ANSYS中粘弹性材料的参数意义

ANSYS中粘弹性材料的参数意义
ANSYS中粘弹性材料的参数意义

ANSYS中粘弹性材料的参数意义:

我用的材料知道时温等效方程(W.L.F.方程),ANSYS 中的本构模型用MAXWELL模型表示。

1.活化能与理想气体常数的比值(Tool-Narayanaswamy Shift Function)或者时温方程的第一个常数。

2.一个常数当用Tool-Narayanaswamy Shift Function的方程描述,或者是时温方程第2个常数

3.定义体积衰减函数的MAXWELL单元数(在时温方程中用不到)

4.时温方程的参考温度

5.决定1、2、3、4参数的值

6-15定义体积衰减函数的系数,

16-25定义fictive temperature的松弛时间

这20个数最终用来定义fictive temperature(在理论手册中介绍,不用在时温方程中)

26-30和31-35分别定义了材料在不同物理状态时的热扩散系数

36-45用来定义fictive temperature的fictive temperature的一些插值一类的数值,时温方程也用不到

46剪切模量开始松弛的值

47松弛时间无穷大的剪切模量的值

48体积模量开始松弛的值

49松弛时间无穷大的体积模量的值

50描述剪切松弛模量的MAXWELL模型的单元数

51-60拟合剪切松弛模量的prony级数的系数值

61-70拟合剪切松弛模量的prony级数的指数系数值(形式参看理论手册)

71描述体积松弛模量的MAXWELL模型的单元数

76-85拟合体积松弛模量的prony级数的系数值

85-95拟合体积松弛模量的prony级数的指数系数值(形式参看理论手册)

进入ansys非线性粘弹性材料有两项:

(1)maxwell(麦克斯韦)模型

最多可以输入95个常数

(2)prony(普朗尼)模型

这个模型下面又有三项:

(a)shear Response

a1: 即理论中的C1-Relative modulus: 相对剪切模量

t1: 即理论中的C2-Relative time: 相对时间

(b)V olumetric Response(容积响应)

a1: 即理论中的C1-Relative modulus: 相对弹性模量

t1: 即理论中的C2-Relative time: 相对时间

(c)Shift function (转换函数)

有三项可以选择:

(I)William-Landel, ferry: 时温等效方程

Tref: 即理论中的C1-Relative temperature: 相对温度(对应《粘弹性理论》中的时温等效方程(WFL方程)应该是玻璃化转变温度)

C1,C2: 没有什么好说的了,就是WFL方程的常量,与材料有关;

(II)Tool-Narayanaswamy 方程

Tref: 即理论中的C1-Relative temperature: 相对温度(应该是玻璃化转变温度)

C1: 没有什么好说的了,就是TN常量;

(III)用户定义

Tref: 即理论中的C1-Relative temperature: 相对温度(应该是玻璃化转变温度)

C1: 没有什么好说的了,就是方程的常量;

-------------------------------------------------------------------------

《粘弹性理论》

TB, Lab, MAT, NTEMP, NPTS, TBOPT, EOSOPT

如果Lab:

MAT

Material reference number (defaults to 1; maximum equals 100,000).

NTEMP:

Number of temperatures for which data will be provided. Default = 1; Max = 6.

NPTS:

Number of pairs of Prony series. Default = 1 pair; Max = 6 pairs.

TBOPT:

Defines the relaxation behavior for viscoelasticity.

1--

(or SHEAR) relaxation behavior of the shear response.

2--

(or BULK) relaxation behavior of the volumetric response.

如果Lab:

SHIFT

NTEMP:

Allows one temperature for which data will be provided.

NPTS:

Number of material constants to be entered as determined by the shift function specified by

3--

for TBOPT = WLF

2--

TBOPT = TN

TBOPT:

Defines the shift function

1--

( or WLF) William-Landel-Ferry shift function.

2--

(or TN) Tool-Narayanaswamy shift function.

100--

(or USER) User-defined shift function

粘弹性人工边界在ANSYS中实现

从半空间无限域取一4X2的矩形平面结构,顶部中间一定范围内受随时间变化的均布荷载,荷载如下 p(t)=t 当0< DIV> p(t)=2-t 当1<=t<=2时 p(t)=0 当t>2时 材料弹性模量E=2.5,泊松比0.25,密度1 网格尺寸0.1X0.1,在网格边界上所有结点加法向和切向combin14号单元用以模拟粘弹性人工边界(有关理论可参考刘晶波老师的相关文章)。combine14单元的两个结点,其中一个与实体单元相连,另一个结点固定。网格图如图1所示 时程分析的时间步长为0.02秒,共计算16秒。计算得到四个控制点位移时程图如图2所示,控制点坐标A(0,2)、B(0,1)、C(0,0)、D(2,2). 计算所用命令流如下: /PREP7 L=4 !水平长度 H=2 !竖起深度 E=2.5 !弹性模量 density=1 !密度 nu=0.25 !泊松比 dxyz=0.1 !网格尺寸 G = E/(2.*(1.+nu)) !剪切模量 alfa = E*(1-nu)/((1.+nu)*(1.-2.*nu)) !若计算平面应力,此式需要修改 Cp=sqrt(alfa/density) !压缩波速 Cs=sqrt(g/density) !剪切波速 R=sqrt(L*L/4.+H*H/4.) !波源到边界点等效长度 KbT=0.5*G/R*dxyz KbN=1.0*G/R*dxyz CbT=density*Cs*dxyz CbN=density*Cp*dxyz

ET, 1, plane42,,,2 !按平面应变计算 et, 2, combin14, ,, 2 !切向 et, 3, combin14, ,, 2 !法向 r, 2, KbT, CbT r, 3, KbN, CbN MP, EX, 1, E MP, PRXY, 1, nu MP, DENS, 1, density rectng,-L/2.,L/2,0.,H asel, all aesize, all, dxyz mshape,0,2D mshkey,1 amesh, all !以下建立底边界法向和切向弹簧阻尼单元 nsel,s,loc,y,0. *get,np,node,,count !得到选中的结点数,存入np *get,npmax,node,,num,maxd !得到已经定义的最大结点数,存入npmax *do,ip,1,np npnum=node((ip-1)*dxyz-L/2.,0.,0.) x=nx(npnum) y=ny(npnum) z=nz(npnum) npmax=npmax+1 n,npmax,x.,y-dxyz/2,z !定义底边界法向结点以便与边界点形成法向单元type,3

弹性力学ansys分析

图1为一个承受内压的薄板,在其中心位置有一个小圆孔,相关的结构尺寸参考图1所示。 材料属性:弹性模量E=2e11Pa,泊松比为0.3。 拉伸载荷为:q=3000Pa。 平板的厚度为:t=0.01mm。 通过简单力学分析,该问题属于平面应力问题,又因为平板结构的对称性,所以只要分析其中的1/4即可,如图2所示。 图1 板的结构示意图图2 有限元分析见图 一、前处理 (1)定义工作文件名:Utility Menu> Jobname,弹出如图3所示的Change Jobname 对话框,在Enter new Jobname后面的输入栏中输入Plate,并将New Log and error files复选框选为yes,单击OK。

图3 定义工作文件名对话框 (2)定义工作标题:Utility Menu> Title,在出现的对话框中输入The Analysis of Plate Stress with small Circle,单击OK。 图4 定义工作标题对话框 (3)重新显示:Utility Menu>Plot>Replot。 (4)关闭三角坐标符号:Utility Menu>PlotCtrls>Window Controls>Window options,弹出一个对话框,在Location of triad 后面的下拉式选择框中,选择Not Shown,单击OK。 (5)选择单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete,弹出Element Type对话框,单击Add按钮,又弹出如图5所示的Library of Element Types对话框,在选择框中分别选择Structural Solid和Quad 8node 82,单击OK,然后单击Close。

常用塑胶材料特性大全

常用塑胶材料的特性及使用范围 一、丙烯腈-丁二烯-苯乙烯(ABS)(乳白色半透明) 优点: 1.力学性能和热性能均好,乳白色半透明,硬度高,表面易镀金属 2.耐疲劳和抗应力开裂、冲击强度高 3.耐酸碱等化学性腐蚀 4.加工成型、修饰容易 缺点: 1.耐候性差 2.耐热性不够理想, 3.拉伸率底 主要应用范围:机器盖、罩,仪表壳、手电钻壳、风扇叶轮,收音机、电话和电视机等壳体,部分电器零件、汽车零件、机械及常规武器的零部件 改性的ABS共聚物: 将ABS加入PVC中,可提高其冲击韧性、耐燃性、抗老化和抗寒能力,并改善其加工性能; 将ABS与PC共混,可提高抗冲击强度和耐热性;以甲基丙烯酸甲酯替代ABS中丙烯腈组分,可制得MBS塑料,即通常所说的透明ABS。 ABS/NYLON 耐热及抗化学性、流动性佳、低温冲击性、低成本 主要用于汽车车身护板、引擎室零组件、连接器、动力工具外壳 ABS/PVC PVC增加防火性、降低成本 ABS提供耐冲击性 主要用于家电用品零组件、事务机器零组件 ABS/PC 增加ABS耐热尺寸安定性、改善PC低温、后壁耐冲性、降低成本 主要用于打字机外壳、文字处理器、计算机设备之外壳、医疗设备零组件、小家电零组件、电子模具设计 1.排气

为防止在充模时出现排气不良、灼伤、熔接缝等缺陷,要求开设深度不大于0.04mm 的排气槽。 壁厚 0.8 mm至3.2 mm之间,典型的壁厚约在2.5mm左右,3.8以上需要结构性发泡。 圆角 最小在厚度的25%,最适当半径在厚度的60%。 收缩率:0.4%-0.7%一般取0.5% 加强筋:高<3T 宽度0.5T 筋间距>2T 脱模角:0.5°-1.5° 支柱加强筋高度4T,可达支柱高度的90%,宽度0.5T,长度2T, 支柱:外经是内径2倍 二、聚乙烯(PE) 优点: 1、柔软、无毒、透明易染色. 2、耐冲击、耐药品,绝缘性佳。 缺点: 1、不易押出、不易贴合 2、热膨胀系数高 4、耐温性差 用途: HDPE主要用于具有一定硬度和韧性的场合,如水管、燃气管,工业用化学容器、重包装袋和购物袋、洗发水瓶等。 LDP E绝缘体、胶管、胶布、胶膜、农用薄膜 最小壁厚0.5mm(LDPE),0.9mm(HDPE)(0.5-7.6mm一般1.6mm) 收缩率:HDPE 1.5%-3.5%取2% LDPE 1.5%-3%取1.5% 三、聚丙烯(PP) 优点: 1.半透明、刚硬有韧性.抗弯强度高,抗疲劳、抗应力开裂 2.质轻,无毒、无味,耐高温、绝缘性佳。(0.9G/cm3) 缺点 1、在0℃以下易变脆,不易接合;

ANSYS粘弹性材料Prony总结

ANSYS 粘弹性材料 1.1 ANSYS 中表征粘弹性属性问题 粘弹性材料的应力响应包括弹性部分和粘性部分,在载荷作用下弹性部分是即时响应的,而粘性部分需要经过一段时间才能表现出来。一般的,应力函数是由积分形式给出的,在小应变理论下,各向同性的粘弹性本构方程可以写成如下形式: () ()0 02t t de d G t d I K t d d d σττττττ ?=-+-?? (1) 其中 σ=Cauchy 应力 ()G t =为剪切松弛核函数 ()K t =为体积松弛核函数 e =为应变偏量部分(剪切变形) ?=为应变体积部分(体积变形) t =当前时间 τ=过去时间 I =为单位张量。 该式是根据松弛条件本构方程(1),通过将一点的应变分解为应变球张量(体积变形)和应变斜张量(剪切变形)两部分,推导而得的。这里不再敖述,可参考相关文献等。 ANSYS 中描述粘弹性积分核函数()G t 和()K t 参数表示方式主要有两种,一种是广义Maxwell 单元(VISCO88 和 VISCO89)所采用的Maxwell 形式,一种是结构单元所采用的Prony 级数形式。实际上,这两种表示方式是一致的,只是具体数学表达式有一点点不同。 1.2 Prony 级数形式 用Prony 级数表示粘弹性属性的基本形式为: ()1exp G n i G i i t G t G G τ∞=?? =+- ??? ∑ (2) ()1exp K n i K i i t K t K K τ∞=?? =+- ??? ∑ (3) 其中,G ∞和i G 是剪切模量,K ∞和i K 是体积模量,G i τ和K i τ是各Prony 级数分量的松弛时间(Relative time)。再定义下面相对模量(Relative modulus) 0G i i G G α= (4) 0K i i K K α= (5) 其中,0G ,0K 分别为粘弹性材质的瞬态模量,并定义式如下:

(完整版)ANSYS粘弹体分析

ANSYS 中粘弹材质属性参数输入和分析 (1) 1.1 ANSYS 中表征粘弹性属性问题 ............................................................................................................... 1 1.2 Prony 级数形式 .......................................................................................................................................... 1 1.3 Maxwell 形式 .............................................................................................................................................. 3 1.3 建模与载荷条件 . (5) 1.3.1 模型设计 .......................................................................................................................................... 5 1.3.2 有限元建模 ...................................................................................................................................... 5 1.3.3 理论解析解计算式 .......................................................................................................................... 6 1.4 有限元数值解与结果比较 . (6) 1.4.1 Plane183,Prony 级数方式 ............................................................................................................. 6 1.4.5 算例结论 . (10) ANSYS 中粘弹材质属性参数输入和分析 1.1 ANSYS 中表征粘弹性属性问题 粘弹性材料的应力响应包括弹性部分和粘性部分,在载荷作用下弹性部分是即时响应的,而粘性部分需要经过一段时间才能表现出来。一般的,应力函数是由积分形式给出的,在小应变理论下,各向同性的粘弹性本构方程可以写成如下形式: () ()0 02t t de d G t d I K t d d d σττττττ ?=-+-?? (0.1) 其中 σ=Cauchy 应力 ()G t =为剪切松弛核函数 ()K t =为体积松弛核函数 e =为应变偏量部分(剪切变形) ?=为应变体积部分(体积变形) t =当前时间 τ=过去时间 I =为单位张量。 该式是根据松弛条件本构方程(0.1),通过将一点的应变分解为应变球张量(体积变形)和应变斜张量(剪切变形)两部分,推导而得的。这里不再敖述,可参考相关文献等。 ANSYS 中描述粘弹性积分核函数()G t 和()K t 参数表示方式主要有两种,一种是广义Maxwell 单元(VISCO88 和 VISCO89)所采用的Maxwell 形式,一种是结构单元(如Plane183,Plane182等)所采用的Prony 级数形式。实际上,这两种表示方式是一致的,只是具体数学表达式有一点点不同。 1.2 Prony 级数形式 用Prony 级数表示粘弹性属性的基本形式为: ()1exp G n i G i i t G t G G τ∞=?? =+- ??? ∑ (0.2)

常用材料属性

1.1 不同材料的特性 1. ABS ·用途: 玩具、机壳、日常用品 ·特性: 坚硬、不易碎、可涂胶水,但损坏时可能有利边出现。(Fig. 1.1.1) 设计上的应用: 多数应用于玩具外壳或不用受力的零件。 2. PP ·用途: 玩具、日常用品、包装胶袋、瓶子 ·特性: 有弹性、韧度强、延伸性大、但不可涂胶水。 ·设计上的应用: 多数应用于一些因要接受drop test而拆件的地方。 3. PVC ·用途: 软喉管、硬喉管、软板、硬板、电线、玩具 ·特性: 柔软、坚韧而有弹性。 ·设计上的应用: 多数用于玩具figure,或一些需要避震或吸震的地方。

4. POM ·用途: 机械零件、齿轮、摃杆、家电外壳 ·特性: 耐磨、坚硬但脆弱,损坏时容易有利边出现(Fig. 1.1.6)。 ·设计上的应用: 多数用于胶齿轮、滑轮、一些需要传动,承受大扭力或应力的地方。 5. Nylon ·用途: 齿轮、滑轮 ·特性: 坚韧、吸水、但当水份完全挥发后会变得脆弱。 ·设计上的应用: 因为精准度比较难控制,所以大多用于一些模数较大的齿轮。 6. Kraton 用途: 摩打垫 特性: 柔软,有弹性,韧度高,延伸性强。 设计上的应用: 多数作为摩打垫,吸收摩打震动,减低噪音。 简称

中英文学名 用途 备考 硬胶 GPPS 通用级聚苯乙烯 General Purpose polystyrene 文具、日用品、灯罩、仪器壳罩、玩具 透明,脆性,易成形 不碎胶 HIPS 高冲击聚笨乙烯 High Impact Polystyrene 日用品、电器零件、机壳、玩具 白色,延性,易成形 超不碎胶 ABS 丙烯睛一丁二烯一苯乙烯共聚物Acrylonitrile Butadiene Styrene 玩具、家私、运动用品、机壳、日用品、把手、齿轮 黄白色,延性,易成形 透明大力胶 AS (SAN) 丙烯睛一苯乙烯共聚物 Acrylonitrile Styrene 日用品、餐具、表面、家庭电器用品、装饰品 透明,易成形 软胶(花料、筒料) L D P E 低密度聚乙烯 Low Density Polyethylene 包装胶袋、玩具、胶瓶、胶花、电线 半透明,延性,易成形

最新ANSYS材料模型汇总

A N S Y S材料模型

第七章材料模型 ANSYS/LS-DYNA包括40多种材料模型,它们可以表示广泛的材料特性,可用材料如下所示。本章后面将详细叙述材料模型和使用步骤。对于每种材料模型的详细信息,请参看Appendix B,Material Model Examples或《LS/DYNA Theoretical Manual》的第十六章(括号内将列出与每种模型相对应的LS-DYNA材料号)。 线弹性模型 ·各向同性(#1) ·正交各向异性(#2) ·各向异性(#2) ·弹性流体(#1) 非线弹性模型 ·Blatz-ko Rubber(#7) ·Mooney-Rivlin Rubber(#27) ·粘弹性(#6) 非线性无弹性模型 ·双线性各向同性(#3) ·与温度有关的双线性各向同性(#4) ·横向各向异性弹塑性(#37) ·横向各向异性FLD(#39) ·随动双线性(#3) ·随动塑性(#3) ·3参数Barlat(#36) ·Barlat各向异性塑性(#33)

·与应变率相关的幂函数塑性(#64) ·应变率相关塑性(#19) ·复合材料破坏(#22) ·混凝土破坏(#72) ·分段线性塑性(#24) ·幂函数塑性(#18) 压力相关塑性模型 ·弹-塑性流体动力学(#10) ·地质帽盖材料模型(#25) 泡沫模型 ·闭合多孔泡沫(#53) ·粘性泡沫(#62) ·低密度泡沫(#57) ·可压缩泡沫(#63) ·Honeycomb(#26) 需要状态方程的模型 ·Bamman塑性(#51)·Johnson-Cook塑性(#15)·空材料(#9) ·Zerilli-Armstrong(#65) ·Steinberg(#11) 离散单元模型 ·线弹性弹簧

ansys prony

在做粘弹性分析之前建议先看一些粘弹性理论方面的书籍,知道一些基本概念,在做粘弹性分析之前建议先看一些粘弹性理论方面的书籍,知道一些基本概念,ansys中粘弹性材料模型的参数可以直接指定,也可以通过蠕变或者松弛实验数据输入。最终的参数是基本单元的数目,基本单元对应的迟豫时间,各单元的相对剪切模量,各单元的相对体积模量,初始剪切模量,初始泊松比。 以上是一位高人告诉我的,我也不是特别清楚,下面是一篇关于粘弹性模型的帖子,你看看吧 转贴一篇大海之子和dengnch两位学兄写的帖子,原来发在有限元联盟,希望对你有帮助。 ANSYS中粘弹性材料的参数意义: 我用的材料知道时温等效方程(W.L.F.方程),ANSYS 中的本构模型用MAXWELL模型表示。 1.活化能与理想气体常数的比值(Tool-Narayanaswamy Shift Function)或者时温方程的第一个常数。 2.一个常数当用Tool-Narayanaswamy Shift Function(这个方程我不懂)的方程描述,或者是时温方程第2个常数 3.定义体积衰减函数的MAXWELL单元数(在时温方程中用不到) 4.时温方程的参考温度 5.决定1、2、3、4参数的值 6-15定义体积衰减函数的系数, 16-25定义fictive temperature的松弛时间 这20个数最终用来定义fictive temperature(在理论手册中介绍,不用在时温方程中) 26-30和31-35分别定义了材料在不同物理状态时的热扩散系数 36-45用来定义fictive temperature的fictive temperature的一些插值一类的数值,时温方程也用不到 46剪切模量开始松弛的值 47松弛时间无穷大的剪切模量的值 48体积模量开始松弛的值 49松弛时间无穷大的体积模量的值 50描述剪切松弛模量的MAXWELL模型的单元数 51-60拟合剪切松弛模量的prony级数的系数值 61-70拟合剪切松弛模量的prony级数的指数系数值(形式参看理论手册)

ANSYS分析报告

《大型结构分析软件的应用及开发》 学习报告 学院:建筑工程学院 专业班级:工程力学141 姓名:付贤凯 指导老师:姚激 学号:201411012111

1.模型介绍 如下图所示的一桁架结构,受一集中力大小为800N的作用,杆件的弹性模量为200GPa,泊松比为0.3。杆件的截面为正方形达长为1m,横截面面积为1m2。现求它的变形图与轴力图。 图1 桁架模型与受力简图(单位:mm) 2.建模与划分网格 利用大型有限元软件ANSYS,采用Link,2Dspar 1的单元进行模拟,通过网格的划分得到如图2所示的有限元模型。 图2 有限元模型

结合有限元模型中的约束条件为左侧在X与Y方向铰支固定,荷载条件为最右侧处施加向下的集中力P=800N。施加约束与荷载后的几何模型如图4所示。 图3 施加荷载与约束的几何模型 3.位移与轴力图 因在Y方向受力,所以主要做Y方向的位移图,又因为杆件在轴线方向有变形,故在X 方向仍有一定的位移。则图5为变形前后的板件形状。图6为模型沿Y方向的位移图,图7为模型沿X方向的位移图,图8为模型的总位移图。 图4 桁架变形前后形状图

图5 Y方向位移图 图6 X方向位移图

图7总位移图 分析所有的位移图可以看出从以看出左端变形最小,为零,右端变形最大。从总位移图可以看出最大的位移在左下点处,大小为0.164×10?5m。从X方向位移图可以看出,左下点处在X方向位移最大为0.36×10?6。从Y方向位移图可以看出最大位移在左下点处为0.164×10?5。都符合实际情况,图9为模型的轴力图。 图8 轴力图

workbench建立橡胶的超弹性和粘弹性本构模型

10分钟教你Ansys workbench建立橡胶的超弹性和粘 弹性本构模型 Ansys workbench 橡胶-聚合物-天然橡胶-硅橡胶-聚氨酯等 粘弹性本构模型的建立 需要具体指导可以 重要截图如下:

补充: ANSYS 粘弹性材料 1.1ANSYS 中表征粘弹性属性问题 粘弹性材料的应力响应包括弹性部分和粘性部分,在载荷作用下弹性部分是即时响应的,而粘性部分需要经过一段时间才能表现出来。一般的,应力函数是由积分形式给出的,在小应变理论下,各向同性的粘弹性本构方程可以写成如下形式: ()()002t t de d G t d I K t d d d σττττττ?=-+-??(1) 其中 σ=Cauchy 应力 ()G t =为剪切松弛核函数 ()K t =为体积松弛核函数 e =为应变偏量部分(剪切变形) ?=为应变体积部分(体积变形) t =当前时间 τ=过去时间 I =为单位张量。 该式是根据松弛条件本构方程(1),通过将一点的应变分解为应变球张量(体积变形)和应变斜张量(剪切变形)两部分,推导而得的。这里不再敖述,可参考相关文献等。 ANSYS 中描述粘弹性积分核函数()G t 和()K t 参数表示方式主要有两种,一种是广义Maxwell 单元(VISCO88和VISCO89)所采用的Maxwell 形式,一种是结构单元所采用的Prony 级数形式。实际上,这两种表示方式是一致的,只是具体数学表达式有一点点不同。1.2Prony 级数形式 用Prony 级数表示粘弹性属性的基本形式为: ()1exp G n i G i i t G t G G τ∞=??=+- ??? ∑(2)()1exp K n i K i i t K t K K τ∞=??=+- ???∑(3) 其中,G ∞和i G 是剪切模量,K ∞和i K 是体积模量,G i τ和K i τ是各Prony 级数分量的松弛时间(Relative time)。再定义下面相对模量(Relative modulus) 0G i i G G α=(4)

种常用工程材料属性性表

材料名称弹性模量(N/m^2)泊松比质量密度(kg/m^3)抗剪模量(N/m^2)张力强度(N/m^2)屈服强度(N/m^2)热扩张系数(/Kelven)比热(J/(kg.K))热导率(W/(m.k)) Ductile Iron (SN) 1.20E+110.3107.90E+037.70E+108.62E+08 5.51E+08 1.10E-05 4.50E+0275.00 KTH300-06 (GB) 1.90E+110.2707.30E+038.60E+10 3.00E+080.00E+00 1.20E-05 5.10E+0247.00 KTH350-10 (GB) 1.90E+110.2707.30E+038.60E+10 3.50E+08 2.00E+08 1.20E-05 5.10E+0247.00 KTZ450-06 (GB) 1.90E+110.2707.30E+038.60E+10 4.50E+08 2.70E+08 1.20E-05 5.10E+0247.00 KTZ550-04 (GB) 1.90E+110.2707.30E+038.60E+10 5.50E+08 3.40E+08 1.20E-05 5.10E+0247.00 KTZ650-02 (GB) 1.90E+110.2707.30E+038.60E+10 6.50E+08 4.30E+08 1.20E-05 5.10E+0247.00 KTZ700-02 (GB) 1.90E+110.2707.30E+038.60E+107.00E+08 5.30E+08 1.20E-05 5.10E+0247.00 KTB350-04 (GB) 1.20E+110.3107.90E+037.70E+10 3.50E+080.00E+00 1.10E-05 4.50E+0275.00 KTB380-12 (GB) 1.20E+110.3107.90E+037.70E+10 3.80E+08 1.70E+08 1.10E-05 4.50E+0275.00 KTB400-05 (GB) 1.20E+110.3107.90E+037.70E+10 4.40E+08 2.20E+08 1.10E-05 4.50E+0275.00 KTB450-07 (GB) 1.20E+110.3107.90E+037.70E+10 4.50E+08 2.60E+08 1.10E-05 4.50E+0275.00 Gray Cast Iron (SN) 6.62E+100.2707.20E+03 5.00E+10 1.52E+080.00E+00 1.20E-05 5.10E+0245.00 HT100 (GB) 1.08E+110.1237.10E+03 4.80E+10 1.50E+080.00E+008.20E-06 5.10E+0245.00 HT150 (GB) 1.16E+110.1947.00E+03 4.86E+10 1.50E+080.00E+00 1.01E-05 5.10E+0245.00 HT200 (GB) 1.48E+110.3107.20E+03 5.66E+10 2.00E+080.00E+00 1.10E-05 5.10E+0245.00 HT250 (GB) 1.38E+110.1567.28E+03 5.98E+10 2.50E+080.00E+008.20E-06 5.10E+0245.00 HT300 (GB) 1.43E+110.2707.30E+03 5.66E+10 3.00E+080.00E+00 1.12E-05 5.10E+0245.00 HT350 (GB) 1.45E+110.2707.30E+03 5.66E+10 3.50E+080.00E+00 1.12E-05 5.10E+0245.00 Malleable Cast Iron 1.90E+110.2707.30E+038.60E+10 4.14E+08 2.76E+08 1.20E-05 5.10E+0247.00 QT400-15 1.61E+110.2747.01E+03 6.32E+10 4.00E+08 2.50E+08 1.29E-05 5.10E+0247.00 QT400-18 1.61E+110.2747.01E+03 6.32E+10 4.00E+08 2.50E+08 1.29E-05 5.10E+0247.00 QT450-10 1.69E+110.2577.06E+03 6.76E+10 4.50E+08 3.10E+08 1.01E-05 5.10E+0247.00 QT500-7 1.62E+110.2937.00E+03 6.27E+10 5.00E+08 3.20E+089.10E-06 5.10E+0247.00 QT600-3 1.69E+110.2867.12E+03 6.56E+10 6.00E+08 3.70E+08 1.18E-05 5.10E+0247.00 QT700-2 1.69E+110.3057.09E+03 6.47E+107.00E+08 4.20E+08 1.08E-05 5.10E+0247.00 QT800-2 1.74E+110.2707.30E+03 6.84E+108.00E+08 4.80E+08 1.01E-05 5.10E+0247.00 QT900-2 1.81E+110.2707.18E+037.10E+109.00E+08 6.00E+08 1.10E-05 5.10E+0247.00 Q195 2.12E+110.2867.69E+038.24E+10 3.50E+08 1.95E+088.80E-06 4.40E+0243.00 Q215 2.12E+110.2887.69E+038.25E+10 3.50E+08 2.15E+088.80E-06 4.40E+0243.00 Q235-A(F) 2.08E+110.2777.86E+038.14E+10 3.90E+08 2.35E+088.70E-06 4.40E+0243.00 Q235-A 2.12E+110.2887.86E+038.23E+10 3.90E+08 2.35E+08 1.20E-05 4.40E+0243.00 Q235-B 2.10E+110.2747.83E+038.24E+10 3.90E+08 2.35E+088.00E-06 4.40E+0243.00 Q255 2.10E+110.2747.83E+038.24E+10 4.50E+08 2.55E+088.00E-06 4.40E+0243.00 Q275 2.10E+110.2747.83E+038.24E+10 4.90E+08 2.50E+088.00E-06 4.40E+0243.00 08F 2.19E+110.2677.83E+038.62E+10 2.95E+08 1.75E+088.70E-06 4.40E+0248.00 8 2.11E+110.2797.82E+038.25E+10 2.95E+08 1.75E+08 1.22E-05 4.40E+0248.00 10F 2.12E+110.2707.85E+038.26E+10 3.15E+08 1.85E+08 1.25E-05 4.40E+0248.00 10 2.10E+110.2707.86E+038.26E+10 3.15E+08 1.85E+08 1.26E-05 4.40E+0248.00 15F 2.12E+110.2887.85E+038.24E+10 3.55E+08 2.05E+08 1.19E-05 4.40E+0248.00 15 2.13E+110.2897.85E+038.26E+10 3.75E+08 2.25E+08 1.19E-05 4.40E+0248.00

粘弹性人工边界在ANSYS中的实现

粘弹性人工边界在ANSYS中的实现 (2007-11-07 00:25:58) 标签: 分类:FEM软件 知识/探索 ansys 粘弹性人工边界 动力边界条件 粘弹性人工边界在ANSYS中的实现 从半空间无限域取一4X2的矩形平面结构,顶部中间一定范围内受随时间变化的均布荷载,荷载如下 p(t)=t 当0< DIV> p(t)=2-t 当1<=t<=2时 p(t)=0 当t>2时 材料弹性模量E=2.5,泊松比0.25,密度1 网格尺寸0.1X0.1,在网格边界上所有结点加法向和切向combin14号单元用以模拟粘弹性人工边界(有关理论可参考刘晶波老师的相关文章)。combine14单元的两个结点,其中一个与实体单元相连,另一个结点固定。网格图如图1所示 时程分析的时间步长为0.02秒,共计算16秒。计算得到四个控制点位移时程图如图2所示,控制点坐标A(0,2)、B(0,1)、C(0,0)、D(2,2).

计算所用命令流如下: /PREP7 L=4 !水平长度 H=2 !竖起深度 E=2.5 !弹性模量 density=1 !密度 nu=0.25 !泊松比 dxyz=0.1 !网格尺寸 G = E/(2.*(1.+nu)) !剪切模量 alfa = E*(1-nu)/((1.+nu)*(1.-2.*nu)) !若计算平面应力,此式需要修改Cp=sqrt(alfa/density) !压缩波速 Cs=sqrt(g/density) !剪切波速 R=sqrt(L*L/4.+H*H/4.) !波源到边界点等效长度 KbT=0.5*G/R*dxyz KbN=1.0*G/R*dxyz CbT=density*Cs*dxyz CbN=density*Cp*dxyz ET, 1, plane42,,,2 !按平面应变计算 et, 2, combin14, ,, 2 !切向 et, 3, combin14, ,, 2 !法向

弹性力学与有限元法分析及实例讲解

弹性力学与有限元法分析 弹性力学是固体力学的一个重要分支,是研究弹性固体在受外力作用、温度改变、边界约束或其他外界因素作用下而发生的应力、形变和位移状态的科学。有限单元法是力学、数学、物理学、计算方法、计算机技术等多种学科综合发展和结合的产物,是随着计算机技术的广泛应用而迅速发展起来的一种数值分析方法。有限元法的基本思想就是化整为零,分散分析,再集零为整。即用结构力学方法求解弹性力学问题,实质是将复杂的连续体划分为有限多个简单的单元体,单元体之间仅仅通过结点相连,实现化无限自由度问题为有限稀有度问题,将连续场函数的(偏)微分方程的求解问题转化为有限个参数的代数方程组的求解问题。 有限元方法经过近半个世纪的发展,目前已经成为各种工程问题特别是结构分析问题的标准分析方法,而有限元软件也已成为现代结构设计中不可缺少的工具。有限元软件是有限元理论通向实际工程应用的桥梁,它的应用极大地提高了力学学科解决自然科学和工程实际问题的能力,进一步促进了有限元方法的发展。ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,广泛用于机械制造、石油化工、航空航天、汽车交通、土木工程、造船、水利等一般工业及科学研究。 ANSYS软件的组成: (一)前处理模块 该模块为用户提供了一个强大的实体建模及网格划分工具,可以方便的构造有限元模型,软件提高了100种以上的单元类型,用来模拟工程中的各种结构和材料。包括: 1.实体建模:参数化建模,布尔运算及体素库,拖拉、旋转、拷贝、蒙皮、倒角等。 2.自动网格划分,自动进行单元形态、求解精度检查及修正。 3.在集合模型上加载:点加载、分布载荷、体载荷、函数载荷。 4.可扩展的标准梁截面形状库。 (二)分析计算模块 该模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力。 (三)后处理模块 将计算结果以彩色等值线、梯度、矢量、粒子流、立体切片、透明及半透明等图形方式显示出来,也可以用图表、曲线形式显示或输出。 由于现在只是对ANSYS工程软件有初步的了解和掌握,所以本次作业仅以(1)结构静力学分析为例,运用ANSYS软件对汽车连杆进行受力分析;(2)

(完整版)ANSYS粘弹体分析.doc

ANSYS 中粘弹材质属性参数输入和分析................................................................................................................ 1 1.1 ANSYS 中表征粘弹性属性问题 ............................................................................................................... 1 1.2 Prony 级数 形式 .......................................................................................................................................... 1 1.3 Maxwell 形式 .............................................................................................................................................. 3 1.3 建模与载荷条件 . (5) 1.3.1 模型设计 .......................................................................................................................................... 5 1.3.2 有限元建模 .. (5) 1.3.3 理论解析解计算式 .......................................................................................................................... 6 1.4 有限元数值解与结果比较 . (6) 1.4.1 Plane183, Prony 级数方式 (6) 1.4.5 算例结论 (10) ANSYS 中粘弹材质属性参数输入和分析 1.1 ANSYS 中表征粘弹性属性问题 粘弹性材料的应力响应包括弹性部分和粘性部分, 在载荷作用下弹性部分是即时响应的, 而粘性部分需 要经过一段时间才能表现出来。 一般的, 应力函数是由积分形式给出的, 在小应变理论下, 各向同性的粘弹 性本构方程可以写成如下形式: d d(0.1) 2G t de d I K t t t d d 其中 = C auchy 应力 G t =为剪切松弛核函数 K t =为体积松弛核函数 e =为应变偏量部分(剪切变形) =为应变体积部分(体积变形) t =当前时间=过去时间 I =为单位张量。 该式是根据松弛条件本构方程 (0.1),通过将一点的应变分解为应变球张量 (体积变形) 和应变斜张量 (剪 切变形)两部分,推导而得的。这里不再敖述,可参考相关文献等。 ANSYS 中描述粘弹性积分核函数 G t 和 K t 参数表示方式主要有两种,一种是广义 Maxwell 单元 ( VISCO88 和 VISCO89 )所采用的 Maxwell 形式,一种是结构单元(如 Plane183,Plane182 等)所采用的 Prony 级数形式。实际上,这两种表示方式是一致的,只是具体数学表达式有一点点不同。 1.2 Prony 级数 形式 用 Prony 级数表示粘弹性属性的基本形式为: n G t G t G (0.2) i 1 G i exp G i

试题及其答案--弹性力学与有限元分析(DOC)

如下图所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm 对应的整体编码,以下叙述正确的是( D )。 ① I 单元的整体编码为162 ② II 单元的整体编码为426 ③ II 单元的整体编码为246 ④ III 单元的整体编码为243 ⑤ IV 单元的整体编码为564 A. ①③ B. ②④ C. ①④ D. ③⑤ 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、 形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相 适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规 定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力 =1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力 =1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三 套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、 应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。 其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部

弹性力学与有限元分析试题答案

最新弹性力学与有限元分析复习题及其答案 一、 填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、 形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相 适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规 定相适应。 4、物体受外力以后,其部将发生力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切 应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力 =1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力 =1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应 力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三 套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、 应力边界条件和混合边界条件。

相关文档
最新文档