MATLAB精通科学计算-偏微分方程求解

MATLAB精通科学计算-偏微分方程求解
MATLAB精通科学计算-偏微分方程求解

一、Maple V 系统

Maple V是由Waterloo大学开发的数学系统软件,它不但具有精确的数值处理功能,而且具有无以伦比的符号计算功能。Maple V的符号计算能力还是MathCAD和MATLAB等软件的符号处理的核心。Maple提供了2000余种数学函数,涉及范围包括:普通数学、高等数学、线性代数、数论、离散数学、图形学。它还提供了一套内置的编程语言,用户可以开发自己的应用程序,而且Maple自身的2000多种函数,基本上是用此语言开发的。

Maple采用字符行输入方式,输入时需要按照规定的格式输入,虽然与一般常见的数学格式不同,但灵活方便,也很容易理解。输出则可以选择字符方式和图形方式,产生的图形结果可以很方便地剪贴到Windows应用程序内。

二、MATLAB 系统

MATLAB原是矩阵实验室(Matrix Laboratory)在70年代用来提供Linpack和Eispack 软件包的接口程序,采用C语言编写。从80年代出现3.0的DOS版本,逐渐成为科技计算、视图交互系统和程序语言。MATLAB可以运行在十几个操作平台上,比较常见的有基于Wi ndows 9X/NT、OS/2、Macintosh、Sun、Unix、Linux等平台的系统。

MATLAB程序主要由主程序和各种工具包组成,其中主程序包含数百个内部核心函数,工具包则包括复杂系统仿真、信号处理工具包、系统识别工具包、优化工具包、神经网络工具包、控制系统工具包、μ分析和综合工具包、样条工具包、符号数学工具包、图像处理工具包、统计工具包等。而且5.x版本还包含一套几十个的PDF文件,从MATLAB的使用入门到其他专题应用均有详细的介绍。

MATLAB是数值计算的先锋,它以矩阵作为基本数据单位,在应用线性代数、数理统计、自动控制、数字信号处理、动态系统仿真方面已经成为首选工具,同时也是科研工作人员和大学生、研究生进行科学研究的得力工具。MATLAB在输入方面也很方便,可以使用内部的Editor或者其他任何字符处理器,同时它还可以与Word6.0/7.0结合在一起,在Word的页面里直接调用MATLAB的大部分功能,使Word具有特殊的计算能力。

三、MathCAD 系统

MathCAD是美国Mathsoft公司推出的一个交互式的数学系统软件。从早期的DOS下的1.0和Windows下的4.0版本,到今日的8.0版本,功能也从简单的数值计算,直至引用Maple强大的符号计算能力,使得它发生了一个质的飞跃。

MathCAD是集文本编辑、数学计算、程序编辑和仿真于一体的软件。MathCAD7.0 Pro fessional(专业版)运行在Win9X/NT下,它的主要特点是输入格式与人们习惯的数学书写格式很近似,采用WYSWYG(所见所得)界面,特别适合一般无须进行复杂编程或要求比较特殊的计算。MathCAD 7.0 Professional 还带有一个程序编辑器,对于一般比较短小,或者要求计算速度比较低时,采用它也是可以的。这个程序编辑器的优点是语法特别简单。

MathCAD可以看作是一个功能强大的计算器,没有很复杂的规则;同时它也可以和W ord、Lotus、WPS2000等字处理软件很好地配合使用,可以把它当作一个出色的全屏幕数学公式编辑器。

四、Mathematica 系统

Mathematica是由美国物理学家Stephen Wolfram领导的Wolfram Research开发的数学系统软件。它拥有强大的数值计算和符号计算能力,在这一方面与Maple类似,但它的

符号计算不是基于Maple上的,而是自己开发的。

Mathematica的基本系统主要是用C语言开发的,因而可以比较容易地移植到各种平台上,Mathematica是一个交互式的计算系统,计算是在用户和Mathematica互相交换、传递信息数据的过程中完成的。Mathematica系统所接受的命令都被称作表达式,系统在接受了一个表达式之后就对它进行处理,然后再把计算结果返回。Mathematica对于输入形式有比较严格的规定,用户必须按照系统规定的数学格式输入,系统才能正确地处理,不过由于3. 0版本引入输入面板,并且可以修改、重组输入面板,因此以前版本输入指令时需要不断切换大小写字符的繁琐方式得到很好的改善。3.0版本可以用各种格式保存文件和剪贴内容,包括RTF、HTML、BMP等格式。

五、四种软件的比较

选用何种数学软件?如果仅仅是要求一般的计算或者是普通用户日常使用,首选的是M athCAD,它在高等数学方面所具有的能力,足够一般客户的要求,而且它的输入界面也特别友好。如果要求计算精度、符号计算和编程方面的话,最好同时使用Maple和Mathemat ica,它们在符号处理方面各具特色,有些Maple不能处理的,Mathematica却能处理,诸如某些积分、求极限等方面,这些都是比较特殊的。如果要求进行矩阵方面或图形方面的处理,则选择MATLAB,它的矩阵计算和图形处理方面则是它的强项,同时利用MATLAB的N oteBook功能,结合Word6.0/7.0的编辑功能,可以很方便地处理科技文章。

1.2 满足Neumann边界条件的Helmholtz方程

源程序:

function [u,x,y] = Helmholtz_Newton(f,g,dbx,bx0,bxf,by0,byf,D,Mx,My,MinErr,M axIter)

%解方程:u_xx + u_yy + g(x,y)u = f(x,y)

% 自变量取值区域D = [x0,xf,y0,yf] = {(x,y) |x0 <= x <= xf, y0 <= y <= y f}

% 边界条件

% u(x0,y) = bx0(y), u(xf,y) = bxf(y)

% u(x,y0) = by0(x), u(x,yf) = byf(x)

% x轴均分为Mx段

% y轴均分为My段

% tol 误差因子

% MaxIter: 最大迭代次数

x0 = D(1); xf = D(2); y0 = D(3); yf = D(4);

dx = (xf - x0)/Mx; x = x0 + [0:Mx]*dx;%构造内点数组

dy = (yf - y0)/My; y = y0 + [0:My]'*dy;

Mx1 = Mx + 1; My1 = My + 1;

for i = 1:Mx

for j = 1:My

F(i,j) = f(x(i),y(j)); G(i,j) = g(x(i),y(j));

end

end

dx2 = dx*dx; dy2 = dy*dy; dxy2 = 2*(dx2 + dy2);

rx = dx2/dxy2; ry = dy2/dxy2; rxy = rx*dy2;

%边界条件

for m = 1:My1

u([1 Mx1],m)=[bx0(y(m)) bxf(y(m))]; %左右边界

end

for n = 1:Mx1

u(n,[1 My1]) = [by0(x(n)); byf(x(n))];%上下边界

end

%边界平均值作迭代初值

sum_of_bv = sum(sum([u([1 Mx1],2:My) u(2:Mx,[1 My1])']));

u(2:Mx,2:My) = sum_of_bv/(2*(Mx + My - 2));

for itr = 1:MaxIter

for i = 2:(Mx1-1)

u(i,1)=2*ry*u(i,2)+rx*(u(i+1,1)+u(i-1,1))+rxy*(G(i,1)*u(i,1)-F(i,1)-2*dbx (x(i),y(1))/dx);

end

for j=2:(My1-1)

u(1,j)=ry*(u(1,j+1)+u(1,j-1))+2*rx*u(2,j)+rxy*(G(1,j)*u(1,j)-F(1,j)-2*dbx (x(1),y(j))/dy);

end

for i= 2:Mx

for j = 2:My

u(i,j) = ry*(u(i+1,j)+u(i-1,j)) + rx*(u(i,j-1)+u(i,j+1))+ rxy*(G(i,j)*u (i,j)- F(i,j)); %迭代公式

end

end

if itr > 1 & max(max(abs(u - u0))) < MinErr%循环结束条件

break;

end

u0 = u;

end

u=u';

例1.1迭代法求解满足Neumann型边界条件的Helmholtz方程应用实例。求以下满足Ne umann型边界条件的的数值解:

自变量取值:

边界:

解:可知,

在MATLAB中编写脚本文件:

f = inline('x^2+y^2','x','y');

g = inline('sqrt(x)','x','y');

x0 = 0; xf = 4; y0 = 0; yf = 4;%自变量取值范围

Mx = 50;My = 30;%等分段数

dbx=inline('x^2+y^2','x','y');

bx0 = inline('y^2','y'); %边界条件

bxf = inline('4^2*cos(y)','y');

by0 = inline('x^2','x');

byf = inline('4^2*cos(x)','x');

D = [x0 xf y0 yf]; MaxIter = 100; MinErr = 1e-4;

[U,x,y] = Helmholtz_Newton(f,g,dbx,bx0,bxf,by0,byf,D,Mx,My,MinErr,MaxIter); clf, mesh(U)

xlabel('x')

ylabel('y')

zlabel('U')

2 抛物形偏微分方程

2.1显式前向欧拉法

源程序:

function [u,x,t] = EF_Euler(A,xf,T,it0,bx0,bxf,M,N)

%解方程A u_xx = u_t ,0 <= x <= xf, 0 <= t <= T

%初值: u(x,0) = it0(x)

% 边界条件: u(0,t) = bx0(t), u(xf,t) = bxf(t)

% M :x 轴的等分段数

% N :t 轴的等分段数

dx = xf/M; x = [0:M]*dx;

dt = T/N; t = [0:N]'*dt;

for i= 1:M + 1

u(i,1) = it0(x(i));

end

for j = 1:N + 1

u([1 M + 1],j) = [bx0(t(j)); bxf(t(j))];

end

r = A*dt/dx/dx, r1 = 1 - 2*r;

if(r>0.5)

disp('r>0.5,unstability');

end

for j = 1:N

for i = 2:M

u(i,j+1) = r*(u(i + 1,j) + u(i-1,j)) + r1*u(i,j); %(9.2.3)

end

end

u=u';

例2.1显式前向欧拉法求解一维抛物性方程应用实例。求满足以下条件的热传导数值解:

自变量取值:

边界:

解:在MATLAB中编写脚本文件:

A = 0.5; %方程系数

it0 = inline('sin(pi*x)','x'); %初始条件

bx0 = inline('0'); bxf = inline('0'); %边界条件

xf = 2; M = 80; T = 0.1; N = 100;

[u1,x,t] = EF_Euler(A,xf,T,it0,bx0,bxf,M,N);

figure(1),clf,mesh(u1)

xlabel('x')

ylabel('t')

zlabel('U')

title('r>0.5')

M=50;

[u1,x,t] = EF_Euler(A,xf,T,it0,bx0,bxf,M,N);

figure(2),clf,mesh(u1)

xlabel('x')

ylabel('t')

zlabel('U')

title('r<0.5')

2.2 隐式后向欧拉法

源程序:

function [u,x,t] = IB_Euler(A,xf,T,it0,bx0,bxf,M,N)

%解方程A1 u_xx = u_t ,0 <= x <= xf, 0 <= t <= T

%初值: u(x,0) = it0(x)

% 边界条件: u(0,t) = bx0(t), u(xf,t) = bxf(t)

% M :x 轴的等分段数

% N :t 轴的等分段数

dx = xf/M; x = [0:M]*dx;

dt = T/N; t = [0:N]'*dt;

for i = 1:M + 1

u(i,1) = it0(x(i));

end

for j = 1:N + 1

u([1 M + 1],j) = [bx0(t(j)); bxf(t(j))];

end

r = A*dt/dx/dx;

r2 = 1 + 2*r;

for i = 1:M - 1

P(i,i) = r2; %构造9.2.9的矩阵

if i > 1

P(i - 1,i) = -r; P(i,i - 1) = -r;

end

end

for j = 2:N + 1

b = [r*u(1,j); zeros(M - 3,1); r*u(M + 1,j)] + u(2:M,j - 1); %Eq.(9.2.9)

u(2:M,j) = linsolve(P,b);

end

u=u';

例2.1隐式前向欧拉法求解一维抛物性方程应用实例。求满足以下条件的热传导数值解:

自变量取值:

边界:

解:在MATLAB中编写脚本文件:

A= 0.5; %方程系数

it0 = inline('sin(pi*x)','x'); %初始条件

bx0 = inline('0'); bxf = inline('0'); %边界条件

xf = 2; M = 50; T = 0.1; N = 100;

[u1,x,t] = IB_Euler(A,xf,T,it0,bx0,bxf,M,N);

mesh(u1)

xlabel('x')

ylabel('t')

zlabel('U')

2.3 Grank-Nicholson方法

源程序:

function [u,x,t] = Grank_Nicholson(A,xf,T,it0,bx0,bxf,M,N)

%解方程A u_xx = u_t ,0 <= x <= xf, 0 <= t <= T

%初值: u(x,0) = it0(x)

% 边界条件: u(0,t) = bx0(t), u(xf,t) = bxf(t)

% M :x 轴的等分段数

% N :t 轴的等分段数

dx = xf/M; x = [0:M]*dx;

dt = T/N; t = [0:N]'*dt;

for i = 1:M + 1

u(i,1) = it0(x(i));

end

for n = 1:N + 1

u([1 M + 1],n) = [bx0(t(n)); bxf(t(n))];

end

r = A*dt/dx/dx;

r1 = 2*(1 + r); r2 = 2*(1 - r);

for i = 1:M - 1

P(i,i) = r1; %(9.2.17)

Q(i,i)=r2;

if i > 1

P(i - 1,i) = -r; P(i,i - 1) = -r; %(9.2.17)等式左边矩阵

Q(i - 1,i) = r; Q(i,i - 1) = r;%(9.2.17)等式右边矩阵

end

end

for k = 2:N + 1

b=Q*u(2:M,k-1)+[r*(u(1,k)+u(1,k-1));zeros(M-2,1)];

u(2:M,k) = linsolve(P,b); %(9.2.17)

end

u=u';

例2.1Grank-Nicholson方法求解一维抛物性方程应用实例。求满足以下条件的热传导数值解:

自变量取值:

边界:

解:在MATLAB中编写脚本文件:

A= 0.5; %方程系数

it0 = inline('sin(pi*x)','x'); %初始条件

bx0 = inline('0'); bxf = inline('0'); %边界条件

xf = 2; M = 25; T = 0.1; N = 100;

[u1,x,t] = Grank_Nicholson(A,xf,T,it0,bx0,bxf,M,N);

mesh(u1)

xlabel('x')

ylabel('t')

zlabel('U')

3双曲线偏微分方程

3.1显式中心差分法

源程序:

function [u,x,t] = ECD_Wave(A,xf,T,it0,i1t0,bx0,bxf,M,N)

%解方程a u_xx = u_tt for 0<=x<=xf, 0<=t<=T

% 初始条件: u(x,0) = it0(x), u_t(x,0) = i1t0(x)

% 边界条件: u(0,t)= bx0(t), u(xf,t) = bxf(t)

% M :沿x轴的等分段数

% N :沿y轴的等分段数

dx = xf/M; x = [0:M]'*dx;

dt = T/N; t = [0:N]*dt;

for i = 1:M + 1

u(i,1) = it0(x(i));

end

for k = 1:N + 1

u([1 M + 1],k) = [bx0(t(k)); bxf(t(k))];

end

r = A*(dt/dx)^ 2; r1 = r/2; r2 = 2*(1 - r);

u(2:M,2) = r1*u(1:M - 1,1) + (1 - r)*u(2:M,1) + r1*u(3:M + 1,1) + dt*i1t0(x (2:M)); %(11.3.4)

for k = 3:N + 1

u(2:M,k) = r*u(1:M - 1,k - 1) + r2*u(2:M,k-1) + r*u(3:M + 1,k - 1)- u(2: M,k - 2); %(11.3.3)

end

u=u';

例3.1显式中心差分法求解一维波动方程应用实例。求满足以下条件的波动方程数值解:

自变量取值:

边界:

解:在MATLAB中编写脚本文件:

A= 1;

it0 = inline('x-x^2','x'); i1t0 = inline('0');

bx0t = inline('0'); bxft = inline('0');

xf =1; M = 10; T = 2; N = 50;

[u,x,t] = ECD_Wave(A,xf,T,it0,i1t0,bx0t,bxft,M,N);

mesh(u)

xlabel('x')

ylabel('t')

zlabel('U')

(1)通过函数fem_coef为每一个节点和子函数构造基函数。

function [U,c] = fem_coef(f,g,p,c,N,S,N_i)

%p(i,s,1:3): 基函数ftn phi_i系数

%c = [ .1 1 . 0 0 .] 边界节点取1,内节点取0

%N(n,1:2) : 第n个节点的x和y坐标

%S(s,1:3) : 第s个子区域的节点#s

%N_i : 内节点个数

%U(s,1:3) : 每个区域的p1 + p2(s)x + p3(s)y 的坐标

N_n = size(N,1); % 总共节点数

N_s = size(S,1); % 总共子区域数

d=zeros(N_i,1);

N_b = N_n-N_i;

for i = N_b+1:N_n

for n = 1:N_n

for s = 1:N_s

xy = (N(S(s,1),:) + N(S(s,2),:) + N(S(s,3),:))/3; %重心

p_vctr = [p([i n],s,1) p([i n],s,2) p([i n],s,3)];

tmpg(s) = sum(p(i,s,2:3).*p(n,s,2:3))-g(xy(1),xy(2))*p_vctr(1,:)*[1 x y]'*p_vctr(2,:)*[1 xy]';

dS(s) = det([N(S(s,1),:) 1; N(S(s,2),:) 1;N(S(s,3),:) 1])/2;

%子区域

if n == 1, tmpf(s) = -f(xy(1),xy(2))*p_vctr(1,:)*[1 xy]'; end end

A12(i - N_b,n) = tmpg*abs(dS)';

end

d(i-N_b) = tmpf*abs(dS)';

end

d = d - A12(1:N_i,1:N_b)*c(1:N_b)';

c(N_b + 1:N_n) = A12(1:N_i,N_b+1:N_n)\d;

for s = 1:N_s

for j = 1:3, U(s,j) = c*p(:,s,j); end

end

(2)得到基函数图像

function Show_Basis()

%N = [-1 1;1 1;1 -1;-1 -1;0.2 0.5]; %节点集合

N = [1 0;0 1;1 2;2 1;1.2 1.5]; %节点集合

N_n = size(N,1); % 总节点数

S = [1 2 5;2 3 5;3 4 5;1 4 5]; %区域集合

N_s = size(S,1); % 总区域数

figure(1), clf

for s = 1:N_s

nodes = [S(s,:) S(s,1)];

for i = 1:3

plot([N(nodes(i),1) N(nodes(i + 1),1)],[N(nodes(i),2) N(nodes(i+1),2)]), hold on

end

end

text(0.8,0.6,'S1');text(0.8,1.6,'S2');text(1.4,1.5,'S3'),text(1.4,0.6,'S4');

%基函数

p = fem_basis_ftn(N,S);

%x0 = -1; xf = 1; y0 = -1; yf = 1; %graphic region

x0 = 0; xf = 2; y0 = 0; yf = 2; %graphic region

figure(2), clf

Mx = 50; My = 50;

c = [0 1 2 3 0]; %节点的值

dx = (xf - x0)/Mx; dy = (yf - y0)/My;

xi = x0 + [0:Mx]*dx; yi = y0 + [0:My]*dy;

i_ns = [1 2 3 4 5]; %节点标号

for itr = 1:5

i_n = i_ns(itr);

if itr == 1

for i = 1:length(xi)

for j = 1:length(yi)

Z(j,i) = 0;

for s = 1:N_s

if inpolygon(xi(i),yi(j), N(S(s,:),1),N(S(s,:),2)) > 0

Z(j,i) = p(i_n,s,1) + p(i_n,s,2)*xi(i) + p(i_n,s,3)*yi (j);

break;

end

end

end

end

subplot(321), mesh(xi,yi,Z);title(itr) %节点1的基函数

else

c1 = zeros(size(c)); c1(i_n) = 1;

subplot(320 + itr)

trimesh(S,N(:,1),N(:,2),c1) %节点2-5的基函数

title(itr);

end

end

c = [0 1 2 3 0];

subplot(326)

trimesh(S,N(:,1),N(:,2),c);title('基函数的线型组合')

(完整版)偏微分方程的MATLAB解法

引言 偏微分方程定解问题有着广泛的应用背景。人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。 偏微分方程 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用 1.1 MATLAB简介 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 1.2 Matlab主要功能 数值分析 数值和符号计算 工程与科学绘图 控制系统的设计与仿真 数字图像处理 数字信号处理 通讯系统设计与仿真 财务与金融工程 1.3 优势特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,

科学计算与MATLAB语言考试答案

1 单选(2分) 利用MATLAB求解科学计算问题的优势是()。 得分/总分 ? A. 算法最优 ? B. 不需要编写程序 ? C. 程序执行效率高 ? D. 编程效率高 正确答案:D你没选择任何选项 2 单选(2分) 在MATLAB命令行窗口输入命令时,可使用续行符,其写法是()。 得分/总分 ? A. 省略号(…) ? B. 分号(;) ? C. 三个小数点(…) ? D. 百分号(%) 正确答案:C你没选择任何选项 3

下列语句执行后,D的值为()。 1.A=[1:3;4:6]; 2.D=sub2ind(size(A),[1,1],[2,3]) 得分/总分 ? A. 3 6 ? B. 2 5 ? C. 3 5 ? D. 4 5 正确答案:C你没选择任何选项 4 单选(2分) ceil(-2.1)+floor(-2.1)+fix(-2.1)的结果为()。 得分/总分 ? A. -7 ? B. -6 ? C. -5 ? D. -9 正确答案:A你没选择任何选项 5

下列语句执行后,x的值是()。 1.log=1:5; 2.x=log(1) 得分/总分 ? A. ? B. 1 ? C. 数学常数e ? D. 报错 正确答案:B你没选择任何选项 6 单选(2分) 下列语句执行后,c的值是()。 1.ch=['abcdef';'123456']; 2.c=char(ch(2,4)-1) 得分/总分 ? A. '4' ? B. 4 ? C. '3' ? D. 3

7 单选(2分) 产生和A同样大小的全0矩阵的函数是()。 得分/总分 ? A. zero(size(A)) ? B. zeros(size(A)) ? C. size(zero(A)) ? D. size(zeros(A)) 正确答案:B你没选择任何选项 8 单选(2分) 语句x=speye(5)==eye(5)执行后,则下列说法中正确的是()。 得分/总分 ? A. x是5阶全1矩阵,且采用稀疏存储方式 ? B. x是5阶全1矩阵,且采用完全存储方式 ? C. x是5阶单位矩阵,且采用稀疏存储方式 ? D. x是5阶单位矩阵,且采用完全存储方式

MATLAB精通科学计算_偏微分方程求解

一、Maple V 系统 Maple V是由Waterloo大学开发的数学系统软件,它不但具有精确的数值处理功能,而且具有无以伦比的符号计算功能。Maple V的符号计算能力还是MathCAD和MATLAB等软件的符号处理的核心。Maple提供了2000余种数学函数,涉及范围包括:普通数学、高等数学、线性代数、数论、离散数学、图形学。它还提供了一套内置的编程语言,用户可以开发自己的应用程序,而且Maple自身的2000多种函数,基本上是用此语言开发的。 Maple采用字符行输入方式,输入时需要按照规定的格式输入,虽然与一般常见的数学格式不同,但灵活方便,也很容易理解。输出则可以选择字符方式和图形方式,产生的图形结果可以很方便地剪贴到Windows应用程序内。 二、MATLAB 系统 MATLAB原是矩阵实验室(Matrix Laboratory)在70年代用来提供Linpack和Eispac k软件包的接口程序,采用C语言编写。从80年代出现3.0的DOS版本,逐渐成为科技计算、视图交互系统和程序语言。MATLAB可以运行在十几个操作平台上,比较常见的有基于W indows 9X/NT、OS/2、Macintosh、Sun、Unix、Linux等平台的系统。 MATLAB程序主要由主程序和各种工具包组成,其中主程序包含数百个内部核心函数,工具包则包括复杂系统仿真、信号处理工具包、系统识别工具包、优化工具包、神经网络工具包、控制系统工具包、μ分析和综合工具包、样条工具包、符号数学工具包、图像处理工具包、统计工具包等。而且5.x版本还包含一套几十个的PDF文件,从MATLAB的使用入门到其他专题应用均有详细的介绍。 MATLAB是数值计算的先锋,它以矩阵作为基本数据单位,在应用线性代数、数理统计、自动控制、数字信号处理、动态系统仿真方面已经成为首选工具,同时也是科研工作人员和大学生、研究生进行科学研究的得力工具。MATLAB在输入方面也很方便,可以使用内部的E ditor或者其他任何字符处理器,同时它还可以与Word6.0/7.0结合在一起,在Word的页面里直接调用MATLAB的大部分功能,使Word具有特殊的计算能力。 三、MathCAD 系统 MathCAD是美国Mathsoft公司推出的一个交互式的数学系统软件。从早期的DOS下的1. 0和Windows下的4.0版本,到今日的8.0版本,功能也从简单的数值计算,直至引用Map le强大的符号计算能力,使得它发生了一个质的飞跃。 MathCAD是集文本编辑、数学计算、程序编辑和仿真于一体的软件。MathCAD7.0 Profe ssional(专业版)运行在Win9X/NT下,它的主要特点是输入格式与人们习惯的数学书写格式很近似,采用WYSWYG(所见所得)界面,特别适合一般无须进行复杂编程或要求比较特殊的计算。MathCAD 7.0 Professional 还带有一个程序编辑器,对于一般比较短小,或者要求计算速度比较低时,采用它也是可以的。这个程序编辑器的优点是语法特别简单。 MathCAD可以看作是一个功能强大的计算器,没有很复杂的规则;同时它也可以和Wor d、Lotus、WPS2000等字处理软件很好地配合使用,可以把它当作一个出色的全屏幕数学公式编辑器。 四、Mathematica 系统 Mathematica是由美国物理学家Stephen Wolfram领导的Wolfram Research开发的数学系统软件。它拥有强大的数值计算和符号计算能力,在这一方面与Maple类似,但它的符

Matlab求解微分方程(组)及偏微分方程(组)

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t

Matlab求解微分方程(组)及偏微分方程(组)

第四讲Matlab求解微分方程(组) 理论介绍:Matlab求解微分方程(组)命令 求解实例:Matlab求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到得方程,绝大多数都就是微分方程,真正能得到代数方程得机会很少、另一方面,能够求解得微分方程也就是十分有限得,特别就是高阶方程与偏微分方程(组)、这就要求我们必须研究微分方程(组)得解法:解析解法与数值解法、 一.相关函数、命令及简介 1、在Matlab中,用大写字母D表示导数,Dy表示y关于自变量得一阶导数,D2y 表示y关于自变量得二阶导数,依此类推、函数dsolve用来解决常微分方程(组)得求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解、 注意,系统缺省得自变量为t 2、函数dsolve求解得就是常微分方程得精确解法,也称为常微分方程得符号解、但就是,有大量得常微分方程虽然从理论上讲,其解就是存在得,但我们却无法求出其解析解,此时,我们需要寻求方程得数值解,在求常微分方程数值解方 面,MATLAB具有丰富得函数,我们将其统称为solver,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver为命令ode45、ode23、ode113、ode15s、ode23s、ode23t、ode23tb、ode15i之一、 (2)odefun就是显示微分方程在积分区间tspan上从到用初始条件求解、 (3)如果要获得微分方程问题在其她指定时间点上得解,则令tspan(要求就是单调得)、 (4)因为没有一种算法可以有效得解决所有得ODE问题,为此,Matlab提供了多种求解器solver,对于不同得ODE问题,采用不同得solver、 表1 Matlab中文本文件读写函数

科学计算与MATLAB语言(第四课)

第四讲绘图功能

作为一个功能强大的工具软件,Matlab 具有很强的图形处理功能,提供了大量的二维、三维图形函数。由于系统采用面向对象的技术和丰富的矩阵运算,所以在图形处理方面即常方便又高效。

4.1 二维图形 一、plot函数 函数格式:plot(x,y)其中x和y为坐标向量函数功能:以向量x、y为轴,绘制曲线。【例1】在区间0≤X≤2 内,绘制正弦曲线Y=SIN(X),其程序为: x=0:pi/100:2*pi; y=sin(x); plot(x,y)

一、plot函数 【例2】同时绘制正、余弦两条曲线Y1=SIN(X)和Y2=COS(X),其程序为: x=0:pi/100:2*pi; y1=sin(x); y2=cos(x); plot(x,y1,x,y2) plot函数还可以为plot(x,y1,x,y2,x,y3,…)形式,其功能是以公共向量x为X轴,分别以y1,y2,y3,…为Y轴,在同一幅图内绘制出多条曲线。

一、plot函数 (一)线型与颜色 格式:plot(x,y1,’cs’,...) 其中c表示颜色,s表示线型。 【例3】用不同线型和颜色重新绘制例4.2图形,其程序为:x=0:pi/100:2*pi; y1=sin(x); y2=cos(x); plot(x,y1,'go',x,y2,'b-.') 其中参数'go'和'b-.'表示图形的颜色和线型。g表示绿色,o表示图形线型为圆圈;b表示蓝色,-.表示图形线型为点划线。

一、plot函数 (二)图形标记 在绘制图形的同时,可以对图形加上一些说明,如图形名称、图形某一部分的含义、坐标说明等,将这些操作称为添加图形标记。 title(‘加图形标题'); xlabel('加X轴标记'); ylabel('加Y轴标记'); text(X,Y,'添加文本');

中南大学材料学院科学计算与MATLAB考试题库

练习题 1.求函数在指定点的数值导数 x=sym('x'); >> y=[x x.^2 x.^3;1 2*x 3*x.^2;0 2 6*x]; >> x=1; >> eval(diff(y)) ans = 1 2 3 0 2 6 0 0 6 >> x=2; >> eval(diff(y)) ans = 1 4 12 0 2 12 0 0 6 >> x=3; >> eval(diff(y)) ans = 1 6 27 0 2 18 0 0 6 2.求下列函数导数 (1) x=sym('x'); >> y=x^10+10^x+(log(10))/log(x); >> diff(y) ans = 10*x^9+10^x*log(10)-2592480341699211/1125899906842624/log(x)^2/x (2) x=sym('x');

>> y=log(1+x); >> x=1; >> eval(diff(y,2)) %在x=1的条件下对y表达式求两次导数后导函数的值 ans = -0.2500 3.用数值方法求下列积分 首先先讲一下trapz的用法,如下题 t=0:0.001:1; >> y=t; >> trapz(t,y) ans = 0.5000 (1) >> x=1:0.01:5; >> y=(x.^2).*sqrt(2*x.^2+3); >> trapz(x,y) ans = 232.8066 (2) x=pi/4:0.01:pi/3; >> y=x./(sin(x).^2); >> trapz(x,y) ans = 0.3810 第三题拟合曲线题 x=[0:0.1:1]; >> y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; >> a=polyfit(x,y,2); >> x=[0.05:0.2:1.05]; >> y=a(3)+a(2)*x+a(1)*x.^2 %注意x要在y前先赋值,不然y不会运行为最新的x对呀的y值 y =

MatlabPDE工具箱有限元法求解偏微分方程

在科学技术各领域中,有很多问题都可以归结为偏微分方程问题。在物理专业的力学、热学、电学、光学、近代物理课程中都可遇见偏微分方程。 偏微分方程,再加上边界条件、初始条件构成的数学模型,只有在很特殊情况下才可求得解析解。随着计算机技术的发展,采用数值计算方法,可以得到其数值解。 偏微分方程基本形式 而以上的偏微分方程都能利用PDE工具箱求解。 PDE工具箱 PDE工具箱的使用步骤体现了有限元法求解问题的基本思路,包括如下基本步骤: 1) 建立几何模型 2) 定义边界条件 3) 定义PDE类型和PDE系数 4) 三角形网格划分

5) 有限元求解 6) 解的图形表达 以上步骤充分体现在PDE工具箱的菜单栏和工具栏顺序上,如下 具体实现如下。 打开工具箱 输入pdetool可以打开偏微分方程求解工具箱,如下 首先需要选择应用模式,工具箱根据实际问题的不同提供了很多应用模式,用户可以基于适

当的模式进行建模和分析。 在Options菜单的Application菜单项下可以做选择,如下 或者直接在工具栏上选择,如下 列表框中各应用模式的意义为: ① Generic Scalar:一般标量模式(为默认选项)。 ② Generic System:一般系统模式。 ③ Structural Mech.,Plane Stress:结构力学平面应力。

④ Structural Mech.,Plane Strain:结构力学平面应变。 ⑤ Electrostatics:静电学。 ⑥ Magnetostatics:电磁学。 ⑦ Ac Power Electromagnetics:交流电电磁学。 ⑧ Conductive Media DC:直流导电介质。 ⑨ Heat Tranfer:热传导。 ⑩ Diffusion:扩散。 可以根据自己的具体问题做相应的选择,这里要求解偏微分方程,故使用默认值。此外,对于其他具体的工程应用模式,此工具箱已经发展到了Comsol Multiphysics软件,它提供了更强大的建模、求解功能。 另外,可以在菜单Options下做一些全局的设置,如下 l Grid:显示网格 l Grid Spacing…:控制网格的显示位置 l Snap:建模时捕捉网格节点,建模时可以打开 l Axes Limits…:设置坐标系范围 l Axes Equal:同Matlab的命令axes equal命令

《Matlab与科学计算》作业 2010010099

《Matlab与科学计算》作业 第一章MATLAB环境 1、MATLAB通用操作界面窗口包括哪些?命令窗口、历史命令窗口、当前目录窗口、工作空间窗口各有哪些功能? 答:MATLAB通用操作界面窗口包括:命令窗口、历史命令窗口、当前目录浏览器窗口、工作空间窗口、变量编辑器窗口、M文件编辑/调试器窗口、程序性能剖析窗口、MATLAB帮助。 命令窗口是MATLAB命令操作的最主要窗口,可以把命令窗口当做高级的“草稿纸”。在命令窗口中可以输入各种MATLAB的命令、函数和表达式,并显示除图形外的所有运算结果。 历史命令窗口用来记录并显示已经运行过的命令、函数和表达式,并允许用户对它们进行选择、复制和重运行,用户可以方便地输入和修改命令,选择多行命令以产生M文件。 当前目录窗口用来设置当前目录,可以随时显示当前目录下的M、MKL等文件的信息,扬文件类型、文件名、最后个修改时间和文件的说明信息等,并可以复制、编辑和运行M文件及装载MAT数据文件。 工作空间窗口用来显示所有MATLAB工作空间中的变量名、数据结构、类型、大小和字节数。 2、熟悉课本中表格1.4、1.5、1.6、1.7、1.8的内容。 3、如何生成数据文件?如何把数据文件中的相关内容输入到工作空间中,用实例进行操作。 生成数据文件:

把数据文件中的相关内容输入到工作空间中: 结果: 4、在工作空间中可以通过哪些命令管理变量,写出每种语法的具体操作过程。答:(1)把工作空间中的数据存放到MAT数据文件。 语法:save filename 变量1 变量2 ……参数。 (2)从数据文件中取出变量存放到工作空间。 语法:load filename 变量1 变量2 ……。

有限差分法求解偏微分方程MATLAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程

一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程: 22(,)()u u f x t t x αα??-=??其中为常数 具体求解的偏微分方程如下: 22001 (,0)sin()(0,)(1,)00 u u x t x u x x u t u t t π???-=≤≤?????? =??? ==≥??? 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析; 4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1) 求解区域的网格划分步长参数如下:

《MATLAB与科学计算》期末论文

盐城师范学院《MATLAB与科学计算》期末论文 2016-2017学年度第一学期 用MATLAB解决解析几何的图形问题 学生姓名吴梦成 学院数学与统计学院 专业信息与计算科学 班级数15(5)信计 学号 15213542

用MATLAB 解决解析几何的图形问题 摘 要 将 MATLAB 的图形和动画功能都用于解析几何教学,可使教学形象生动。以图形问题为例,详细给出了实例的程序编写和动画实现过程 。在解析几何教学中有一定的应用价值。 【关键词】: MATLAB ; 解析几何 ;图形 ; 动 画;编程 1 引 言 在解析几何的教学中,使用传统的教学方法。许多曲线及曲面的形成过程与变换过程只通过传统的教师讲授静态图示就很难形象生动地表示出来 。在解析几何教学中使用MATLAB 软件辅助教学,不仅可以很容易绘制出复杂的立体图形。把曲线、曲面的形成和变化过程准确地模拟出来 ,而且还能够对它们进行翻转 、旋转 ,甚 至还能够轻而易举地实现图形的动画效果!这对提高教学效率和培养学生的空间想象能力可起到事半功倍的效果。下面结合实例从几个方面说明MATLAB 在解析几何画图方面的应用。 2 利用 MATLAB 绘制三维曲线 在空间解析几何中,各种曲线和曲面方程的建立都离不开图形 ,而空间曲线和曲面图形既难画又费时。借助MATLAB 的绘图功能 ,可以快捷 、 准确地绘出图形,使教学变得形象 、生动 。有利于学生观察三维空间图形的形状 , 掌握图形的性质 。 一 般地 ,MATLAB 可用plot3,ezplot3,comet3等函数来各种三维曲线 。 例如画螺旋曲线的图形,其参数方程设为 :t at cos x =,t b sin t y -=,ct =z 。使用 plot3语句画螺旋曲线图形的方法如下( 设a =2 ,b=4,c=3): );*3),sin(*.*4),cos(*.*2(3;*10:50/:0t t t t t plot pi pi t -= MATLAB 用两条简单的语句就可以画出螺旋 曲线(图1),但上述方法是静态的 ,为了体

科学计算与MATLAB 1.5

单元测验已完成成绩:100.0分 1 【单选题】 MATLAB一词来自()的缩写。 ?A、 Mathematica Laboratory ?B、 Matrix Laboratory ?C、 MathWorks Lab ?D、 Matrices Lab 我的答案:B得分:50.0分 2 【单选题】 下列选项中能反应MATLAB特点的是()。?A、 算法最优 ?B、 不需要写程序 ?C、 程序执行效率高 ?D、 编程效率高

我的答案:D得分:50.0分 单元测验已完成成绩:96.4分 1 【单选题】 当在命令行窗口执行命令时,如果不想立即在命令行窗口中输出结果,可以在命令后加上()。 ?A、 冒号(:) ?B、 逗号(,) ?C、 分号(;) ?D、 百分号(%) 我的答案:C得分:7.1分 2 【单选题】 fix(264/100)+mod(264,10)*10的值是()。 ?A、 86 ?B、 62 ?C、 423

?D、 42 我的答案:D得分:7.1分 3 【单选题】 在命令行窗口输入下列命令后,x的值是()。 >> clear >> x=i*j ?A、 不确定 ?B、 -1 ?C、 1 ?D、 i*j 我的答案:B得分:7.1分 4 【单选题】 使用语句x=linspace(0,pi,6)生成的是()个元素的向量。?A、 8 ?B、 7

?C、 6 ?D、 5 我的答案:C得分:7.1分 5 【单选题】 ceil(-2.1)的结果为()。?A、 -2 ?B、 -3 ?C、 1 ?D、 2 我的答案:A得分:7.1分 6 【单选题】 eval('sqrt(4)+2')的值是()。?A、 sqrt(4)+2 ?B、

科学计算与matlab1.5

单元测验已完成成绩:分 1 【单选题】 MATLAB一词来自()的缩写。 A、 Mathematica Laboratory B、 Matrix Laboratory C、 MathWorks Lab D、 Matrices Lab 我的答案:B得分:分 2 【单选题】 下列选项中能反应MATLAB特点的是()。 A、 算法最优 B、 不需要写程序 C、 程序执行效率高 D、 编程效率高

我的答案:D得分:分 单元测验已完成成绩:分 1 【单选题】 当在命令行窗口执行命令时,如果不想立即在命令行窗口中输出结果,可以在命令后加上()。 A、 冒号(:) B、 逗号(,) C、 分号(;) D、 百分号(%) 我的答案:C得分:分 2 【单选题】 fix(264/100)+mod(264,10)*10的值是()。 A、 86 B、 62 C、 423 D、

42 我的答案:D得分:分 3 【单选题】 在命令行窗口输入下列命令后,x的值是()。 >> clear >> x=i*j A、 不确定 B、 -1 C、 1 D、 i*j 我的答案:B得分:分 4 【单选题】 使用语句x=linspace(0,pi,6)生成的是()个元素的向量。 A、 8 B、 7 C、 6

D、 5 我的答案:C得分:分 5 【单选题】 ceil的结果为()。 A、 -2 B、 -3 C、 1 D、 2 我的答案:A得分:分 6 【单选题】 eval('sqrt(4)+2')的值是()。 A、 sqrt(4)+2 B、 4 C、 2 D、

2+2 我的答案:B得分:分 7 【单选题】 已知a为3×5矩阵,则执行完a(:,[2,4])=[]后()。 A、 a变成行向量 B、 a变为3行2列 C、 a变为3行3列 D、 a变为2行3列 我的答案:C得分:分 8 【单选题】 在命令行窗口输入以下命令 >> A=[1:3;4:6]; >> D=sub2ind(size(A),[1,1],[2,3]) D的值为()。 A、 3 6 B、 2 5 C、 4 5

Matlab与科学计算样题(加主观题答案)

Matlab 与科学计算考试样题(客观题) 1 下面的MATLAB 语句中正确的有: a) 2a =pi 。 b) record_1=3+4i c) a=2.0, d) c=1+6j 2. 已知水的黏度随温度的变化公式如下,其中a=0.03368,b=0.000221,计算温度t 为20,30,40度时的粘度分别是: 2 1at bt μμ=++0μ为0℃水的黏度,值为31.78510-?;a 、b 为常数,分别为0.03368、0.000221。 3. 请补充语句以画出如图所示的图形: [x,y]=meshgrid(-2:0.1:2, -2:0.1:2)。 Z=x.*exp(-x.^2-y.^2)。 。 a) Plot3(x,y,Z) b) plot3(x,y,Z) c) mesh(x,y,Z) d) plot3(x,y,z) 2 a) 0.4900 1.2501 0.8560 b) 0.8560 1.2501 0.4900 c) -0.6341 3.8189 -3.7749 d) 3.8189 -3.7749 2.8533 解释说明:

>> x=0.5:0.5:3.0。 >> y=[1.75,2.45,3.81,4.80,8.00,8.60]。 >> a=polyfit(x,y,2) a = 0.4900 1.2501 0.8560 >> x1=[0.5:0.25:3.0]。 >> y1=a(1)*x1.^2+a(2)*x1+a(3) >> plot(x,y,'*') >> hold on >> plot(x1,y1,'--r') 5. 求方程在 x=0.5附近的根. 21 x x += a) 0.6180 b) -1.1719e-25 c) -1 d) -1.6180 6. 用Newton-Cotes方法计算如下积分 1 5 x? (a)133.6625 (b)23.8600 (c) 87.9027 (d) -1.6180 7. y=ln(1+x),求x=1时y" a) -0.25 b) 0.5 c) -0.6137 d) -1.6137 8.某公司用3台轧机来生产规格相同的铝合金薄板。取样测量薄板的 厚度,精确至‰厘M。得结果如下: 轧机1:0.236 0.238 0.248 0.245 0.243 轧机2:0.257 0.253 0.255 0.254 0.261 轧机3:0.258 0.264 0.259 0.267 0.262 计算方差分析结果,并判定各台轧机所生产的薄板的厚度有无显著的差异? a) p=1.3431e-005,没有显著差异。

Matlab求解微分方程(组)及偏微分方程(组)

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解. (3)如果要获得微分方程问题在其他指定时间点012,,, ,f t t t t 上的解,则令 tspan 012[,,,]f t t t t =(要求是单调的). (4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供

基于MATLAB科学计算器

目录 计算器得效果图 ........................................................................... 错误!未定义书签。 一、GUI设计界面: (3) 1。打开GUI (3) 2。添加按钮 (3) 3。根据按钮得作用及视觉效果做一定得修改: (4) 4。保存、添加功能函数 (4) (1)数字键编写 (4) (2)符号键得编写 (4) (3)运算符“=”得编写 (5) (4)按键“←back"得编写 (5) (5)按键“清空”得编写 (5) (6)按键“退出”得编写 (5) (7)按键“二进制数转十进制数"得编写 (5) (8)按键“十进制数转二进制数”得编写 (5) 二、计算器得使用 (5) 除法运算(÷) (5) 平方运算(^2) (6) 函数cos (∏/3)得计算 (6) 函数arctan (∏/3)得计算 (7) 以2为底得对数得计算(log 2) (7) 十进制数转二进制数得计算(调用dec2bin函数) (8) 二进制数转十进制数得计算(调用bin2dec函数) (8) 三、附各按键得程序源代码 (9) 四、问题与解决方法 (14) 五、心得体会 (14) 参考文献 (15) 计算器得效果图:

一、GUI设计界面: 1。打开GUI 输入Guide 回车或者在工具栏上点击图标打开Guide 窗口: 2。添加按钮

3、根据按钮得作用及视觉效果做一定得修改: 双击按钮(Puch Button)进入按键属性修改显示字符串大小、字体与颜色,然后对按钮得位置进行排布,尽量使按钮集中在静态文本框下面、 4、保存、添加功能函数 把做好得按钮及静态文本框保存后自动弹出Editor得M文本,对然后对相应得pushbutton添加功能函数。以下就是相应按钮得功能函数。 (1)数字键编写 在function pushbutton1_Callback(hObject, eventdata, handles)下输入: textString = get(handles。text1,’String'); textString =strcat(textString,'0'); set(handles、text1,’String',textString) 这就是使用句柄handles指向对象text1,并以字符串形式来存储数据文本框text1得内容,并存储数个“0”, 然后由set(handles。text1,'String','textString’在text1中输出。 同理,分别在function pushbutton2~10_Callback(hObject, eventdata, handles)下给1~9数字按键下编写此类程序、 (2)符号键得编写 function pushbutton12_Callback(hObject, eventdata, handles) textString = get(handles、text1,'String’); textString =strcat(textString,’÷’); set(handles。text1,'String',textString) strcat得作用就是将两个字符串连接起来,就就是在已输入得存储数据textString后添加“÷"进行运算。 然后执行set(handles、text1,’String’,textString)。符号键‘—’、‘*’、‘/’与‘÷'得运算函数类似。“平方运算”,主要就是由“^2”功能实现。

《偏微分方程概述及运用matlab求解偏微分方程常见问题》要点

北京航空航天大学 偏微分方程概述及运用matlab求解微分方 程求解常见问题 姓名徐敏 学号57000211 班级380911班 2011年6月

偏微分方程概述及运用matlab求解偏微分 方程常见问题 徐敏 摘要偏微分方程简介,matlab偏微分方程工具箱应用简介,用这个工具箱解方程的过程是:确定待解的偏微分方程;确定边界条件;确定方程所在域的几何形状;划分有限元;解方程 关键词MATLAB 偏微分方程程序 如果一个微分方程中出现的未知函数只含有一个自变量,这个方程叫做常微分方程,也简称微分方程:如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 一,偏微分方程概述 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,很多重要的物理、力学等学科的基本方程本身就是偏微分方程。早在微积分理论刚形成后不久,人们就开始用偏微分方程来描述、解释或预见各种自然现象,并将所得到的研究方法和研究成果运用于各门科学和工程技术中,不断地取得了显著的成效,显示了偏微分方程对于人类认识自然界基本规律的重要性。逐渐地,以物

理、力学等各门科学中的实际问题为背景的偏微分方程的研究成为传统应用数学中的一个最主要的内容,它直接联系着众多自然现象和实际问题,不断地提出和产生出需要解决的新课题和新方法,不断地促进着许多相关数学分支(如泛函分析、微分几何、计算数学等)的发展,并从它们之中引进许多有力的解决问题的工具。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。 在国外,对偏微分方程的应用发展是相当重视的。很多大学和研究单位都有应用偏微分方程的研究集体,并得到国家工业、科学部门及军方、航空航天等方面的大力资助。比如在国际上有重大影响的美国的Courant研究所、法国的信息与自动化国立研究所等都集中了相当多的偏微分方程的研究人员,并把数学模型、数学方法、应用软件及实际应用融为一体,在解决实际课题、推动学科发展及加速培养人才等方面都起了很大的作用。 在我国,偏微分方程的研究起步较晚。但解放后,在党和国家的大力号召和积极支持下,我国偏微分方程的研究工作发展比较迅速,涌现出一批在这一领域中做出杰出工作的数学家,如谷超豪院士、李大潜院士等,并在一些研究方向上达到了国际先进水平。但总体来说,偏微分方程的研究队伍的组织和水平、研究工作的广度和深度与世界先进水平相比还有很大的差距。因此,我们必须继续努力,大力加强应用偏微分方程的研究,逐步缩小与世界先进水平的差距 二,偏微分方程的内容

Matlab解微分方程(ODE+PDE)

常微分方程: 1 ODE解算器简介(ode**) 2 微分方程转换 3 刚性/非刚性问题(Stiff/Nonstiff) 4 隐式微分方程(IDE) 5 微分代数方程(DAE) 6 延迟微分方程(DDE) 7 边值问题(BVP) 偏微分方程(PDEs)Matlab解法 偏微分方程: 1 一般偏微分方程组(PDEs)的命令行求解 2 特殊偏微分方程(PDEs)的PDEtool求解 3 陆君安《偏微分方程的MATLAB解法 先来认识下常微分方程(ODE)初值问题解算器(solver) [T,Y,TE,YE,IE] = odesolver(odefun,tspan,y0,options) sxint = deval(sol,xint) Matlab中提供了以下解算器: 输入参数: odefun:微分方程的Matlab语言描述函数,必须是函数句柄或者字符串,必须写成Matlab

规范格式(也就是一阶显示微分方程组),这个具体在后面讲解 tspan=[t0 tf]或者[t0,t1,…tf]:微分变量的范围,两者都是根据t0和tf的值自动选择步长,只是前者返回所有计算点的微分值,而后者只返回指定的点的微分值,一定要注意对于后者tspan必须严格单调,还有就是两者数据存储时使用的内存不同(明显前者多),其它没有任何本质的区别 y0=[y(0),y’(0),y’’(0)…]:微分方程初值,依次输入所有状态变量的初值,什么是状态变量在后面有介绍 options:微分优化参数,是一个结构体,使用odeset可以设置具体参数,详细内容查看帮助 输出参数: T:时间列向量,也就是ode**计算微分方程的值的点 Y:二维数组,第i列表示第i个状态变量的值,行数与T一致 在求解ODE时,我们还会用到deval()函数,deval的作用就是通过结构体solution计算t 对应x值,和polyval之类的很相似! 参数格式如下: sol:就是上次调用ode**函数得道的结构体解 xint:需要计算的点,可以是标量或者向量,但是必须在tspan范围内 该函数的好处就是如果我想知道t=t0时的y值,不需要重新使用ode计算,而直接使用上次计算的得道solution就可以 [教程] 微分方程转换为一阶显示微分方程组方法 好,上面我们把Matlab中的常微分方程(ODE)的解算器讲解的差不多了,下面我们就具体开始介绍如何使用上面的知识吧! 现实总是残酷的,要得到就必须先付出,不可能所有的ODE一拿来就可以直接使用,因此,在使用ODE解算器之前,我们需要做的第一步,也是最重要的一步,借助状态变量将微分

基于Matlab的简易计算器

工程设计报告 设计题目:基于Matlab的简易计算器 学院: 专业: 班级: 学号: 姓名: 电子邮件: 日期:2015年12 月 成绩: 指导教师:

西安电子科技大学 电子工程学院 工 程设计 任务书 学生姓名指导教师职称 学生学号专业 题目基于Matlab 的简易计算器 任务与要求 任务如下: 利用MATLAB GUI 设计实现一个图形用户界面的计算器程序,实现: A.实现十进制数的加、减、乘、除、简单计算。 B. 科学计算函数,包括正弦、余弦、正切、余切、开方、指数等函数运行。 C. 有清除键,能清除操作。 要求如下: A .熟练掌握MatlabGUI 界面的设计与应用 B .最终计算器能够实现预期的相关功能 开始日期2015年 11月日完成日期2016年1月日 课程设计所在单位 本表格由电子工程学院网络信息中心编辑录入 https://www.360docs.net/doc/d112190677.html,. …………………………装…………………… … … … … 订 … … … … … … … … … … … …线 … …… …… …… …… …… … …… …… …… …… …… … …

摘要 基于Matlab GUI计算器设计时利用GUI的创建图像用户界面进行计算器设计。设计计算器时,主要是考虑到计算器的易用性、功能的常用程度进行计算器界面与功能的设计。通过调整控件和文本的布局及颜色,使界面简单大方、布局合理,达到界面友好的效果。 计算器设计时主要利用到get和set两个函数进行各个控件属性值的传递和设置。计算器实现的功能有:数字0~9和小数点的输入显示,平方开方和对数的输入显示。进行四则运算、正弦函数、余弦函数、正切函数以及反正弦函数、反余弦函数、反正切函数的计算等等。最后运行调试,实现基于MatlabGUI的计算器的设计。 关键词:MatlabGUI计算器 Abstracts Based on Matlab GUI calculator design using the user interface to create images of GUI calculator design.Design calculator, mainly considering the ease of use, function calculators calculator interface and function of the common level of design.By adjusting the control and the layout of the text and color, make the interface simple and easy, rational layout, to achieve the effect of friendly interface. Calculator design used to get and set two main function for each attribute value transfer and control Settings.Calculator the functions are: 0 ~ 9, according to input and decimal square root and logarithm of input.Arithmetic, sine function and cosine function, tangent function and the arcsine function,arccosine function, the calculation of the arctangent function and so on.Finally running debugging, implementation design based on Matlab GUI calculator. Keywords: Matlab GUI calculator

相关文档
最新文档