世纪已经有3款石墨烯 应用产品走出了实验室,开始进入示 范生产阶段。这3款产品分别是石墨 烯改性超级电容器用储能活性碳、石 墨烯改性高密度聚乙烯(H D P E),以 及一款目前还属保密阶段的产品。现 仅就石墨烯改性超级电容器用活性碳 为例,谈谈碳世纪对石墨烯应用的认 识和在产业化过程中遇到的问题。 活性炭是超级电容器电级材料的 主要组成部分。目前,应用在储能方面 新材料产业NO.11 201429

石墨行业现状

石墨行业现状 石墨是碳元素的结晶矿物之一,具有耐高、抗腐蚀、抗热震、强度大、韧性好、自润滑强度高、导热、导电、可塑性、涂敷性性能等特有的物理化学性能,广泛应用于冶金、机械、电子、化工、轻工、军工、国防、航天及耐火材料等行业,是当今高新技术发展必不可少的非金属材料。石墨分为人造石墨和天然石墨,其中天然石墨根据结晶形态不同的石墨矿物,具有不同的工业价值和用途,将天然石墨分为三类:致密结晶状石墨、晶质(鳞片)石墨和隐晶质(土状)石墨。 一、石墨的特性及用途 1、石墨特殊性质 1)耐高温性:石墨熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 2)导电、导热性:石墨导电性比一般非金属矿高一百倍。导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。 3)润滑性:石墨润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。 4)化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。 5)可塑性:石墨的韧性好,可碾成很薄的薄片。 6)抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。 7)高传导透明性:碳原子构成的单层片状结构二维晶体--石墨烯,导电导热透明,无与伦比。 2、石墨的主要用途 1)、耐火材料:石墨及其制品具有耐高温、高强度的性质,冶金工业上主要用来制造石墨坩埚,炼钢上常用石墨作钢锭之保护剂,冶金炉的内衬。

石墨烯调研报告

石墨烯报告 一、石墨烯定义、性质 (一)石墨烯定义 “中国石墨烯产业技术创新战略联盟”发布的1号标准文件中,对石墨烯的定义如下:石墨烯是一种二维碳材料,是单层石墨烯、双层石墨烯、和少层石墨烯的统称。 单层石墨烯是指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯是指由两层以苯环结构周期性紧密堆积的碳原子层以不同堆垛方式(包括AB堆垛,AA堆垛,AA堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯是指由3-10层以苯环结构周期性紧密堆积的碳原子层以不同堆垛方式(包括ABC堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 图1 石墨烯的分类 石墨烯发展历史。石墨烯作为当下最热门的新材料之一,其经历了如下的发展历程: 图2 石墨烯的发展历程 (二)石墨烯性质

石墨烯的出现,有望在构造材料、电子器件功能性材料等诸多领域引发材料革命。由于其具有许多特殊性质,有日本的研究人员惊呼石墨烯是“神仙创造” 的材料。许多学者称石墨烯为“改变21世纪的材料”,并预测“21世纪将是碳(C)的时代”。 相比于现有材料,石墨烯拥有众多“史上最强”性能。 超强导电性:由于石墨烯拥有完美的“二维”平面晶格结构,因此电子在晶格中移动时,不会因为晶格缺陷或引入外来原子而发生散射。另外,由于石墨烯中碳原子之间作用力很强,使得运动中的电子受到的干扰极小,即使在周围碳原子发生碰撞时也是如此,因此电子具有非常快的运动速度(能够达到光速1/300),远远超过了电子在其他金属导体或半导体中的运动速度,正因如此,石墨烯拥有超强的导电性能。 超高强度:石墨烯的硬度高于金刚石,是目前为止人类已知的硬度最高的物质。由于高的硬度,石墨烯拥有很高的强度,其强度比世界上最好的钢铁还要高上100倍。而同时它又拥有很好的韧性,且可以弯曲。 导热性能:石墨烯的导热性能优于碳纳米管。普通碳纳米管的导热系数可3500w/m·k,各种金属中导热系数相对较高的有银、金、铜、铝。而单层石墨烯的导热系数可达5300w/m·k。优异的导热性能使得石墨烯有望作为未来超大规模纳米集成电路的散热材料。 超大比表面积:由于单层石墨烯只有一个碳原子厚(0.335nm),所以石墨烯拥有超大的比表面积。在理想情况下,单层石墨烯的比表面积能够达2630m2/g,而目前普通的活性炭的比表面积为1500 m2/g,石墨烯这种比表面积超大的特性使它在储能领域的应用潜力巨大。 图3 石墨烯史上最强性能 除此之外,石墨烯还有众多“独特”的特点: 图4 石墨烯独特性质

华为石墨产业全球及中国石墨矿资源分布概况最详细

【石墨产业】全球及中国石墨矿资源分布概况(最新、最全、最详细) 一、全球石墨矿资源概况 1、全球石墨资源储量 全球石墨资源分布既广泛又相对集中,据USGS资料显示,2013年全球石墨总储量约1.3亿吨矿物量。巴西、中国、印度和墨西哥的石墨储量合计占全球总储量的92.77%。中国石墨基础储量约占世界的33%,仅次于巴西(约占世界的38%)。巴西新发现的Almenara石墨矿为罕见的超大型石墨矿,使其石墨总储量由之前的36万吨增加到近5800万吨,位居世界首位。印度石墨矿储量为1100万吨,墨西哥石墨储量为310万吨。 2015年世界主要石墨国家基础储量对比图 2、国外石墨矿床类型 (1)石墨呈浸染鳞片状分布在火山岩、硅质沉积岩中,此类矿床石墨鳞片大,矿石质量高,有著名的马达加斯加大鳞片晶质石墨矿; (2)含石墨矿石呈脉状充填在断裂裂隙和洞穴中,此类矿床石墨品位高,典型的矿床是斯里兰卡的脉状石墨矿; (3)由中酸、酸性花岗岩侵入大理岩中形成热液交代接触变质矿床,此类矿床矿石质量较好,在俄罗斯和朝鲜等国家有分布; (4)煤或富碳沉积物中的变质石墨矿床矿石中的石墨多为隐晶质,墨西哥、印度及澳大利亚的大部分石墨矿床均属此类型。 3、各国石墨资源概况 巴西 巴西石墨矿分布在MinasGerais、Ceara和Bahia地区,PedraAzul地区拥有巴西最好的鳞片石墨矿,石墨矿石储量已探明2.5亿吨,品位20-25%。新发现的奥门纳拉石墨矿石资源量近5700万吨,碳含量4-10%。

印度印度石墨矿床多为煤或富碳沉积物的变质石墨矿床,主要分布在奥瑞萨邦和拉贾斯坦邦,奥瑞萨邦的石墨矿床赋存于寒武纪地层中,有三个石墨矿带,即:博兰吉尔-桑巴尔普尔矿带、普尔巴尼-长拉汉迪矿带和登卡纳尔矿带,其中最大的矿床延伸达6.4-11.3公里,矿体厚120米。 墨西哥 墨西哥已发现的石墨矿床绝大多数为隐晶质石墨矿床。其石墨矿床主要分布在格雷罗州、索诺拉州和伊达尔戈州。世界上超大型的高质量的隐晶质石墨矿床就位于索诺拉州。该矿床矿体赋存在含煤的深灰红色石英岩之间,矿体厚7.3米,矿体的平均品位非常高,矿石一般品位为80%,最高品位可达95%。 马达加斯加马达加斯加有着全球优质的大鳞片石墨矿床,主要分布在马达加斯加岛东部沿海地区。该类石墨由高碳地层经区域变质作用而形成,呈浸染状赋存于火山岩、硅质沉积岩中。矿体产于云母片岩和云母片麻岩中。矿石品位一般为3-11%,少数矿脉的品位可高达30-40%。马达加斯加的石墨不仅片度大,粗者可达4毫米,甚至超过1厘米,而且其石墨片薄,厚度均匀,质地纯净柔软,工艺性能良好。 斯里兰卡斯里兰卡的西部和西南部分布多个优质的晶质石墨矿床,矿体多呈脉状分布于太古界片麻岩中,有的呈透镜状和囊状充填在变质石灰岩和结晶页岩的洞穴中,洞穴型充填的石墨矿体长达20多米,宽3-6米。矿石品位较高,一般为75%,最高可达98%。斯里兰卡的脉状石墨成因复杂,多数学者认为是由古老高碳地层经接触变质而成,后再经运移充填在裂隙或洞穴中。 朝鲜朝鲜盛产细晶石墨和隐晶石墨,矿床主要分布于慈江道和咸镜道。咸镜道内的东方石墨矿是朝鲜最大的细晶质石墨矿床。石墨呈细鳞片装或致

石墨烯技术产业发展现状与趋势

摘要:2013年1月,石墨烯入选欧盟两项“未来和新兴技术旗舰项目”之一(另一项为“人类大脑工程”),欧盟委员会计划在未来十年投入10亿欧元开展石墨烯应用技术研发与产业化,再一次激起了各界对这一革命性材料的关注。 关键字:石墨烯;态势;趋势;技术转移;石墨烯;态势;趋势;技术转移;石墨烯;技术转化;产业化 石墨烯(Graphene)又称单层墨,是一种新型的二维纳米材料,也是目前发现的硬度最高、韧性最强的纳米材料。因其特殊纳米结构和优异的物理化学性能,石墨烯在电子学、光学、磁学、生物医学、催化、储能和传感器等领域应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。英国两位科学家因发现从石墨中有效分离石墨烯的方法而获得2010年诺贝尔奖,引起了科学界和产业界的高度关注,石墨烯相关专利开始呈现爆发式增长(2010年353件,2012年达1829件)。世界各国纷纷将石墨烯及其应用技术研发作为长期战略予以重点关注,美国、欧盟各国和日本等国家相继开展了大量石墨烯研发计划和项目。总体看来,石墨烯技术开始进入快速成长期,并迅速向技术成熟期跨越。全球石墨烯技术研发布局竞争日趋激烈,各国的技术优势正在逐步形成,但总体竞争格局还未完全形成。具体发展态势如下: 态势一:制备与改性的突破为产业化提供了技术支撑 一方面,石墨烯制备技术取得突破。石墨烯制备技术与设备是石墨烯生产的基础。一直以来,石墨烯大规模制备技术是阻碍其产业化的最重要因素。近来,石墨烯制备技术取得了若干突破,目前已形成自上而下(Top-Down)和自下而上(Bottom-Up)两种途径,开发出了从简易低成本制造到大面积量产工艺的多种方法,包括:机械剥离、氧化还原法、化学气象沉积(CVD)、外延生长、有机合成、液相剥离等。这些方法各有优缺点,需要根据不同的需求进行选择(表1)。其中,氧化还原法因成本低且易实现,有望成为最具发展前景的制备方法之一。同时,各种方法

石墨烯量子点调研报告

石墨烯调研报告(石墨烯量子点) 零维的石墨烯量子点(grapheme quantum dots, GQDs),由于其尺寸在10nm以下,同二维的石墨烯纳米片和一维的石墨烯纳米带相比,表现出更强的量子限域效应和边界效应,因此,在许多领域如太阳能光电器件,生物医药,发光二极管和传感器等有着更加诱人的应用前景。 GQDs的制备 GQDs具有特殊的结构和独特的光学性质,即有量子点的光学性质又有氧化石墨烯特殊的结构特征。GQDs的粒径大多在10 nm左右,厚度只有0.5到1.0 nm,表面含有羟基、羰基、羧基基团,使得其具有良好的水溶性。 GQDs的制备方法有自上而下法(top-down)与自下而上法(bottom-up)两种。top-down 法指将大片的石墨烯母体氧化切割成尺寸较小的石墨烯纳米片,经进一步剪切成GODs,主要有水热法、电化学法和化学剥离碳纤维法。 水热法是制备GQDs最为常见的一种方法,先将氧化石墨烯在氮气保护下热还原为GNSs,接着将GNSs置于混酸(混酸体积比VH2SO4/VHNO3 =1:3)中超声氧化,再将氧化的GNSs置于高压反应釜中200℃热切割。反应机理如图3所示,Pan等采用该方法化学切割石墨烯制备GQDs,其径主要分布在5-14 nm,并发现量子点在紫外区有较强光学吸收,吸收峰尾部扩展到可见区。光致发光光谱一般是宽峰并且与激发波长有关,当激发波长从300到407 nm变化,发射峰向长波方向移动,激发波长为60nm时,量子点发出明亮的蓝色光,此时发射峰最强。 图3. 水热法制备GQDs反应机理 Fig. 3 mechanism for the preparation of GQDs by hydrothermal method Jin等采用两步法,先用水热法制备出GQDs,再将聚乙二醇二胺修饰到GQDs 上。该法制备的胺功能化的石墨烯量子点可通过功能化物的迁移效应有效地调节石墨烯量子点的光致发光性能。

关于石墨资源开发利用及产业发展的调研报告

关于石墨资源开发利用及产业发展的调研报告 发布日期:2009-07-01来源:平度市国土资源局 为准确把握平度市石墨资源开发利用状况,制定正确的产业政策,有效保护、合理利用石墨资源,平度市国土资源局对我市石墨资源开发利用情况进行了全面调研,提出了今后工作思路,现将有关情况报告如下: 一、平度市石墨资源情况及资源地位 平度及莱西石墨矿田是我国石墨资源三大主要产地之一。据不完全统计,近年来,平度石墨年产量折合纯碳约15万吨左右,约占全国石墨总产量的1/3。从资源储量看,我市累计探明储量(矿物量)1381.5万吨,截止2006年末保有储量(矿物量)701万吨,预计远景资源储量4600万吨。石墨开采保证程度较高。 在石墨品质方面,平度石墨具有其它产地不可比拟的优势。我市石墨矿石品位一般在2.5%—3.5%,个别矿山达到5%—8%,以结晶质鳞片石墨矿物为主,结晶程度高,鳞片粒度大,质量好,在采取精、深加工技术生产高品质、高赋加值产品方面,平度市石墨资源质量优势明显。 石墨作为非金属矿物,兼有金属矿物的性状,尤其在耐高温、耐酸、耐碱、润滑、导电、柔韧性等方面具有独特的理化性质,广泛应用于钢铁冶炼、航空、航天等多个领域。特别是在近年来蓬勃兴起的电子工业、汽车工业领域占有其他矿产品不可替代的地位。历来被材料行业看作是不可或缺的战略物资。 石墨是平度市不可多得的珍贵资源,全面把握,正确认识平度石墨的特殊地位和目前的危机形势,研究制定有效保护,合理利用的方法措施,非常重要。 二、平度市石墨资源开发利用历史简述 平度市石墨资源开发利用经历了从粗放、零星、低水平到相对科学、集约、深加工、高产值的曲折过程。自上世纪70年代末平度市石墨采、选业产生至今,矿山采选工艺技术,生产规模,产品档次,经营方式发生了质的飞跃。由早期的遍地开花、人工采掘、单体石墨小槽式水料生产,转化为现在比较规范的全机械化采掘、运输,中、高碳石墨流水生产作业,产品向深加工,精加工档次转变。出现了黑龙石墨公司、高尔富石墨公司为代表的集团化龙头生产企业和中外合资企业。 到2007年初,各类石墨采选企业40家,其中独立选矿加工企业13家,采选一体企业27家,据不完全统计2007年生产各类石墨产品约15万吨,实现销售收入约2.5亿元。生产销售中高碳及深加工企业28家;有5家企业年销售收入超过1000万元,23家企业销售收入超过500万元。固定资产超过1000万元的矿山4家,500万元以上的矿山11家。 石墨经济迅速发展的同时,也出现了一系列急需解决的问题,直接阻碍了石墨经济的进一步发展。主要表现在:一是矿山布局混乱,大矿小开、粗放式管理、没有科学的生产规划。小规模粗放经营,随意选择排尾场地,不仅大幅增加了采选成本,而且因为相互争矿,无序占压耕地,引发了许多社会问题。随着采深的增加,尾沙库的增高扩大,该类问题更显突出;二是初级选矿技术粗糙,资源浪费严重。矿山在没有取得足够的生产许可时限以前,要获取最大的利益回报,不可能靠增加投入、改善选矿技术水平来提高选矿回收率、增加企业收益,目前普遍存在的靠增加采矿量增加产量的现象也就成为必然。其结果是增加了企业的石墨产量,提高了企业的经济收益,但同时降低了石墨的回收率,大量石墨资源鳞片进入尾矿,

2018年石墨烯产业发展现状分析报告

2018年石墨烯产业发展现状分析报告

目录 一 产业概况 (一)产业规模 (二)产业链分析 1. 产业链上游 2. 产业链中游 3. 产业链下游 (三)石墨烯产业区域分布 1. 石墨烯产业全球分布 2. 我国石墨烯产业区域分布 (四)国内外重点企业动态 二 产业技术进展 (一)国外技术进展 (二)国内技术进展 三 产业发展问题及对策建议 (一)石墨烯产业发展存在的问题 (二)政策建议 图表目录 表1 石墨烯制备方法 表2 石墨烯应用产品及相关企业 表3 我国石墨烯主要产区企业分布 表4 国内主要石墨烯企业动态 表5 各国石墨烯技术动态 表6 我国石墨烯技术动态 图1 2011-2017年我国石墨烯企业增长情况 图2 石墨烯技术专利申请数量的年度分析 图3 我国受理的石墨烯专利公开数量年度变化趋势图4 全球石墨烯专利受理地区及机构分析 图5 我国新注册石墨烯企业地区分布

摘 要:一石墨烯作为最受关注的新材料,2017年产业化进程不断加快,但受制于制备技术工艺不成熟二应用市场缺少实质性产 品,石墨烯突破产业化瓶颈尚需时日三与此同时,我国石墨 烯产业在发展过程中逐渐显现出同质化发展的苗头三未来, 需要进一步优化石墨烯产业市场环境,加强政策支撑二服务 支撑二产业支撑,提高石墨烯市场集中度和产业竞争力,以 推动石墨烯产业持续健康发展三 一 产业概况 总体来看,2017年石墨烯产业延续了近几年火热的势头,依然是社会关注度最高的新材料,产业规模不断扩大呈爆发式增长势头,技术专利数量快速增长,正在接近实现产业化三但是,从产业生命周期的角度看,石墨烯产业仍处在导入期:大量企业进入二中小企业为主二中上游产业发展速度相对较快二产业下游缺乏具有实质性应用产品,石墨烯产业化道路任重而道远三

石墨烯产业发展现状分析及未来发展建议

石墨烯产业发展现状分析及未来发展建议 一、石墨烯的发展现状 石墨烯是一种具有优异的力学、热学和电学性能的新型碳材料。石墨烯材料的研发涉及国家高新技术材料的产业基础,产业关联涉及新材料、能源、环境、航空航天、国防等领域,对国家的发展起着重要作用,因此,各国政府积极支持石墨烯研发:欧洲联盟2013年启动10亿欧元石墨烯旗舰计划;韩国和英国分别投入3.5亿美元、5000万英镑进行商业化计划;中国已将石墨烯写进《新材料产业“十三五”发展规化》中。 济宁利特纳米技术有限责任公司生产的石墨烯采用改良的HUMMERS法制备,产品测试结果如下: 厚度:0.7-4nm,粒径0.2-50μm,单层率≥99%,纯度≥99%,电导率≥200S/m,比表面积为200-1000m2/g 石墨烯原材料的规模化制备是构筑石墨烯产业链的基础,对开发下游产品有着根本性的作用,对石墨烯的产业化发展起着承上启下的作用。石墨烯行业近两年呈井喷式发展态势,企业和产品已经雨后春笋般大量出现。其中涉足石墨烯下游应用的企业逐渐增多,包括电子领域的高性能芯片、LED、柔性显示屏;能源领域的静电喷漆系统、高性能电池、超级电容器、太阳能电池;航空航天、海洋领域的防护涂料、复合材料、电磁屏蔽材料、隐型材料;环境领域的污水处理、海水淡化、大气污染治理;高强度橡胶、塑料,医药领域的药物输送、临床检测等。 截至2012年石墨烯获得诺贝尔物理学奖后已有2年时间,石墨烯规模化制备的技术瓶颈已逐渐突破,限制石墨烯行业发展的不再是石墨烯的规模性制备,而是如何让制备的石墨烯满足不同应用领域的需求,如何使石墨烯的高性能如高导电性、高导热性、高透光性在应用领域充分发挥。这是目前从事石墨烯材料的研究机构和企业共同面临一个关键性技术问题,同时也是石墨烯行业未来2-3年内需要突破的关键性瓶颈。 目前,国内各石墨烯相关企业纷纷在自身技术优势的基础上,开展石墨烯的下游应用,涉及的领域主要集中在锂离子电池、超级电容器、柔性显示屏、防护涂料、污水处理等几个方面。在这些应用领域中,水污染处理、功能性涂料、锂离子电池三方面的研究最多,也是目前石墨烯应用中较为成熟的。 (一)水污染处理 中国600多个城市都不同程度面临着水源地突发污染事件的威胁,存在水源地安全隐患。近期不断发生的重金属污染突发事件,如2005年珠江支流北江镉污染事故、2006年湖南岳阳砷污染事件、2010年福建紫金矿业重大污染事件、2011年匈牙利铝厂毒泥浆对多瑙

2021石墨烯行业研究分析报告

2021年石墨烯行业研究 分析报告

目录 1.石墨烯行业现状 (4) 1.1石墨烯行业定义及产业链分析 (4) 1.2石墨烯市场规模分析 (5) 2.石墨烯行业前景趋势 (6) 2.1石墨烯的应用领域十分广泛 (6) 2.2行业进入快速发展期 (6) 2.3产业集群逐步扩大 (7) 2.4用户体验提升成为趋势 (8) 2.5行业协同整合成为趋势 (8) 3.石墨烯行业存在的问题 (8) 3.1技术问题 (8) 3.2市场问题 (9) 3.3成本问题 (9) 3.4关键技术有待突破 (9) 3.5应用市场有待拓展 (10) 3.6标准体系有待完善 (10) 3.7产业结构调整进展缓慢 (11) 3.8供给不足,产业化程度较低 (11) 4.石墨烯行业政策环境分析 (13) 4.1石墨烯行业政策环境分析 (13)

4.2石墨烯行业经济环境分析 (13) 4.3石墨烯行业社会环境分析 (13) 4.4石墨烯行业技术环境分析 (14) 5.石墨烯行业竞争分析 (15) 5.1石墨烯行业竞争分析 (15) 5.1.1对上游议价能力分析 (15) 5.1.2对下游议价能力分析 (15) 5.1.3潜在进入者分析 (16) 5.1.4替代品或替代服务分析 (16) 5.2中国石墨烯行业品牌竞争格局分析 (17) 5.3中国石墨烯行业竞争强度分析 (17) 6.石墨烯产业投资分析 (18) 6.1中国石墨烯技术投资趋势分析 (18) 6.2中国石墨烯行业投资风险 (18) 6.3中国石墨烯行业投资收益 (19)

1.石墨烯行业现状 1.1石墨烯行业定义及产业链分析 石墨烯行业是指从事石墨烯相关性质的生产、服务的单位或个体的组织结构体系的总称。深刻认知石墨烯行业定义,对预测并引导石墨烯行业前景,指导行业投资方向至关重要。石墨烯具有非常好的导热性、电导性、透光性,而且具有高强度、超轻薄、超大比表面积等特性,广泛应用于锂离子电池电极材料、太阳能电池电极材料、薄膜晶体管制备、传感器、半导体器件、复合材料制备、透明显示触摸屏、透明电极等方面。并且在政策的扶持鼓励下,我国石墨烯产业近年迎来大发展,被业界普遍看好其发展,国内企业也越来越重视对石墨烯的研究和投资。 我国石墨烯行业在经过短暂的结构调整后,淘汰掉落后产能、筛选掉不合格企业,并且随着居民消费观念的转变和消费需求的

石墨烯的发展概况

2015年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:复合材料专题报告学生所在院(系):航天学院 学生所在学科:工程力学 学生姓名:刘猛雄 学号:15S018001 学生类别:学术型 考核结果阅卷人

1 石墨烯的制备 (3) 1.1 试剂 (3) 1.2 仪器设备 (3) 1.3 样品制备 (4) 2 石墨烯表征 (4) 2.1 石墨烯表征手段 (4) 2.2 石墨烯热学性能及表征 (6) 2.2.1 石墨烯导热机制 (6) 2.2.2石墨烯热导率的理论预测与数值模拟 (6) 2.2.3 石墨烯导热性能的实验测定 (7) 3 石墨烯力学性能研究 (9) 3.1石墨烯的不平整性和稳定性 (10) 3.2 石墨烯的杨氏模量、强度等基本力学性能参数的预测 (11) 3.3石墨烯力学性能的温度相关性和应变率相关性 (12) 3.4 原子尺度缺陷和掺杂等对石墨烯力学性能的影响 (13)

石墨烯的材料与力学性能分析石墨烯以其优异的性能和独特的二维结构成为材料领域研究热点,石墨烯是一种由单层碳原子紧密堆积成二维蜂窝状晶格结构的碳质新材料。2004年Geim等用微机械剥离的方法成功地将石墨层片剥离, 观察到单层石墨层片, 这种单独存在的二维有序碳被科学家们称为石墨烯。2004 年英国科学家首次制备出了由碳原子以sp2杂化连接的单原子层构成的新型二维原子晶体—石墨烯,其厚度只有0.3354 nm,是目前世界上发现最薄的材料。石墨烯具有特殊的单原子层结构和新奇的物理性质:强度达130GPa、热导率约5000 J/(m2K2s)、禁带宽度乎为零、载流子迁移率达到23105 cm2/(V2s)、高透明度(约97.7%)、比表面积理论计算值为2630 m2/g,石墨烯的杨氏模量(1100GPa)和断裂强度(125GPa)与碳纳米管相当,它还具有分数量子霍尔效应、量子霍尔铁磁性和零载流子浓度极限下的最小量子电导率等一系列性质。在过去几年中,石墨烯已经成为了材料科学领域的一个研究热点。为了更好地利用石墨烯的这些特性,研究者采用了多种方法制备石墨烯。随着低成本可化学修饰石墨烯的出现,人们可以更好地利用其特性制备出不同功能的石墨烯复合材料。 1 石墨烯的制备 石墨烯的制备从最早的机械剥离法开始逐渐发展出多种制备方法,如:晶体外延生长法、化学气相沉积法、液相直接剥离法以及高温脱氧和化学还原法等。我国科研工作者较早开展了石墨烯制备的研究工作。化学气相沉积法是一种制备大面积石墨烯的常用方法。目前大多使用烃类气体(如CH4、C2H2、C2H4等)作为前驱体提供碳源,也可以利用固体碳聚体提供碳源,如Sun等利用化学气相沉积法将聚合物薄膜沉积在金属催化剂基体上,制备出高质量层数可控的石墨烯。与化学气相沉积法相比,等离子体增强化学气相沉积法可在更低的沉积温度和更短的反应时间内制备出单层石墨烯。此外晶体外延生长法通过加热单晶6H-SiC 脱除Si,从而得到在SiC表面外延生长的石墨烯。但是SiC晶体表面在高温过程中会发生重构而使得表面结构较为复杂,因此很难获得大面积、厚度均一的石墨烯。而溶剂热法因高温高压封闭体系下可制备高质量石墨烯的特点也越来越受研究人员的关注。相比于其他方法,通过有机合成法可以制备无缺陷且具有确定结构的石墨烯纳米带。 1.1 试剂 细鳞片石墨(青岛申墅石墨制品厂,含碳量90%-99.9%,过200 目筛),高锰酸钾(KMnO4,纯度≥99.5%),浓硫酸(H2SO4, 纯度95.0%-98.0%),过氧化氢(H2O2, 纯度≥30%), 浓盐酸(HCl, 纯度36.0%-38.0%)均购自成都市科龙化工试剂厂;氢氧化钠(NaOH, 纯度≥96%)购自天津市致远化学试剂有限公司;水合肼(N2H42H2O, 纯度≥80%)购自成都联合化工试剂研究所. 实验用水为超纯水(>10 MΩ2cm). 1.2 仪器设备 恒温水浴锅(DF-101型,河南予华仪器有限公司), 电子天平(JT2003型,余姚市金诺天平仪器有限公司),真空泵(SHZ-D(Ⅲ)型,巩义市瑞德仪器设备有限公司),超声波清洗器(KQ5200DE型, 昆山市超声仪器有限公司),离心机(CF16RX型, 日本日立公司),数字式pH计(PHS-2C型,上海日岛科学仪器有限公司),超纯水系统(UPT-II-10T型,成都超纯科技有限公司)。

关于石墨烯电池的调研报告范文

关于石墨烯电池的调研报告 0引言 《世界报》的一则关于西班牙Graphenano 公司同西班牙科尔瓦多大学合作研究出首例石墨烯聚合材料电池的消息,引起了世界各地的转发与评论,该消息称石墨烯聚合材料电池能够提给电动车1000公里的续航能力,而其充电时间不到8分钟。为调查此消息的真实性与石墨烯聚合材料电池的可行性,于是检索、收集了大量的资料,并总结做出了自己的调查结果。 1石墨烯简介 石墨烯(Graphene )是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二維材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆和康斯坦丁?诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因「在二维石墨烯材料的开创性实验」为由,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达K m W ?/5300,高于碳纳米管和金刚石,常温下其电子迁移率超过s V cm ?/215000,又比纳米碳管或硅晶体高,而电阻率只约m ?Ω-810,比铜或银更低,为世上电阻率最小的材料。因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 特斯拉CEO 马斯克近目在接受英国汽车杂志采访时表示,正在研究高性能电池,特斯拉电动车的续行里程很快将能达到800公里,比目前增长近70%。其表示,特斯拉始终致力于打造纯电动汽车,将继续革新电池技术,不考虑造混合动力车。特斯拉Model3电动汽车的续行里程有望达N320公里,售价约为3.5万美元。[]《功能材料信息》 2014年第11卷第4期 56-56页据悉,石墨烯兼具高强度、高导电性、柔韧性等优点,应用于锂电池负极材料后,可大幅度提高其电容量和大倍率充放电性能 ,或成特斯拉电池的理想材料。 特斯拉研究高能电池石墨烯或为理想材料 这项新技术的核心在于,新型多孔石墨烯材料含有巨大的内部表面区域,因此能实现在极短时间内充电。所充电能量与普通锂电池的电能量相当。更重要的是,石墨烯电池电极在经过1万次充放电之后。能量密度并未出现明显损失。 这种多孔石墨烯材料的超级电容,还可以为电动车节省大量的能量"如今,电动车的电能浪费现象仍旧普遍存在" 1新闻方面 首先,我从网上搜索了相关的新闻,包括ZOL 新闻中心科技频道的“石墨烯电池或将引领改革:充电10分钟跑1000公里”说道“这项突破性研究,为人类认知石墨烯等材料特性带来全新发现,并有望为燃料电池和氢相关技术领域带来革命性的进步”;21世纪经济报道的“中国2015年量产石墨烯锂电池或颠覆电动车行业”说道“2014年12月初,西方媒体报

石墨的发展历程

石墨的发展历程 早在二十世纪三十年代,我国黑龙江鸡西柳毛、山东南墅石墨矿就开始了石墨的生产加工。当时选矿工艺流程简单,工人劳动条件差,生产率极低,年产量仅有几千吨。经过几十年的发展,我国石墨及碳素制品产量快速上升,2004-2011年,石墨及碳素制品产量年复合增长率达 22.12%。2011年,我国石墨及碳素制品产量为2556.17万吨,同比增长21.98%。 [1] 石墨及碳素制品具备优良的性能,应用日益广泛,产能及效益近年来呈快速增长趋势。2011年,我国石墨及碳素制品行业发展迅速,行业内企业对成本费用的管理控制能力较高,盈利能力较强。国家统计局数据显示,2011年,我国石墨及碳素制品行业实现工业总产值1675.64亿元;实现销售收入1677.65亿元,同比增长40.58%;实现利润总额109.59亿元,同比增长50.87%。随着应用的不断推广,我国石墨及碳素制品行业的竞争也日趋激烈。 中国规模以上石墨及碳素制品企业较多,集中度低。截至2011年末,中国规模以上石墨及碳素制品企业达871家,销售收入排名前十的企业销售收入总额仅占全行业的13.46%。从世界石墨及碳素制品市场的发展趋势和竞争格局来看,未来我国石墨及碳素制品行业将逐步向大集团集中,石墨及碳素制品行业的集中度将会进一步提高。 随着我国冶金、化工、机械、医疗器械、核能、汽车、航空航天等行业的快速发展,这些行业对石墨及碳素制品的需求将会不断增长,我国石墨及碳素制品行业将保持快速增长。根据《中国石墨及碳素制品行业发展前景与投资战略规划分析报告前瞻》统计数据,2006-2011年,我国石墨及碳素制品行业销售收入年复合增长率为36.56%。根据当前国内外经济形势,结合2006-2011年中国石墨及碳素制品行业销售收入数据及中国经济增长数据,粗略估计2012-2015年我国石墨及碳素制品行业销售收入年复合增长率为21%,2015年,我国石墨及碳素制品行业销售收入将达到3400亿元。

石墨烯产业发展现状调研

Acer 宏碁AS4750G-2454G75Mnkk 石墨烯产业发展调研报告 石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元,就是石墨的单层薄片。它是人类已知强度最高、韧性最好、重量最轻、透光率最高、导电性最佳的材料。美国麻省理工学院(MIT)的《技术评论》曾将石墨烯列为2008年10大新兴技术之一。在2009年12月18日出版的《科学》杂志中,“石墨烯研究取得新进展”被列为2009年10大科技进展之一。2010年10月5日,英国曼彻斯特大学教授安德烈·海姆和康斯坦丁·诺沃肖洛夫因在石墨烯(graphene)研究方面的杰出成就而荣获2010年诺贝尔物理学奖。 1.1石墨烯结构及性质 石墨烯的问世引起了全世界的研究热潮。作为单质,它在室温下传递电子的速度比已知导体都快。石墨烯在原子尺度上结构非常特殊,必须用相对论量子物理学(relativistic quantum

physics)才能描绘。石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。这种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。 石墨烯是目前已知的最薄的一种材料,单层的石墨烯只有一个碳原子的厚度,这种厚度的石墨烯拥有了许多石墨所不具备的特性。 (1)导电性极强:石墨烯中的电子没有质量,电子的运动速度超过了在其他金属单体或是半导体中的运动速度,能够达到光速的 1/300,正因如此,石墨烯拥有超强的导电性。 (2)超高强度:石墨是矿物质中最软的,其莫氏硬度只有1-2级,但被分离成一个碳原子厚度的石墨烯后,性能则发生突变,其硬度将比莫氏硬度10级的金刚石还高,却又拥有很好的韧性,且可以弯曲。 (3)超大比表面积:由于石墨烯的厚度只有一个碳原子厚,

中国石墨烯行业发展报告

2016年中国石墨烯行业发展报告 前言 2016年以来,石墨烯概念股如东旭光电、华丽家族、方大炭素、中泰化学等备受资本追捧。国内外各大锂电企业有关石墨烯项目布局,有的选择石墨烯导电剂技术研发,有的走向石墨烯复合正负极材料之路。这其中,不乏号称已经生产出“石墨烯电池”的锂电企业。石墨烯火热的背后,具体应用领域潜力如何?都有哪些助推的洪荒之力? 一、国家政策鼓励支持石墨烯产业发展 近年来,国家出台多项政策,鼓励支持石墨烯产业发展。国家各部委不断出台指导意见和规划文件,明确了对石墨烯材料的支持与发展要求。 二、石墨烯的技术研究进入快速发展轨道 从石墨烯相关专利申请趋势看,其相关专利的申请在上个世纪末就已出现,但随后发展较为缓慢。直到2008年后,专利申请数量才开始出现实质性的大幅增长。特别是在安德烈·K·海姆教授和科斯佳·诺沃谢洛夫研究员因对石墨烯的研究共同获得2010年诺贝尔物理学奖以后,全球石墨烯专利申请数量开始急剧增长,其中,2014年全球石墨烯相关专利的申请数量就高达5047件,表明石墨烯的相关技术研究进入快速发展轨道。 根据石墨烯相关专利历年的申请情况,结合每年专利发明人数量,2008年以前为石墨烯研发技术的萌芽阶段,2008年至2015年为技术的成长阶段,而2015年之后石墨烯研发生产及应用技术开始趋向于成熟,即成熟阶段初期,这个阶段石墨烯开始逐步小规模生产,但是,其生产及应用技术仍有待于进一步突破。 三、石墨烯应用需求多样化,引领多领域划时代的变革 石墨烯是由碳原子组成的六角型呈蜂巢晶格材料,单层石墨烯薄膜只有一个碳原子厚度,是目前已知的最薄的一种新材料,具有极高的比表面积、超强的导电性和强度以及透明度等优点。石墨烯同时具备透光性好、导热系数高、电子迁移率高、电阻率低、机械强度高等众多普通材料所不具备的性能,未来有望在电子、储能、催化剂、传感器、光电透明薄膜、超强复合材料以及生物医疗等众多领域应用,可以说是未来最有前景的先进材料之一,引领多领域划时代的变革。 《中国制造2025》提出:明确要求高度关注颠覆性新材料对传统材料的影响,做好超导材料、纳米材料、石墨烯、生物基材料等战略前沿材料提前布局和研制,加快基础材料升级换代。《<中国制造2025>重点领域技术路线图(2015年版)》中称,石墨烯产业“2020年形成百亿产业规模,2025年整体产业规模突破千亿”的发展目标。 1、导电油墨:石墨烯导电油墨具备成本优势

石墨烯研究现状及应用前景

石墨烯材料研究现状及应用前景 崔志强 (重庆文理学院材料与化工学院,重庆永川402160) 摘要:近几年来, 石墨烯材料以其独特的结构和优异的性能, 在化学、物理和材料学界引起了轰动。本文引用大量最新的参考文献,阐述了石墨烯的制备方法如机械剥离法、取向附生法、加热 SiC 法、爆炸法、石墨插层法、热膨胀剥离法、电化学法、化学气相沉积法、氧化石墨还原法、球磨法等,分析了各种制备方法的优缺点。论述了石墨烯材料在透明电极、传感器、超级电容器、能源储存、复合材料等方面的应用,同时简要分析了石墨烯材料研究的现实意义,展望了其未来的发展前景。 关键词:石墨烯材料;制备方法;现实意义;发展现状;应用前景 中图分类号: TQ323 文献标识码:A 文章编号: Research status and application prospect of graphene materials Cui Zhiqiang (Faculty of materials and chemical engineering, Chongqing Academy of Arts and Sciences, Yongchuan, Chongqing 402160) Abstract: In recent years, graphene has caused a sensation in chemical, physical and material science due to its unique structure and excellent properties. Cited in this paper a large number of the latest references, expounds the graphene preparation methods such as layer method, thermal mechanical stripping method, orientation epiphytic method, heating SiC method, explosion, graphite intercalation expansion stripping method, electrochemical method, chemical vapor phase deposition method, graphite oxide reduction method, ball milling method, and analyze the advantages and disadvantages of various preparation methods. This paper discusses the application of graphene materials in transparent electrodes, sensors, super capacitors, energy storage and composite materials, and briefly analyzes the practical significance of the study of graphene materials, and gives a prospect of its future development. Keywords: graphene materials; preparation methods; practical significance; development status; application prospect 0 引言 1985 年英美科学家发现富勒烯[1]和1991 年日本物理学家Iijima 发现碳纳米管[2],加之英国曼彻斯特大学科学家于2004 年成功制备石墨烯[3]之后,金刚石(三维)、石墨(三维)、石墨烯(二维)、碳纳米管(一维)和富勒烯(零维)组成了一个完整的碳系材料“家族”。从理论上说,石墨烯是除金刚石外所有碳晶体的基本结构单元,如果从石墨烯上“剪”出不同形状的薄片,进一步就可以包覆成零维的富勒烯,卷曲成一维的碳纳米管,堆叠成三维的石墨,如图1 所示[4]。由于石墨烯优异的电学、热学、力学性能,近年来各国科研人员对其的研究日益增长,已经是材料科学领域的研究热点之一。2010 年诺贝尔物理学奖揭晓[5-6]之后,人们对石墨烯的研究和关注越来越多,新的发现不断涌现。在不断深入研究石墨烯的制备方法和性质的过程中,其应用领域也在不断扩大。由于石墨烯缺乏带隙以及在室温下的超高电子迁移率、低于银铜的电阻率、高热导率[7]等,在光电晶体管、生化传感器、电池电极材料和复合材料方面有着很高

2021石墨烯行业现状及前景趋势

2021年石墨烯行业现状 及前景趋势

目录 1.石墨烯行业现状 (5) 1.1石墨烯行业定义及产业链分析 (5) 1.2石墨烯市场规模分析 (7) 1.3石墨烯市场运营情况分析 (7) 2.石墨烯行业存在的问题 (10) 2.1技术问题趋势 (10) 2.2市场问题趋势 (10) 2.3成本问题趋势 (11) 2.4应用市场有待拓展 (11) 2.5标准体系有待完善 (11) 2.6行业服务无序化 (12) 2.7供应链整合度低 (12) 2.8产业结构调整进展缓慢 (13) 2.9供给不足,产业化程度较低 (13) 3.石墨烯行业前景趋势 (14) 3.1石墨烯复合材料种类多样 (14) 3.2性能优良且应用前景广阔 (14) 3.3石墨烯的应用领域十分广泛 (15) 3.4产业资源加速整合 (15) 3.5政策利好 (15)

3.6延伸产业链 (15) 3.7行业协同整合成为趋势 (16) 3.8生态化建设进一步开放 (16) 3.9服务模式多元化 (17) 3.10呈现集群化分布 (17) 3.11需求开拓 (18) 3.12行业发展需突破创新瓶颈 (18) 4.石墨烯行业政策环境分析 (20) 4.1石墨烯行业政策环境分析 (20) 4.2石墨烯行业经济环境分析 (20) 4.3石墨烯行业社会环境分析 (20) 4.4石墨烯行业技术环境分析 (21) 5.石墨烯行业竞争分析 (22) 5.1石墨烯行业竞争分析 (22) 5.1.1对上游议价能力分析 (22) 5.1.2对下游议价能力分析 (22) 5.1.3潜在进入者分析 (23) 5.1.4替代品或替代服务分析 (23) 5.2中国石墨烯行业品牌竞争格局分析 (24) 5.3中国石墨烯行业竞争强度分析 (24) 6.石墨烯产业投资分析 (25)

相关文档
最新文档