1.4定态薛定谔方程应用

大学物理-一维定态薛定谔方程的应用

一维定态薛定谔方程 的应用 授课人: 物理科学与技术学院

势 阱 日常生活中的各种井(阱) 物理学中研究微观粒子运动状态时常用的模型,因其势能函数曲线的形状如同井而得名 水井 窨井 陷阱 U x O a U

() U x x O a ∞ ∞00()0 , x a U x x x a ≤≤?=?∞<>? 这是一个理想化的物理模型, 应用定态薛定谔方程求解波函数, 有利于进一步理解在微观系统中 能量量子化和概率密度等概念 这样的势能函数称为 一维无限深势阱

建立定态薛定谔方程并求解 假设微观粒子质量为 ,由 m 22 2d ()()()2d U x x E x m x ψψ??-+=???? x a U x 0()0≤≤=阱内( ) : 22 2d ()()2d x E x m x ψψ-= x x a U x 0 , ()<>→∞ 阱外( ): 令: 2 22mE k =得通解: ()sin() x A kx ψ?=+ 微观粒子的能量不可能达到 无穷大,所以粒子不可能在阱外出现,或者说粒子在阱外出现的概率为零。 ()0 x ψ≡222 d 0d k x ψψ+=

利用标准条件确定 和 k ?因 在整个 轴上必须连续 x ()x ψsin() 0()0 0 0 A kx x a x x x ?ψ+≤≤?=? <>?,(0)sin 0 A ψ?== a A ka ()sin()0 ψ?=+=求归一化的波函数 一维无限深势阱中 微观粒子的波函数 2220π()d sin d a n x x A x x a ψ+∞-∞=??221 A a =?= 2A a = n a x x a x a x x a π2sin 0()00 , ψ? ≤≤?=??<>?() π ()sin 1,2,3n x A x n a ψ==??, 0?=π n k a =()1,2,3n =???,

实验三 定态薛定谔方程的矩阵解法

实验三 定态薛定谔方程的矩阵解法 一.实验目的 1.掌握定态薛定谔方程的矩阵解法。 2.掌握几种矩阵特征值问题数值解法的原理,会调用相应的子程序求解具体问题。 二.实验内容 1.问题描述 以/2ω/()m ω为长度单位,一维谐振子的哈密顿量为 2 202d H x dx =-+, 其本征值为21n E n =+,本证波函数为 2 /2)()n n x H x ?=-, 其中()n H x 为厄米多项式,满足递推关系 11()2()2()n n n H x xH x nH x +-=-。 用矩阵方法求 2 22d H x x dx =-++ 的本证能量和相应的波函数。 2.问题分析 H E ψψ= 0()|j j j t c ψ?∞ ==>∑ 0||i i j i j i j c E c x Ec ??∞ =+<>=∑ 11|j j j x ???-+>=>>

11||||j j j j x x ????-+<>= <>= 0010010 112111,211,11,1 n n n n n n n n n n n n E x c c x E x c c E x E x c c x E c c -------?????????????????????????=??????????????????????? ? 3.程序编写 子程序及调用方法见《FORTRAN 常用算法程序集(第二版)》第三章 徐士良,P97 4.实验要求 ◆用恰当的算法求解以上实对称三对角矩阵的特征值问题。 ◆取n=8,给出H 的全部特征值和相应的特征向量。 5.实验步骤 ● 启动软件开发环境Microsoft Developer Studio 。 ● 创建新工作区shiyan03。 ● 创建新项目xm3。 ● 创建源程序文件xm3.f90,编辑输入源程序文本。 ● 编译、构建、运行、调试程序。 6.实验结果 程序设计:

固体物理学 1-5-薛定谔方程应用举例II

薛定谔方程应用举例II---原子系统
? 氢原子 ? 电子自旋 ? 多电子原子
1

氢原子的定态薛定谔方程
?原子由一个原子核和核外电子构成,属于多粒子体系。多粒 子体系的总能量等于每一个粒子的能量与粒子间相互作用能量 之和。
?氢原子包括一个原子核和电子,库仑场是各向同性的,哈密 顿量可记作(绝热近似):
H?
=
?
h2 2me
?2
+
qeU(r)
me为电子质量,qe是电子电荷。U(r)为原子核静电场中的库 仑势,记作:
U(r) = ? Zqe = ? Z h2
4πε0r a1meqer
Z为核的电荷数,a1 = 4πε0?2/(meqe2) = 0.529?,为氢原子的第
一波尔轨道半径。
2

??? ?
h2 2me
?2
?
Zh 2 a1meqer
??ψ
?
(r)
=
E

(r)
中心力场问题,采用球坐标,薛定谔方程为:
? ?? ??
h2 2me
?
????
1 r2
? ?r
r2
? ?r
?
L?2 r2
???? ?
Zh2
?
?ψ (r,?,θ ) =
a1mer ??
E ?ψ (r,?,θ )
用分离变量法求解,令:
ψ (r,θ ,φ) = R(r) ?Y (?,θ )
分别求解径向波函数R(r)和角向波函数Y(?,θ)。
3

§16.3 一维定态薛定谔方程的建立和求解举例

§16.3 一维定态薛定谔方程的建立和求解举例 (一)一维运动自由粒子的薛定谔方程 波函数随时间和空间而变化的基本方程,是薛定谔于1926年提出的,称为薛定谔波动方程,简称波动方程或薛定谔方程,它成为量子力学的基本方程. 将(16.2.14)式分别对t 和x 求导,然后从这两式消去E 、p 、和ψ,便可得到一维运动自由粒子的薛定谔方程: ψ-=?ψ?)/iE (t 即ψ=?ψ?E t i (16.3.1) ψ=?ψ ?22)/ip (x 2 ψ=ψ ?-2222p ????? ?????<<的薛定谔方程自由粒子轴运动的沿)c x (v 方程(16.3.3)中不含有能量E 和动量p ,表明此方程是不受E 和p 的数值限制的普遍方程. 请同学们自己试一试,如果上述波函数不用复数表式(16.2.14),改用类似于(16.2.1)式的余弦函数或正弦函数表式,就不会得到合乎要求的薛定谔方程(16.3.3)式?. 这薛定谔方程不是根据直接实验结果归纳而得,也不是由经典波动理论或其他理论推导出来的,它是在物质波假设的基础上,参照经典波动方程而建立起来的.薛定谔方程在微观领域中得到广泛的应用,它推导出来的结果,都与相关实验结果符合得很好,这才是薛定谔方程正确反映微观领域客观规律的最有力的证明. (二)一维运动自由粒子的定态薛定谔方程?? 上述薛定谔方程(16.3.3)是偏微分方程,从此方程可解出波函数ψ(x ,t ).在量子力学中最重要的解,是可把波函数ψ(x,t )分离成空间部分u (x )和时间部分f (t )两函数的乘积的特解,即 〔一维运动自由粒子的定态波函数〕 ψ(x,t )=u (x )f (t )(16.3.4) 将此式代入(16.3.3)式得: 22 2dx u d )t (f )m 2/(dt df )x (u i -= 两边除以ψ=uf 得: 22 2dx u d u 1)m 2/(dt df f 1i -= 此式左边是时间t 的函数,右边是坐标x 的函数.已知t 与x 是互相独立的自变量,左右两边相等,必须是两边都等于同一常量E ,即 ? 郭敦仁《量子力学初步》16—17页,人民教育出版社1978年版. ? 郭敦仁《量子力学初步》21—22页,人民教育出版社1978年版. ? 周世勋编《量子力学》32—33页,上海科学技术出版社1961年版.

§16.2 薛定谔方程对氢原子的应用

(16.4.4) (16.4.5) (图16.4a )球极坐标 薛定谔方程对氢原子的应用 (一)氢原子的薛定谔方程 前一节讨论一维运动自由粒子的薛定谔方程及其定态解.本节要讨论氢原子中电子的运动,这与前一节有两点不同: (1)氢原子电子作三维空间运动,因此,薛定谔方程(16.3.3)中的波函数ψ(x,t )应换成ψ(x,y,z,t ) 或ψ(r ,t ),而2 2 x ?? 应换成=??+??+??2 2 22 22 z y x ▽2.此▽2称为拉普拉斯算符或拉氏算符. ???? ??<<的薛定谔方程 三维运动自由粒子)c (v 222222222z y x )m 2/(t i ??+??+??=?=?ψ?-=?ψ? (16.4.1) (2)氢原子的电子不是自由粒子,它受到氢核的库仑力,此力的作用可用它们的电势能E p 表示.因此,氢原子电子的薛定谔方程可表示如下 ?? ,见〔附录16D 〕. ??? ???<<的薛定谔方程氢原子电子)c (v p 2p k p 2 2E )m 2/p (E E E E )m 2/(t i +=+=ψ+ψ?-=?ψ? (16.4.2) *(二)氢原子的定态薛定谔方程 定态解是解决氢原子各种问题的基础.参照(16.3.4)至(16.3.6)式,可把(16.4.2)式中的波函数ψ(r ,t )分离为空间部分u (r )和时间部分f (t ),并参照(16.3.10)式写出氢原子的定态薛定谔方程,见〔附录16E 〕. ψ(r ,t )=u (r )f (t ), f (t )=C /iEt e - (16.4.3) ??????<<的定态薛定谔方程氢原子电子)c (v r 4e E 0u )E E )(/m 2(u 02p p 2 2 πε-==-+? 氢核的质量比电子的大得多,可认为氢核不动,电子绕核转动.其电势能可表成E p =-e 2/4πε0r .此势能E p 只与电子至氢核的距离r 有关,而与方向无关,即具有球对称性,应用球极坐标较为方便.如(图16.4a ),O 表氢核,e 表电子,r 为e 至O 的距离.θ为r 与z 轴的夹角,θ称天顶角或极角.?为r 在xOy 平面的投影与x 轴的夹角.故有 x=rsin θcos ?; y=rsin θsin ?; z=rcos θ (16.4.6) 拉氏算符 2 2 22222 z y x ??+??+??=? 改用球坐标(r,θ,?)表示如下:?? ()() 2 2 222222sin r 1sin sin r 1r r r r 1???θ+θ??θθ??θ+????=?(16.4.7) 将此▽2算符代入(16.4.4)式,便得到以球坐标表示的氢原子定态薛定谔方程. ? 郭敦仁《量子力学初步》18—19,34—35页,1978年版. ? 程守洙、江之永编,王志符、朱讠永春等修订《普通物理学》第3册177—180页,1982年修订本. ? 郭敦仁《量子力学初步》35—45页,1978年版.

薛定谔方程与它的基本意义

薛定谔方程 维基百科,自由的百科全书 跳转到:导航, 搜索 汉漢▼ 量子力学 不确定性原理 入门·数学表述显示▼背景 经典力学·旧量子论·干涉 哈密顿量·狄拉克符号 显示▼基本概念 量子态·波函数·态矢量 态叠加原理·波粒二象性 量子测量·不确定性原理 泡利不相容原理·量子缠结 量子脱散·量子隧穿效应 埃伦费斯特定理 显示▼实验 双缝实验·薛定谔的猫 戴维孙-革末实验 施特恩-格拉赫实验 贝尔不等式实验 波普尔实验·量子擦除器 显示▼构想

薛定谔绘景·海森堡绘景 相互作用绘景·矩阵力学 求和的历史 显示▼方程 薛定谔方程·泡利方程 克莱因-高登方程 狄拉克方程 显示▼量子力学诠释 哥本哈根诠释·Ensemble 隐变量·交易诠释 多世界诠释·一致性历史 系综诠释·量子逻辑 显示▼进阶理论 量子场论·量子引力 万有理论 显示▼科学家 普朗克、玻尔、薛定谔、海森堡 泡利、德布罗意、埃伦费斯特、玻姆 玻恩、爱因斯坦、冯?诺伊曼 费曼、狄拉克、维恩、埃弗里特 索末菲、其他 本模板:查看? 讨论? 编辑? 历史 薛定谔方程是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程[1],也是量子力学的一个基本假定,其正确性只能靠实验来检验。就好像牛顿定律在经典力学的地位,薛定谔方程在量子力学里占有中心的地位。 薛定谔方程主要分为含时薛定谔方程与不含时薛定谔方程。含时薛定谔方程相依于时间,专门用来计算一个量子系统的波函数,怎样随着时间演变。不含时薛定谔方程不相依于时间,可以计算一个定态量子系统,对应于某本征能量的本征波函数。波函数又可以用来计算,在量子系统里,某个事件发生的几率幅。而几率幅的绝对值的平方,就是事件发生的几率密度。薛定谔方程的解答,清楚地描述量子系统里,量子尺寸粒子的统计性量子行为。量子尺寸的

薛定谔方程对氢原子的应用

(16.4.4) (16.4.5) (图16.4a )球极坐标 薛定谔方程对氢原子的应用 (一)氢原子的薛定谔方程 前一节讨论一维运动自由粒子的薛定谔方程及 其定态解.本节要讨论氢原子中电子的运动,这与 前一节有两点不同: (1)氢原子电子作三维空间运动,因此,薛定 谔方程(16.3.3)中的波函数ψ(x,t )应换成ψ(x,y,z,t ) 或ψ(r ,t ),而22x ??应换成=??+??+??222222z y x ▽2.此▽2称为拉普拉斯算符或拉氏算符. ??????<<的薛定谔方程三维运动自由粒子)c (v 222222222z y x )m 2/(t i ??+??+??=?=?ψ?-=?ψ? (16.4.1) (2)氢原子的电子不是自由粒子,它受到氢核的库仑力,此力的作用可用它们的电势能E p 表示.因此,氢原子电子的薛定谔方程可表示如下??,见〔附录16D 〕. ??????<<的薛定谔方程氢原子电子)c (v p 2p k p 22E )m 2/p (E E E E )m 2/(t i +=+=ψ+ψ?-=?ψ? (16.4.2) *(二)氢原子的定态薛定谔方程 定态解是解决氢原子各种问题的基础.参照(16.3.4)至(16.3.6)式,可把(16.4.2)式中的波函数ψ(r ,t )分离为空间部分u (r )和时间部分f (t ),并参照(16.3.10)式写出氢原子的定态薛定谔方程,见〔附录16E 〕. ψ(r ,t )=u (r )f (t ), f (t )=C /iEt e - (16.4.3) ??????<<的定态薛定谔方程氢原子电子)c (v r 4e E 0u )E E )(/m 2(u 02p p 22πε-==-+? 氢核的质量比电子的大得多,可认为氢核不动,电子绕核转动.其电势能可表成E p =-e 2/4πε0r .此势能E p 只与电子至氢核的距离r 有关,而与方向无关,即具有球对称性,应用球极坐标较为方便.如(图16.4a ),O 表氢核,e 表电子,r 为e 至O 的距离.θ为r 与z 轴的夹角,θ称天顶角或极角.?为r 在xOy 平面的投影与x 轴的夹角.故有 x=rsin θcos ?; y=rsin θsin ?; z=rcos θ (16.4.6) 拉氏算符 2222222z y x ??+??+??=?改用球坐标(r,θ,?)表示如下:?? ()() 22222222sin r 1sin sin r 1r r r r 1???θ+θ??θθ ??θ+????=?(16.4.7) 将此▽2算符代入(16.4.4)式,便得到以球坐标表示的氢原子定态薛定谔方程. ? 郭敦仁《量子力学初步》18—19,34—35页,1978年版. ? 程守洙、江之永编,王志符、朱讠永春等修订《普通物理学》第3册177—180页,1982年修订本. ? 郭敦仁《量子力学初步》35—45页,1978年版. ? 周世勋编《量子力学》59—72页,1961年版.

薛定谔方程及其解法

一. 定义及重要性 薛定谔方程(Schrdinger equation )是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,它的正确性只能靠实验来检验。 二. 表达式 三. 定态方程 ()()2 22V r E r m ηψψ+??-?=???? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E 是粒子本身的能量;v(x ,y ,z)是描述势场的函数,假设不随时间变化。 可化为 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法

二.边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 有限元方法 有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。 有限元分析的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件,从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。不同于求解(往往是困难的)满足整个定义域边界条件的函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。

相关文档
最新文档