元素周期表的发现及发展史

元素周期表的发现及发展史
元素周期表的发现及发展史

研究性学习

元素周期表的发展和演变

研究领域:历史,化学

指导老师:付君梅

课题成员:王璨(组长)陈思冲陶俊宏陈赐李宜瑾冯国忠

课题班级:新疆师范大学附属中学高二(4)班

日期:2012年9月

第一部分:前言

课题背景:学习化学有整整两年了,作为学习化学时刻需要的工具——元素周期表对我们的学习作用非常的大,为此,我们准备借研究

性学习之机,研究元素周期表的发展历史和几个世纪以来的演

变过程。

课题目的和意义:通过此活动,使同学们能够进一步了解元素周期

表的历史和用途,并对同学们日后的化学学习起

到帮助(本次研究注重元素周期表发展的历史,

在元素周期表的性质上并不做重点)。

课题内容:通过研究等多种方式了解化学元素周期表的发展历史和发现元素周期表的人物,使用大量图片向同学们展示元素周期表的

各种形式图,并知道一些元素的用途和作用。

课题研究方法:1、到学校、家里、市区图书馆或网上搜索所需资料;

2、整理资料;

3、分组汇报、交流、讨论、教师指导;

4、学生进行总结。

人员安排:王璨组织、撰写探究实践报告和负责其它工作;

冯国忠,陈思冲负责查找资料;

陈赐,李宜瑾负责收集、整理、筛选所需资料;

陶俊宏负责多媒体制作。

时间安排:2012年8月上旬进行书面报告,8月中旬至9月上旬进行小组探究。

预期成果:了解元素周期表的历史、发展过程和它的发现者。在化学学习中能够有一些帮助。

表达形式:以文字,图片为主,音像资料为辅。

摘要:◆诞生:1869年,俄国化学家门捷列夫编制出第一张元素周期表

◆依据:按照相对原子质量由小到大排列,将化学性质相似的元

素放在同一纵行

◆意义:揭示了化学元素之间的内在联系,成为化学发展史上的

重要里程碑之一

◆发展:随着科学的发展,元素周期表中未知元素留下的空位先

后被填满。

◆成熟:当原子结构的奥秘被发现时,编排依据由相对原子质量

改为原子的核电荷数,形成现行的元素周期表

关键词:诞生化学性质里程碑发展相对原子质量

-----摘自《百度》百科

第二部分:对元素周期表的认识

一、元素周期表的发现者

1.贝莱那

1829年,德国的化学家贝莱纳首先敏锐地察觉到已知元素所表露的这种内在关系的端倪:某三种化学性质相近的元素,如氯,溴,碘,不仅在颜色、化学活性等方面可以看出有定性规律变化,而且其原子量之间也有一定理的关系,即:中间元素的原子量为另两种元素原子量的算术平均值。这种情况,他一共找到了五组,他将其称之为"三元素族",即:

锂 3 钠 11 钾 19

钙 20 锶 88 钡 137

氯 17 溴 35 碘 127

硫 16 硒 79 碲 128

锰 55 铬 52 铁 56

2.门捷列夫

德米特里·伊万诺维奇·门捷列夫生于一八三四年二月七日俄国西伯利亚的托波尔斯克市。这个时代,正是欧洲资本主义迅速发展时期。生产的飞速发展,不断地对科学技术提出新的要求。化学也同其它科学一样,取得了惊人的进展。门捷列夫正是在这样一个时代,诞生到人间。门捷列夫从小就热爱劳动,热爱学习。他认为只有劳动,才能使人们得到快乐、美满的生活。只有学习,才能使人变得聪明。

他不分昼夜地研究着,探求元素的化学特性和它们的一般的原子特性,然后将每个元素记在一张小纸卡上。他企图在元素全部的复杂的特性里,捕捉元素的共同性。但他的研究,一次又一次地失败了。可他不屈服,不灰心,坚持干下去。

在一八六九年二月十九日,他终于发现了元素周期律。他的周期律说明:简单物体的性质,以及元素化合物的形式和性质,都和元素原子量的大小有周期性的依赖关系。门捷列夫在排列元素表的过程中,又大胆指出,当时一些公认的原子量不准确。如那时金的原子量公认为169.2,按此在元素表中,金应排在锇、铱、铂的前面,因为它们被公认的原子量分别为198.6、196.7、196.7,而门捷列夫坚定地认为金应排列在这三种元素的后面,原子量都应重新测定。大家重测的结果,锇为190.9、铱为193.1、铂为195.2,而金是197.2。实践证实了门捷列夫的论断,也证明了周期律的正确性。

一九0七年二月二日,这位享有世界盛誉的科学家,因心肌梗塞与世长辞了。但他给世界留下的宝贵财产,永远存留在人类的史册上。

二、元素周期表发现史

1.周期律发现前的元素分类

1789年拉瓦锡在他的著作中首次出现了《元素表》。1815年英人威廉· 普劳特提出:1、所有元素的原子量均为氢原子量的整数倍;2、氢是原始物质或“ 第一物质” , 他试图把所有元素都与氢联系起来作为结构单元。1829年德伯赖纳提出五组《三素组》:Li、Na、K;Ca、Sr、Ba;P、As、Sb;S、Se、Te;Cl、Br、I。1843年盖墨林把当时己知的化学元素按性质相似分类制成了元素表。十八世纪六十年代法人尚古多制出了元素分类的螺旋线图或地螺柱图。他最先提出元素性质和原子量之间有关系, 并初步提出了元素性质的周期性。螺旋图是向揭示周期律迈出了有力的第一步, 但缺乏精确性。1864年英人欧德林用46种元素排出了《元素表》。同年德人迈尔依原子量大小排出《六元素》表。该表对元素进行了分族, 有了周期的雏型。1865年英人纽兰兹把62种元素依原子量递增顺序排表, 发现每第八个元素性质与第一个元素性质相近, 好似音乐中的八度音, 他称为“ 八音律” 。八音律揭示了元素化学性质的重要特征, 但未能揭示出事物内在的规律性。

2 .周期律的发现

化学家绝不满意元素漫无秩序的状态。从《三素组》到《八音律》, 逐步对元素知识进行归纳和总结, 试图从中找出视律性的东西, 为发现周期律开辟了

道路。由于科学资料积累, 元素数目增多, 终于在十九世纪后半期迈尔和门捷列夫同时发现了元素周期律。1867年俄人门捷列夫对当时已发现的63种元素进行归纳、比较, 结果发现:元素及其化合物的性质是原子量的周期函数的关系, 这就是元素周期律。依据周期律排出了周期表, 根据周期表, 他修改了铍、铯原子量, 预言了三种新元素, 后来陆续被发现, 从而验证了门氏周期律的正确性,

迅速被化学家所接受。在周期律的指导下, 先后发现了稼、钪、锗、钋、镭、锕、镤、铼、锝、钫、砹等十一种元素同时还预言了稀有气体的存在, 并于1898年以后, 陆续发现了氖、氢、氙等元素, 因而在周期表中增加ⅧA族。到1944年自然界存在的92种元素全部被发现。

如果说, 原子一一分子论的建立是对化学的一次总结, 那么周期律的发现, 使元素成了一个严整的自然体系, 化学变成一门系统的科学, 它是化学史上的

一个重要里程碑它讨原子结构、有机化学、原子能、地球化学、生物化学、冶金、新元素的发现与合成都有深远的影响。为了纪念门氏的伟大发现, 科学家把101号元素命名为钔。恩格斯曾给以高度评价:“ 门捷列夫不自觉地应用黑格尔的量转化为质的规律, 完成了科学上的一个勋业。”

由于时代的局限性, 门氏不可能认识到周期律更本质的规律。因此可以说门氏只是原子体系的哥白尼, 而原子体系的伽利略和牛顿, 自有后来人。

三、元素周期表的发展史

1 .周期律概念的更新

十九世纪末, 二十世纪初, 由于原子量的精确测定, 确知碲的原子量大碘, 氩大于钾, 钴大于镍等。基于这个事实, 并照顾到元素性质的相似性,1902年捷克化学家布拉乌勒尔设计的周期表中有几处颠倒了原子量的排列。1905年瑞士化学家维尔纳设计的专表也有这种现象, 这是对门氏周期律的直接挑战。面对矛盾, 当时科学家无法解释。随着阴极射线、电子、射线、放射性等的发

现,1899--1900年英人卢瑟福提出原子有核模型, 揭示了原子的复杂结构。1913年荷兰人范德布洛克指出元素在周期表中排列序数等于该元素原子具有的电子数。这一假说开始把元素在周期表中排列序数和原子结构联系起来。这个假定动摇了门氏和他的同辈以及先辈们的周期律的固有概念。

1913--1914年间, 英国青年物理学家莫斯莱对X射线技术进行了研究,从而验证了范德布洛克的假说, 揭示了元素周期律的本质:元素的化学性质是它们原子序数的周期性函数。原来在诸原子中有决定意义的东西不是原子量, 而是原子的核电荷以及核外电子数。1916年德国化学家柯塞尔就立即把原子序数放进周期表中, 代替了门氏的原子量。1920年英人查德维克证实了摩斯莱的工作。这样, 一系列物理学中的新发现, 使元素周期律获得了新定义:元素的物理性质和化学性质, 以及由元素形成的各种化合物的性质, 皆与元素原子核电荷的数量成周期性关系。

2 .周期律理论的深化与探索

按照核电荷递增顺序排列各元素, 使前面出现的矛盾迎刃而解。随着现代原子结构理论的建立, 周期律理论得到发展。1913年玛丽· 居里提出原子核结构设想。1913年卢瑟福和查德维克发现质子。1932年查德维克发现中子。质子和中子发现后, 苏联科学家伊万年柯, 德国物理学家海森堡等人立即提出原子核由质子和中子组成的理论。1913年英国化学家索迪提出“ 同位素” 概念.1919年阿斯登用质谱仪精确的确是了原子量.1913年丹麦物理学家玻尔用他的原子

结构模型成功的解释了氢元素的线光谱。1923--1924年法国年青物理学家德布罗依提出“ 物质波”概念, 1926年德国物理乒家薛定谔提出了解决微观粒子运动方程, 对核外电子运功状态和能级的计算提供了依据。

遵循周期律, 把众多的元素(106种)组织在一起所形成的系统, 称做化学元素周期系。周期系的具体形式是各式各样的周期表。如塔式表、三分族元素周期表环形、螺旋形、扇形、蜗牛形, 对角形、带形、立体支架形、阶梯形、罗盘形、园筒式等五花八门, 各具特色。但其中最常用的是短表和长表。近年来, 由

于人工合成元素增多, 长表的优越性日益显露出来, 短表已经完成了历史使命, 更多的应用让位于长表。长表的重要特点之一是能够很好的把元素分成元素群, 便于按群体性质来掌握化学元素的总体知识。表中明显的划分出活泼金属、非金属、过渡元素、低熔合金、镧系、锕系元素区。根据电子构型可分成S 区、p 区、d 区、f 区四组。便于人们从结构观点去分析比较。

四、元素周期表简介

门捷列夫(Dmitri Mendeleev)将当时已知的63种

元素依原子量大小并以表的形式排列,把有相似化学性质

的元素放在同一行,就是元素周期表的雏形。利用周期表,

门捷列夫成功的预测当时尚未发现的元素的特性(镓、钪、

锗)。1913年英国科学家莫色勒利用阴极射线撞击金属产

生X 射线,发现原子序越大,X 射线的频率就越高,因

此他认为核的正电荷决定了元素的化学性质,并把元素依

照核内正电荷(即质子数或原子序)排列.后来又经过多名

科学家多年的修订才形成当代的周期表。

元素周期表中共有118种元素。将元素按照相对原子

质量有小到大依次排列,并将化学性质相似的元素放在一

个纵列。每一种元素都有一个编号,大小恰好等于该元素原子的核内质子数目,这个编号称为原子序数。在周期表中,元素是以元素的原子序排列,最小的排行最先。表中一横行称为一个周期,一列称为一个族.

原子的核外电子排布和性质有明显的规律性,科学家们是按原子序数递增排

列,将电子层数相同的元素放在同一行,将最外层电子数相同的元素放在同一列。 元素周期表有7个周期,16个族。每一个横行叫作一个周期,每一个纵行叫作一个族。这7个周期又可分成短周期(1、2、3)、长周期(4、5、6)和不完全周期(7)。共有16个族,又分为7个主族(ⅠA-ⅦA ),7个副族(ⅠB-ⅦB ),一个第Ⅷ族,一个零族。

元素在周期表中的位置不仅反映了元素的原子结构,也显示了元素性质的递

变规律和元素之间的内在联系。使其构成了一个完整的体系称为化学发展的重要里程碑之一。

同一周期内,从左到右,元素核外电子层数相同,最外层电子数依次递增,原子半径递减(零族元素除外)。失电子能力逐渐减弱,获电子能力逐渐增强,金属性逐渐减弱,非金属性逐渐增强。元素的最高正氧化数从左到右递增(没有正价的除外),最低负氧化数从左到右递增(第一周期除外,第二周期的O 、F 元素除外)。

同一族中,由上而下,最外层电子数相同,核外电子层数逐渐增多,原子序

数递增,元素金属性递增,非金属性递减。

元素周期表的意义重大,科学家正是用此来寻找新型元素及化合物。

五、教科书中的元素周期表

这些图片不过是我们常见的在普通不过的元素周期表了,它们能够以最简洁的方式告诉我们所要查找的一部分,具有简便,清楚的特点。

六、其他形式的元素周期表

1.漫画周期表

看,多生动活

泼的漫画式元素周

期表啊!对理解化

学元素的性质多有

帮助!看那个卤族

上面坐着的两个氢

原子,紧盯着下面

得到一个电子形成

稳定结构的得意的

氟原子,其中一个

向另一个哭诉:“他

偷走了我的唯一一

个电子,现在我只剩下一个原子核了!”(我猜是这个意思)别的元素的原子之间的对白也十分有趣。是呀,氟是元素周期表主族元素中非金属性最强的了,与氢化合是最容易的!

2.钟表式周期表

3.柱式周期表

(现在看看越来越不像周期表

了)

4.层叠式(右下角那个,是坐标吗?)

5.环式

6.螺旋式

7.透视式

8.三角形式

9.配图式

10.门捷列夫早期的元素周期表

11.圆柱式12.建筑群式

13.螺旋时钟式

14.塔式

15.笔筒式

16.树形

17.六边形式

第三部分:小组成员汇报、反思

冯国忠:在本次研究性学习中,我们组的主题是元素周期表的发展和演变。从

中我们通过到学校、家里、市区图书馆或网上搜索所需资料的方法学

到了一些元素周期表的历史及了解了贝莱那,门捷列夫等发明者对元

素周期表的贡献。学习化学有整整两年了,作为学习化学时刻需要的

工具——元素周期表对我们的学习作用非常的大。

元素周期表是世界化学历史上重要的一部分,对世界的科技进步也起到了一定作用。作为中学生的我们,要向那些伟大的科学家们学

习,学习他们的有恒心,有毅力的美好品质。在化学史上,我们应该

以他们为榜样,努力学习科学文化知识,不断充实自己,多观察,多

动手实践,这样我们在学习生活中才能有所成就。

通过这次研学,我觉得我们调查速度和小组分工合作比上一次默契了许多,希望下次依旧这么有行动力。

陶俊宏:这次应该是最后一个课题了吧,本来第一次接触研究性课题的时候感

觉还挺新鲜的,后来的几次课题让我觉得这个挺麻烦的,这次的对后

一个课题完成后,感觉又有点不舍。

刚开始的打算是希望通过此活动,使同学们能够进一步了解元素周期表的历史和用途,并对同学们日后的化学学习起到帮助,了解元

素周期表的历史、发展过程和它的发现者。在化学学习中能够有一些

帮助。化学我们也学了这么长时间了,元素周期表的重要性大家都知

道,这次跟它有关的课题也比较贴近我们高中生的学习生活。

和以前一样,大家都在领了任务后积极完成中,每个同学都认真参加组内项目,认真组织并且配合组长工作,所以我们小组的进度算

是比较快的了。在每个研究性课题完成后,我们都能够学到很多有用

的东西,在整理过程中体会到了团结的力量,众人拾柴火焰高,一个

人的力量是很有限的,通过团队合理的分工安排可以减少很多不必要

的时间损失,这对于我们学会合作,运用合作是难能可贵的一个机会。

这次研究性学习不但给我带来了美好的回忆,并且收获中我还学会了一些做人,做事的基本道理。对于我们来说,还有很多的不足之

处,但是我们还有机会再慢慢改进,重要的是我们已经认识到了。在

以后的学习和生活中,我还要加强提高自己的综合素质,得到精神的

成长。

陈赐:我去们这次的研学是‘关于元素周期表的形成过程’为主要线索展开

调查的。也许大多数同学都知道元素周期表,但对它是如何产生的一

无所知。所以为了满足大家的需要,增加我们的课外知识,我们这阻

绝为大家服务,让同学对元素周期表的形成过程有更深刻的认识。

通查资料搜集信息,我们发现门捷列夫发现并完成元素周期表的制作并不是一帆风顺的。在这期间他进行大量的猜测,重新测定一些

认为不对的元素的原子量,收到当时人的争论,但他坚信实验是检验

真理的唯一标准。他的坚持不懈大胆猜疑科学的实践证明他发现的元

素周期律是自然界的一条客观规律。它作为描述元素及其性质基本理

论有力的促进了现代化学和物理化学的发展。

现代的我们也要有这种敢于创新、大胆实践的能力,要敢于挑战真理,我们每个人都有可能成为下一个‘门捷列夫’。

李宜瑾:关于这次研学,我有了不一样的体会,关于这次的主题,是关于元素

周期表,是一次将学习与实践结合在一起的研学主题。

首先,研学的主题给人一种耳目一新的感觉,会让人提起兴趣来做,这就增加了研学的成功率,但是同时还有一点就是,让人觉得有压力,

不自觉的想要放弃这次的研学,这一点不太好……

其次,就内容来说,道出了元素周期表和周期律的重要性,让人体会到化学的奇妙,使人对化学产生兴趣,也让人对元素周期表和周期律

的发展历史更加的了解,同时还能了解到很多化学家的故事,对学生的

素质教育提供了很好的素材,励志了学生,为学生更加努力的学习提供

了动力,这一点很好!

还有对人员分工及时间分布安排,时间有点仓促,令人对研学主题不能很深入的了解以及对研学的调查方面不能很好的切入到调查对象中

去,这一点做得不是很好!希望下一次可以更好地完善!

最后,我希望这次研学带给我们的不只是研学而已,更希望它带给我们的还有启发!还希望以后我们的希望不下仅仅只是希望而已,希望

可以变成现实让我们去幸福!!!

第四部分:分析总结

在本次研究性学习中,我们的课题为:元素周期表的发展和演变。这所以选择这个题目,是我们在讨论后选择出的。在本次研究性学习中,我们的课题为:元素周期表的发展和演变。这所以选择这个题目,是我们在讨论后选择出的。在学习化学两年后,我们发现,元素周期表对化学的学习用途很大,并且在懂得元素周期表的一些现象规律后,可以简单的解决很多的问题。为此,我们将此次研学题目定为:元素周期表的发展和演变。在学习化学两年后,我们发现,元素周期表对化学的学习用途很大,并且在懂得元素周期表的一些现象规律后,可以简单的解决很多的问题。为此,我们将此次研学题目定为:元素周期表的发展和演变。

元素周期表的历史可谓是:“新生命的生命”。是在1869年门捷列夫通过一些方格卡片排列组成的。他将元素按照相对原子质量由小到大依次排列,并将化学性质相似的元素放在一个纵行,通过分类、归纳,制出了第一张元素周期表。这张表揭示了化学元素之间的内在联系,使其构成了一个完整的体系,成为化学发展史上的重要里程碑之一,从这里看来,元素周期表在化学领域里是非常重要的。

本小组同学在几次探究中发现,元素周期表的发现、使用和学习

是科学发展的必然结果,在距离今天约三个世纪前,人类进入了第一次世界工业革命,在接下来的几百年间,化学和其它学科一样,有了飞跃的发展,各种元素在此期间陆续被人类发现。而在元素周期表发现前期,是将已发现的元素依依“填入”表中。而在后期,便是“按图索骥”将元素周期表中“空”着的元素依依找到或是“造”出,这便是元告素周期表的魅力。在如今的21世纪,元素周期表在人类的指引下正努力向第八、第九周期迈入,并且还出现了从前未听说过的可以向反方向、负方向发现元素,这是因为出现了负质子,正电子,所有这些全都是随着科学技术的发展才一步一步发展过来的。

本次研究性学习,我们小组成员相互配合,相互帮助,终于圆满完成了此次研究性学习,在学习过程中,我们收获很大,懂得了很多“化学课里的历史课”,这在化学课里是学不到了,相信在以后的学习生活中,一定会给我们带来帮助的,从这个方面看我们进行此次研究性学习还是值得的。

第五部分:参考文献

一、网络查找

1、百度搜索:https://www.360docs.net/doc/d26909277.html,

门捷列夫与元素周期表的小故事

门捷列夫与元素周期表不得不说的故事宇宙万物是由什么组成的?古希腊人以为是水、土、火、气四种元素,古代中国则相信金、木、水、火、土五种元素之说。到了近代,人们才渐渐明白:元素多种多样,决不止于四五种。18世纪,科学家已探知的元素有30多种,如金、银、铁、氧、磷、硫等,到19世纪,已发现的元素已达54种。 人们自然会问,没有发现的元素还有多少种?元素之间是孤零零地存在,还是彼此间有着某种联系呢? 门捷列夫发现元素周期律,揭开了这个奥秘。 原来,元素不是一群乌合之众,而是像一支训练有素的军队,按照严格的命令井然有序地排列着,怎么排列的呢?门捷列夫发现:元素的原子量相等或相近的,性质相似相近;而且,元素的性质和它们的原子量呈周期性的变化。 门捷列夫激动不已。他把当时已发现的60多种元素按其原子量和性质排列成一张表,结果发现,从任何一种元素算起,每数到8个就和第一个元素的性质相近,他把这个规律称为“八音律”。 门捷列夫是怎样发现元素周期律的呢? 1834年2月7日,伊万诺维奇·门捷列夫诞生于西伯利亚的托波尔斯克,父亲是中学校长。16岁时,进入圣彼得堡师范学院自然科学教育系学习。毕业后,门捷列夫去德国深造,集中精力研究物理化学。1861年回国,任圣彼得堡大学教授。 在编写无机化学讲义时,门捷列夫发现这门学科的俄语教材都已陈旧,外文教科书也无法适应新的教学要求,因而迫切需要有一本新的、能够反映当代化学发展水平的无机化学教科书。 这种想法激励着年轻的门捷列夫。当门捷列夫编写有关化学元素及其化合物性质的

章节时,他遇到了难题。按照什么次序排列它们的位置呢?当时化学界发现的化学元索已达63种。为了寻找元素的科学分类方法,他不得不研究有关元素之间的内在联系。研究某一学科的历史,是把握该学科发展进程的最好方法。门捷列夫深刻地了解这一点,他迈进了圣彼得堡大学的图书馆,在数不尽的卷帙中逐一整理以往人们研究化学元素分类的原始资料…… 门捷列夫抓住了化学家研究元素分类的历史脉络,夜以继日地分析思考,简直着了迷。夜深人静,圣彼得堡大学主楼左侧的的门捷列夫的居室仍然亮着灯光,仆人为了安全起见,推开了门捷列夫书房的门。 “安东!”门捷列夫站起来对仆人说:“到实验室去找几张厚纸,把筐也一起拿来。” 安东是门捷列夫教授家的忠实仆人。他走出房门,莫名其妙地耸耸肩膀,很快就拿来一卷厚纸。“帮我把它剪开。” 门捷列夫一边吩咐仆人,一边动手在厚纸上画出格子。 “所有的卡片都要像这个格于一样大小。开始剪吧,我要在上面写字。” 门捷列大不知疲倦地工作着。他在每一张卡片上都写上了元素名称、原于量、化合物的化学式和主要性质。筐里逐渐装满了卡片。门捷列夫把它们分成几类,然后摆放在一个宽大的实验台上。接下来的日子,门捷列夫把元素卡片进行系统地整理。门捷列夫的家人看到一向珍惜时间的教授突然热衷于“纸牌”感到奇怪。门捷列夫旁若无人,每天手拿元素卡片像玩纸牌那样,收起、摆开,再收起、再摆开,皱着眉头地玩“牌”…… 冬去春来。门捷列夫没有在杂乱无章的元素卡片中找到内在的规律。有一天,他又坐到桌前摆弄起“纸牌”来了,摆着,摆着,门捷列夫像触电似的站了起来,在他面前出现了完全没有料到的现象,每一行元素的性质都是按照原子量的增大而从上到下地逐渐变化着。门捷列夫激动得双手不断颤抖着。“这就是说,元素的性质与它们的原子量呈周期性

元素周期表51号元素是什么意思

51号元素 (网络用语) 51号元素,网络流行语,是一个段子,段子里两位年轻人吵架,女孩对男孩说:“你全家包括你都是元素周期表51号元素!” 词语来源 元素周期表是化学的基础元素表,它的第51号元素是:锑。符号是:Sb。这样看的话,女孩的意思就非常明朗了 、原子序号:1;中文名:氢;读音:qīng;元素符号:H;英文名:Hydrogen 原子序号:2;中文名:氦;读音:hài;元素符号:He;英文名:Helium 3、原子序号:3;中文名:锂;读音:lǐ;元素符号:Li;英文名:Lithium 4、原子序号:4;中文名:铍;读音:pí;元素符号:Be;英文名:Beryllium 5、原子序号:5;中文名:硼;读音:péng;元素符号:B;英文名:Boron 6、原子序号:6;中文名:碳;读音:tàn;元素符号:C;英文名:Carbon 7、原子序号:7;中文名:氮;读音:dàn;元素符号:N;英文名:Nitrogen 8、原子序号:8;中文名:氧;读音:yǎng;元素符号:O;英文名:Oxygen 9、原子序号:9;中文名:氟;读音:fú;元素符号:F;英文名:Fluorine 10、原子序号:10;中文名:氖;读音:nǎi;元素符号:Ne;英文名:Neon 11、原子序号:11;中文名:钠;读音:nà;元素符号:Na;英文名:Sodium 12、原子序号:12;中文名:镁;读音:měi;元素符号:Mg;英文名:Magnesium 13、原子序号:13;中文名:铝;读音:lǚ;元素符号:Al;英文名:Aluminium

15、原子序号:15;中文名:磷;读音:lín;元素符号:P;英文名:Phosphorus 16、原子序号:16;中文名:硫;读音:liú;元素符号:S;英文名:Sulphur 17、原子序号:17;中文名:氯;读音:lǜ;元素符号:Cl;英文名:Chlorine 18、原子序号:18;中文名:氩;读音:yà;元素符号:Ar;英文名:Argon 19、原子序号:19;中文名:钾;读音:jiǎ;元素符号:K;英文名:Potassium 20、原子序号:20;中文名:钙;读音:gài;元素符号:Ca;英文名:Calcium 21、原子序号:21;中文名:钪;读音:kàng;元素符号:Sc;英文名:Scandium 22、原子序号:22;中文名:钛;读音:tài;元素符号:Ti;英文名:Titanium 23、原子序号:23;中文名:钒;读音:fán;元素符号:V;英文名:Vanadium 24、原子序号:24;中文名:铬;读音:gè;元素符号:Cr;英文名:Chromium 25、原子序号:25;中文名:锰;读音:měng;元素符号:Mn;英文名:Manganese 26、原子序号:26;中文名:铁;读音:tiě;元素符号:Fe;英文名:Iron 27、原子序号:27;中文名:钴;读音:gǔ;元素符号:Co;英文名:Cobalt 28、原子序号:28;中文名:镍;读音:niè;元素符号:Ni;英文名:Nickel 29、原子序号:29;中文名:铜;读音:tóng;元素符号:Cu;英文名:Copper 30、原子序号:30;中文名:锌;读音:xīn;元素符号:Zn;英文名:Zinc 31、原子序号:31;中文名:镓;读音:jiā;元素符号:Ga;英文名:Gallium 32、原子序号:32;中文名:锗;读音:zhě;元素符号:Ge;英文名:Germanium 33、原子序号:33;中文名:砷;读音:shēn;元素符号:As;英文名:Arsenic

门捷列夫的化学元素周期表与卡片分析法

中国职工科技报/2007年/4月/20日/第004版 科普家园 门捷列夫的化学元素周期表与卡片分析法 王振宇 卡片时于研究文学艺术和社会科学很重要,对于研究自然科学特别是发明创造也同样重要。运用卡片分析法取得重大成果的最著名的事例。就是俄国化学家门捷列夫发现化学元素周期率。1869年,为了研究已发现的60多种元素之间的关系,研究元素的质量和化学性质的关系,门捷列夫将搜集来的各种元素的名称写在纸上,并记下它们的原子量和基本性质,把相似的元素和相近的原子量排列在一起:他又从最小的原子量开始选取元素,并把它们按原子量的顺序排列,经过分析研究,终于发现了元素的性质存在着周期性,从而发现了化学元素周期律,并根据周期率编制了第一张化学元素周期表。 从以上事例可以看出,卡片分析法的基础是要有卡片。卡片大小自便,扑克牌大小也可,稍大也可,能在上面记录信息即可。卡片上面都记录什么呢?以下方面可供参考:突然涌现的想法:由谈话、读书、观察等产生的设想或注意到的问题;图书、杂志、人名、地址、电话号码;被记述或证实的信息;从智力激励法等创造性开发会议中产生的新设想:有关行动计划。的基本设想:使数据系统化的各种形式:发现数据存在的场所、收集的来源以及技法;数据的种类:意想不到的偶然事件;从大脑中一闪即过的有创意的新设想,等等。 卡片分析法是一种发挥综合思维作用的方法,通过将所得到的记录有有关信息或设想的卡片。进行分析,进行整理排列,以寻找各部分之间的有机联系,从整体上把握事物,最后形成比较系统的新设想。该法作为分析整理资料获得启发的有效途径,可用于解决问题的各个阶段中。在分析中要把对象的各个部分、各个方面和种种因素联系起来考虑。综合不是主观地、任意地把对象的各部分捏合在一起,也不是各个部分的机械相加,不是各种因素的简单堆砌,而是按照对象各部分间的有机联系,从总体上把握事物的一种方法。它不是抽象地、从外部现象的联结上来认识事物,而是抓住事物的本质,即抓住事物在总体上相互联结而又矛盾的特殊性,研究这一矛盾怎样制约着事物丰富多彩的属性,怎样在事物的运动中展现出整体的特征。 卡片分析法具有以下一些特点:首先,这是一种在比较分类的基础上,由综合进行创新的方法比较和分类是运用此法时要做的基本工作,然而,真正有创意的工作在于时各类资料的综合:其次,运用这种方法时,不只是对卡片的理性分析和综合,还需要综合地发挥运用者的各种心理因素,如感受、感情、直观、意志等,因为对卡片的分析整理直接受到这些圆素的影响:第三,此法借助于卡片分析事理发现其内在联系,具有直观、方便、灵活的特点。既可单人应用,也可集体进行,应用范围广,几乎适用于各领域的创造性活动。 卡片分析法在各种研究和发明创造过程中,有着特殊的作用。将待处理的信息卡片化,具有克服人脑思维限度的功能,从而成为整理分析资料获得启发的有效方法。人的思维能力虽然是无限的,但一个人在思维中同时操作的思维元素数是很有限的,实验证明,一般人当同时思维操作的信息元素超过10个时,要在脑内同时操作加工这些信息显得很困难。而通过卡片,把各种信息或设想转移到脑外,变成能稳定地呈现在眼前的外存信息,这样既可把在头脑中借助记忆进行的思维操作转为脑外自理卡片,来减轻思维负担,又可使注意力集中,从而提高了思维效率。 (四十五) 第1页共1页

元素周期表发展史

发展历史 元素周期律的发现是许多科学家共同努力的结果 1789年,安托万-洛朗·拉瓦锡出版的《化学大纲》中发表了人类历史上第一张《元素表》,在该表中,他将当时已知的33种元素分四类。1829年,德贝莱纳在对当时已知的54种元素进行了系统的分析研究之后,提出了元素的三元素组规则。他发现了几组元素,每组都有三个化学性质相似的成员。并且,在每组中,居中的元素的原子量,近似于两端元素原子量的平均值。 1850年,德国人培顿科弗宣布,性质相似的元素并不一定只有三个;性质相似的元素的原子量之差往往为8或8的倍数。 1862年,法国化学家尚古多创建了《螺旋图》,他创造性地将当时的62种元素,按各元素原子量的大小为序,标志着绕着圆柱一升的螺旋线上。他意外地发现,化学性质相似的元素,都出现在同一条母线上。 1863年,英国化学家欧德林发表了《原子量和元素符号表》,共列出49个元素,并留有9个空位。上述各位科学家以及他们所做的研究,在一定程度上只能说是一个前期的准备,但是这些准备工作是不可缺少的。而俄国化学家门捷列夫、德国化学家迈尔和英国化学家纽兰兹在元素周期律的发现过程中起了决定性的作用。 1865年,纽兰兹正在独立地进行化学元素的分类研究,在研究中他发现了一个很有趣的现象。当元素按原子量递增的顺序排列起来时,每隔8个元素,元素的物理性质和化学性质就会重复出现。由此他将各种元素按着原子量递增的顺序排列起来,形成了若干族系的周期。纽兰兹称这一规律为“八音律”。这一正确的规律的发现非但没有被当时的科学界接受,反而使它的发现者纽兰兹受尽了非难和侮辱。直到后来,当人人已信服了门氏元素周期之后才警醒了,英国皇家学会对以往对纽兰兹不公正的态度进行了纠正。门捷列夫在元素周期的发现中可谓是中流砥柱,不可避免地,他在研究工作中亦接受了包括自己的老师在内的各个方面的不理解和压力。 门捷列夫出生于1834年,俄国西伯利亚的托博尔斯克市,他出生不久,父亲就因双目失明出外就医,失去了得以维持家人生活的教员职位。门捷列夫14岁那年,父亲逝世,接着火灾又吞没了他家中的所有财产,真是祸不单行。1850年,家境困顿的门捷列夫藉着微薄的助学金开始了他的大学生活,后来成了彼得堡大学的教授。 幸运的是,门捷列夫生活在化学界探索元素规律的卓绝时期。当时,各国化学家都在探索已知的几十种元素的内在联系规律。 1865年,英国化学家纽兰兹把当时已知的元素按原子量大小的顺序进行排列,发现无论从哪一个元素算起,每到第八个元素就和第一个元素的性质相近。这很像音乐上的八度音循环,因此,他干脆把元素的这种周期性叫做“八音律”,并据此画出了标示元素关系的“八音律”表。 显然,纽兰兹已经下意识地摸到了“真理女神”的裙角,差点就揭示元素周期律了。不过,条件限制了他作进一步的探索,因为当时原子量的测定值有错误,而且他也没有考虑到还有尚未发现的元素,只是机械地按当时的原子量大小将元素排列起来,所以他没能揭示出元素之间的内在规律。 可见,任何科学真理的发现,都不会是一帆风顺的,都会受到阻力,有些阻力甚至是人为的。当年,纽兰兹的“八音律”在英国化学学会上受到了嘲弄,主持人以不无讥讽的口吻问道:“你为什么不按元素的字母顺序排列?” 门捷列夫顾不了这么多,他以惊人的洞察力投入了艰苦的探索。直到1869年,他将当时已知的仍种元素的主要性质和原子量,写在一张张小卡片上,进行反复排列比较,才最后发现了元素周期规律,并依此制定了元素周期表。

元素周期表发现简介

元素周期表的发展 作者: (兰州城市学院化学与环境科学学院,甘肃兰州 730070) 摘要:本文通过讨论元素周期表的发展历史,介绍了随着科学的发展及认识的不断深化人们研制出许多种类型的元素周期表,通过对元素周期表进行了详细的解读,让人们更好的了解化学这门学科的发展历史。关键词:元素周期表;门捷列夫,元素 元素周期表的发展史含有丰富的化学史资源,“化学史是了解化学史上重大事件和重要人物,以及重要化学概念的形成、法则和原理的提出、化学理论的建立的重要途径”[1]。本文就通过讲述元素周期表的几个发展阶段介绍了有关元素周期表的内容。元素周期表是元素周期律的具体表现形式,随着科学的发展及认识的不断深化人们研制出许多种类型的元素周期表,使其进一步趋于合理化和科学化。 1 元素周期表的历史发展 1661年波义再提出元素的科学概念,化学确立为一门科学。随着采矿,冶金,化工等工业的发展,人们对元素的认识也逐渐丰富起来,到了十九世纪后半叶,已经发现了六十余种元素,这是为找寻元素问的规律提供了条件。1869年,俄国化学家捷列夫在总结前人经验的基础上发现著名的化学元素周期律,这是自然界中重要的规律之一。有了周期律,人们对元索性质变化的内在规律性有了比较系统的认识。门捷列夫根据他发现的元素周期律,把元素按原子量的大小排列起来;构成图表的形式,这就是第一比重元素周期表。门捷列夫还根据元素周期律正确的修改了铍,铟等七种元素的原子量,并预言了当时尚未发现的原子量为44(Sc ),68(Ga )和72 (G )等元素的存在和性质。1875至1886年之间,科学家在自然界发现了这3种素。这

无疑使门捷列夫成名垂青史的化学家。值得一提的是,德国化学家Meyer于1870年也独立作出了几乎相同于门捷列夫周期律的观点的结论。 从19世纪末20世纪初人们又发现了许多新元素,于是对门捷列夫周期表进行了一定的调整,最明显的是增加了一个竖行(族),即稀有气体,并以镧系元素系列取代了Ba和之间的一种元素2O世纪初元素总数已增85,在之后的25年中,又发现了铀等超重元素。后来,核裂变反应的实现导致了更多的超元素的发现。1964—1968年,苏联科学家首先合成了104号和105号元素,并在此基础上[2],合在了106号元素。20世纪80年代初,德国人合成了107,108,109等3种元素。1994年,德国研究中心首次合成1l0号元素,1个月之后,苏联和美国的科学家一道合成了110号元素的原子量为273的同位素。通过对110号元素进行分析,发现其性质与Ni,Pd,Pt相似,这有力地证明了目前元素周期表排列的科学家。1996年德国GSI实验室合成并确证了111和112号元素。上述新元素的合成都得益于元素周期表,又丰富和发展了元素周期表。 2.1、元素周期表的演化 2.1.1尚古多的“螺旋图” 1862年,法国矿物学教授尚古多创作了“螺旋图”。元素按原子量的大小围绕着圆柱体进行排布,让性质相似的元素排布在同一条垂线上,如Li—Na—K、Cl—Br—I等,由此提出元素的性质有周期性变化的规律。 由于原子量差值为16的元素之间的性质并非都类似,而且原子

阅读材料:门捷列夫与元素周期表

门捷列夫与元素周期表 在化学教科书中,都附有一张“元素周期表”。这张表揭示了物质世界的秘密,把一些看来似乎互不相关的元素统一起来,组成了一个完整的自然体系。它的发明,是近代化学史上的一个创举,对于促进化学的发展,起了巨大的作用。看到这张表,人们便会想到它的最早发明者——门捷列夫。 门捷列夫生平简介 德米特里·伊万诺维奇·门捷列夫生于一八三四年二月七日俄国西伯利亚的托波尔斯克市。这个时代,正是欧洲资本主义迅速发展时期。生产的飞速发展,不断地对科学技术提出新的要求。化学也同其它科学一样,取得了惊人的进展。门捷列夫正是在这样一个时代,诞生到人间。门捷列夫从小就热爱劳动,热爱学习。他认为只有劳动,才能使人们得到快乐、美满的生活;只有学习,才能使人变得聪明。 门捷列夫在学校读书的时候,一位很有名的化学教师,经常给他们讲课。热情地向他们介绍当时由英国科学家道尔顿始创的新原子论。由于道尔顿新原于学说的问世,促进了化学的发展速度,一个一个的新元素被发现了。化学这一门科学正激动着人们的心。这位教师的讲授,使门捷列夫的思想更加开阔了,决心为化学这门科学献出一生。 门捷列夫在大学学习期间,表现出了坚韧、忘我的超人精神。疾病折磨着门捷列夫,由于丧失了无数血液,他一天一天的消瘦和苍白了。可是,在他贫血的手里总是握着一本化学教科书。那里面当时有很多没有弄明白的问题,缠绕着他

的头脑,似乎在召呼他快去探索。他在用生命的代价,在科学的道路上攀登着。他说,我这样做“不是为了自己的光荣,而是为了俄国名字的光荣。”——过了一段时间以后,门捷列夫并没有死去,反而一天天好起来了。最后,才知道是医生诊断的错误,而他得的不过是气管出血症罢了。 由于门捷列夫学习刻苦和在学习期间进行了一些创造性的研究工作,一八五五年,他以优异成绩从学院毕业。毕业后,他先后到过辛菲罗波尔、敖德萨担任中学教师。这期间,他一边教书,一边在极其简陋的条件下进行研究,写出了《论比容》的论文。文中指出了根据比容进行化合物的自然分组的途径。一八五七年一月,他被批准为彼得堡大学化学教研室副教授,当时年仅二十三岁。 攀登科学高峰的路,是一条艰苦而又曲折的路。门捷列夫在这条路上,也是吃尽了苦头。当他担任化学副教授以后,负责讲授《化学基础》课。在理论化学里应该指出自然界到底有多少元素?元素之间有什么异同和存在什么内部联系?新的元素应该怎样去发现?这些问题,当时的化学界正处在探索阶段。近五十多年来,各国的化学家们,为了打开这秘密的大门,进行了顽强的努力。虽然有些化学家如德贝莱纳和纽兰兹在一定深度和不同角度客观地叙述了元素间的某些联系,但由于他们没有把所有元素作为整体来概括,所以没有找到元素的正确分类原则。年轻的学者门捷列夫也毫无畏惧地冲进了这个领域,开始了艰难的探索工作。 他不分昼夜地研究着,探求元素的化学特性和它们的一般的原子特性,然后将每个元素记在一张小纸卡上。他企图在元素全部的复杂的特性里,捕捉元素的共同性。但他的研究,一次又一次地失败了。可他不屈服,不灰心,坚持干下去。 为了彻底解决这个问题,他又走出实验室,开始出外考察和整理收集资料。一八五九年,他去德国海德尔堡进行科学深造。两年中,他集中精力研究了物理化学,使他探索元素间内在联系的基础更扎实了。一八六二年,他对巴库油田进行了考察,对液体进行了深入研究,重测了一些元素的原子量,使他对元素的特性有了深刻的了解。一八六七年,他借应邀参加在法国举行的世界工业展览俄罗斯陈列馆工作的机会,参观和考察了法国、德国、比利时的许多化工厂、实验室,大开眼界,丰富了知识。这些实践活动,不仅增长了他认识自然的才干,而且对他发现元素周期律,奠定了雄厚的基础。

元素周期表的发展史

元素周期表的发展史 化学发展到18世纪,由于化学元素的不断发现,种类越来越多,反应的性质越来越复杂.化学家开始对它们进行了整理、分类的研究,以寻求系统的元素分类体系. 首先在1789年,法国化学家拉瓦锡在他的专著《化学纲要》一书中,列出了世界上第一张元素表.他把已知的33种元素分成了气体元素、非金属、金属、能成盐之土质等四类.但他把一些物,如光、石灰、镁土都列入元素. 26年后,英国的威廉·普劳特提出:1、所有元素的原子量均为氢原子量的整数倍;2、氢是原始物质或“第一物质”, 他试图把所有元素都与氢联系起来作为结构单元。 到1829年,德国的化学家贝莱纳首先敏锐地察觉到已知元素所表露的这种内在关系的端倪:某三种化学性质相近的元素,如氯,溴,碘,不仅在颜色、化学活性等方面可以看出有定性规律变化,而且其原子量之间也有一定理的关系,即:中间元素的原子量为另两种元素原子量的算术平均值。这种情况,他一共找到了五组,他将其称之为"三元素族",即: 锂3 钠11 钾19 钙20 锶88 钡137 氯17 溴35 碘127 硫16 硒79 碲128 锰55 铬52 铁56 在化学家贝莱纳之后,法国的地质学家尚古多(Chancourtois,A.E.B.1820-1886)于1862年绘出了“螺旋图”.他将已知的62个元素按原子量的大小次序排列成一条围绕圆筒的螺线,性质相近的元素出现在一条坚线上 . 他最先提出元素性质和原子量之间有关系, 并初步提出了元素性质的周期性。螺旋图是向揭示周期律迈出了有力的第一步, 但缺乏精确

性。1864年英国人欧德林用46种元素排出了《元素表》。同年德国人迈尔依原子量大小排出《六元素》表。该表对元素进行了分族, 有了周期的雏型。之后在1865年,英国的化学家纽兰兹(Newlands,J.A.R.1837-1898)排出一个“八音律”.他把已知的性质有周期性重复,每第八个元素与第一个元素性质相似,就好象音乐中八音度的第八个音符有相似的重复一样. 八音律揭示了元素化学性质的重要特征, 但未能揭示出事物内在的规律性。 化学家绝不满意元素漫无秩序的状态。从《三素组》到《八音律》, 逐步对元素知识进行归纳和总结, 试图从中找出视律性的东西, 为发现周期律开辟了道路。由于科学资料积累, 元素数目增多, 终于在十九世纪后半期迈尔和门捷列夫同时发现了元素周期律。 在1867年俄国人门捷列夫对当时已发现的63种元素进行归纳、比较, 结果发现:元素及其化合物的性质是原子量的周期函数的关系, 这就是元素周期律。依据周期律排出了周期表, 根据周期表, 他修改了铍、铯原子量, 预言了三种新元素, 后来陆续被发现, 从而验证了门氏周期律的正确性, 迅速被化学家所接受。在周期律的指导下, 先后发现了稼、钪、锗、钋、镭、锕、镤、铼、锝、钫、砹等十一种元素同时还预言了稀有气体的存在, 并于1898年以后, 陆续发现了氖、氢、氙等元素, 因而在周期表中增加ⅧA族。到1944年自然界存在的92种元素全部被发现。 其实早在1860年门捷列夫在为著作《化学原理》一书考虑写作计划时,就深为无机化学的缺乏系统性所困扰.于是,他开始搜集每一个已知元素的性质资料和有关数据,把前人在实践中所得成果,凡能找到的都收集在一起.人类关于元素问题的长期实践和认识活动,为他提供了丰富的材料.他在研究前人所得成果的基础上,发现一些元素除有特性之外还有共性.例如,已知卤素元素的氟、氯、溴、碘,都具有相似的性质;碱金属元素锂、钠、钾暴露在空气中时,都很快就被氧化,因此都是只能以化合物形式存在于自然界中;有的金属例铜、银、金都能长久保持在空气中而不被腐蚀,正因为如此它们被称为贵金属.

化学元素周期表的发现与发展

化学元素周期表的发现与发展 摘要:化学元素周期表是人类研究化学的一个里程碑,揭示了化学元素间的内在联系。在元素周期律的指导下,利用元素之间的一些规律性知识来分类学习物质的性质,就使化学学习和研究变得有规律可循。现在,化学家们已经能利用各种先进的仪器和分析技术对化学世界进行微观的探索,并正在探索利用纳米技术制造出具有特定功能的产品,使化学在材料、能源、环境和生命科学等研究上发挥越来越重要的作用。 关键字:本文就化学元素周期表的起源,归路,意义,以及发展历史等角度全面的了解 化学元素周期表。这个化学史上重要的成就,同时帮助我们更好的学习化学,理解化学元素的本质联系。 1.起源简介 化学元素周期表现代化学的元素周期律是1869年俄国化学家德米特里·伊万诺维奇·门捷列夫首创的(周期表中101位元素“钔”由此而来)。门捷列夫将元素按照相对原子质量由大到小依次排列,并将化学性质相近的元素放在一个纵列,制出了第一张元素周期表,揭示了化学元素间的内在联系,使其构成了一个完整的体系,成为化学发展史上的重要里程碑之一。1913年英国科学家莫色勒利用阴极射线撞击金属产生X射线,发现原子序数越大,X射线的频率就越高,因此他认为原子核的正电荷决定了元素的化学性质,并把元素依照核内正电荷(即质子数或原子序数)排列,经过多年 元素周期表修订后才成为当代的周期表。常见的元素周期表为长式元素周期表。在长式元素周期表中,元素是以元素的原子序数排列,最小的排行最先。表中一横行称为一个周期,一纵列称为一个族,最后有两个系。除长式元素周期表外,常见的还有短式元素周期表,螺旋元素周期表,三角元素周期表等。 道尔顿提出科学原子论后,随着各种元素的相对原子质量的数据日益精确和原子价(化合价)概念的提出,就使元素相对原子质量与性质(包括化合价)之间的联系显露出来。德国化学家德贝莱纳就提出了“三元素组”观点。他把当时已知的54种元素中的15种,分成5组,每组的三种元素性质相似,而且中间元素的相对原子质量等于较轻和较重的两个元素相对原子质量之和的一半。例如钙、锶、钡,性质相似,锶的相对原子质量大约是钙和钡的相对原子

元素周期表(word版)

三、元素周期表有关背诵口诀(1)元素周期表族背诵口诀 氢锂钠钾铷铯钫——请李娜加入私访 铍镁钙锶钡镭——媲美盖茨被雷 硼铝镓铟铊——碰女嫁音他 碳硅锗锡铅——探归者西迁 氮磷砷锑铋——蛋临身体闭

氧硫硒碲钋——养牛西蹄扑 氟氯溴碘砹——父女绣点爱 氦氖氩氪氙氡——害耐亚克先动 (2)元素周期表原子序数背诵口诀 从前,有一个富裕人家,用鲤鱼皮捧碳,煮熟鸡蛋供养着有福气的奶妈,这家有个很美丽的女儿,叫桂林,不过她有两颗绿色的大门牙(哇,太恐怖了吧),后来只能嫁给了一个叫康太的反革命。刚嫁入门的那天,就被小姑子号称“铁姑”狠狠地捏了一把,新娘一生气,当时就休克了。这下不得了,娘家要上告了。铁姑的老爸和她的哥哥夜入县太爷府,把大印假偷走一直往西跑,跑到一个仙人住的地方。 这里风景优美:彩色贝壳蓝蓝的河,一只乌鸦用一缕长长的白巾牵来一只鹅,因为它们不喜欢冬天,所以要去南方,一路上还相互提醒:南方多雨,要注意防雷啊。 在来把这个故事浓缩一下: 第一周期:氢氦---- 侵害第二周期:锂铍硼碳氮氧氟氖---- 鲤皮捧碳蛋养福奶 第三周期:钠镁铝硅磷硫氯氩---- 那美女桂林留绿牙(那美女鬼流露绿牙)(那美女归你) 第四周期:钾钙钪钛钒铬锰---- 嫁改康太反革命 铁钴镍铜锌镓锗---- 铁姑捏痛新嫁者 砷硒溴氪---- 生气休克 第五周期:铷锶钇锆铌---- 如此一告你 钼锝钌---- 不得了 铑钯银镉铟锡锑(tī)---- 老把银哥印西堤 碲碘氙---- 地点仙 第六周期:铯钡镧系铪(hā)----(彩)色贝(壳)蓝(色)河 钽钨铼锇---- 但(见)乌(鸦)(引)来鹅 铱铂(bó)金汞铊铅---- 一白巾供它牵 铋钋(pō)砹氡---- 必不爱冬(天) 第七周期:钫(fāng)镭锕系---- 防雷啊!

门捷列夫与元素周期表

门捷列夫与元素周期表 在十九世纪初期,人们已经发现了不少元素。在这些元素的状态和性质方面,有些极为相似,有些则完全不同,有些元素在某些性质方面很相似,但 在另一些方面却又差别很大。化学家们很自然地产生了一种寻求 元素相之间内在联系从而把元素作一科学分类的要求。科学家们 在这方面作了不少的工作,曾发表了部分元素间相互联系的论 述。 1829年德国段柏莱纳根据元素性质的相似性,提出“三素 组”的分类法,并指出每组中间元素的原子量大约等于两端的元 素原子量的平均值。但他当时只排了五个三素组,还有许多元素 没找到其间相互联系的规律。 1864年德国迈耶按元素的原子量顺序把元素分成六组,使化学性质相似的元素排在同一纵行里。但也没有指出原子量跟所有元素之间究竟有什么联系。 1865年英国纽兰兹把当时所知道的元素按原子量增加的顺序排列,发现每个元素它的位置前后的第七个元素有相似的性质。他称这个规律叫“八音律”。他的缺点在于机械地看待原子量,把一些元素(Mn、Fe等)放在不适当的位置上而把表排满,没有考虑发现新元素的可能性。 直到1868年,迈耶发表了著名的原子体积周期性图解。都末找出元素间最根本的内在联系,但却一步步地向真理逼近,为发现元素周期律开辟了道路。 与迈耶尔相似,以先行者提供的借鉴为基础,门捷列夫通过自己顽强的努力,于1869年2月编成了他的第一张元素周期表。1869年3月18日,俄国化学会举行学术报告会,门捷列夫因病未能出席,他委托他的同事、彼得堡大学化学教授门许特金代他宣读他的论文《元素性质和原子量的关系》。在论文中,他指出: (1)按照原子量大小排列起来的元素,在性质上呈现明显的周期性变化。 (2)化学性质相似的元素,或者是原子量相近(如Pt,Ir,Os),或者是依次递增相同的数量(如K,Rb,Cs)。 (3)各族元素的原子价(化合价)一致。 (4)分布在自然界的元素都具有数值不大的原子量值,具有这样的原子量值的一切元素都表现出特有的性质,因此可以称它们是典型的元素。 (5)原子量的大小决定元素的特征。 (6)应该预料到许多未知元素将被发现,例如排在铝和硅后面的、性质类似铝和硅的、原子量位于65~75之间的两种元素。 (7)当我们知道了某些元素的同类元素的原子量后,有时可借此修正该元素的原子量。 (8)一些类似的元素能根据其原子量的大小被发现出来。 正如门捷列夫所指出的,周期律的全部规律性都表述在这些原理中。其中最主要的是元素的物理和化学性质随着原子量的递增而做着周期性的变化。他的卓见没有立即被接受。他的老师、俄国化学家齐宁甚至训诫他是不务正业。在这种压力下,门捷列夫没有象纽兰兹那样伤心地放弃对新理论的研究,他不顾名家的指责和嘲笑,继续为周期律的揭示而奋斗。经过两年的努力,1871年他发表了关于周期律的新论文。文中他果断地修正了前一个元素周期表。例如在前一表中,性质类似的各族是横排,周期是竖排;而在新表中,族是竖排,周期是横排,这样各族元素化学性质的周期性变化就更为清晰。同时他象迈耶尔那样,将那些当时性质尚不够明确的元素集中在表格的右边,形成了各族元素的副族。在前表中为尚未发现的元素留下的4个空格,在新表中则变成了6个。 门捷列夫深信他所发现的周期律是正确的。他以周期律为依据,大胆指出某些元素的原子量是不准确的,应重新测定。例如当时公认金的原子量为169.2,按此,在周期表中,金应排在锇、铱、铂(当时认为它们的原子量分别是198.6,196.7,196.7)的前面。而门捷列夫根据金的性质认为金在周期表中应排在这些元素的后面,所以它们的原子量应重新测定。重新测定的结果是:锇为190.9,铱为193.1,铂为195.2,金为197.2。实验证明了门捷列夫的意见是对的。又例如,当时铀公认的原子量是116,是三价元素。门捷列夫则根据铀的氧化物与铬、钼、钨的氧化物性质相似,认为它们应属于一族,因此铀应为六

门捷列夫的发现与现代的元素周期表的不同

现代的化学元素周期律是19世纪俄国人门捷列夫发现的。他将当时已知的63种元素以表的形式排列,把有相似化学性质的元素放在同一直行,这就是元素周期表的雏形。 门捷列夫通过顽强努力的探索,于1869年2月先后发表了关于元素周期律的图表和论文。在论文中,他指出: (1)按照原子量大小排列起来的元素,在性质上呈现明显的周期性。 (2)原子量的大小决定元素的特征。 (3)应该预料到许多未知元素的发现,例如类似铝和硅的,原子量位于65 一75之间的元素。 (4)当我们知道了某些元素的同类元素后,有时可以修正该元素的原子量。这就是门捷列夫提出的周期律的最初内容。 门捷列夫深信自己的工作很重要,经过继续努力,1871年他发表了关于周期律的新的论文。文中他果断地修正了1869年发表的元素周期表。例如在前一表中,性质类似的各族是横排,周期是竖排;而在新表中,族是竖排,周期是横排,这样各族元素化学性质的周期性变化就更为清晰。同时他将那些当时性质尚不够明确的元素集中在表格的右边,形成了各族元素的副族。在前表中,为尚未发现的元素留下4个空格,而新表中则留下了6个空格。由此可见,门捷列夫的研究有了重要的进展。 经受实践的验证 实践是检验真理的唯一标准。门捷列夫发现的元素周期律是否能站住脚,必须看它能否解决化学中的一些实际问题。门捷列夫以他的周期律为依据,大胆指出某些元素公认的原子量是不准确的,应重新测定,例如当时公认金的原子量为169.2,因此,在周期表中,金应排在饿。铱、铂(当时认为它们的原子量分别是198.6,196.7,196.7)的前面。而门捷列夫认为金在周期表中应排在这些元素的后面,所以它们的原子量应重新测定。重新测定的结果是:饿为190.9,铱为193.1,铂为195,2,金为197.2。实验证明了门捷列夫的意见是对的。又例如,当时铀公认的原子量是116,是三价元素。门捷列夫则根据铀的氧化物与铬、铂、钨的氧化物性质相似,认为它们应属于一族,因此铀应为六价,原子量约为240。经测定,铀的原子量为238.07。再次证明门捷列夫的判断正确。基于同样的道理,门捷列夫还修正了铟、镧、钇、铒、铈、的原子量。事实验证了周期律的正确性。 根据元素周期律,门捷列夫还预言了一些当时尚未发现的元素的存在和它们的性质。他的预言与尔后实践的结果取得了惊人的一致。1875年法国化学家布瓦博德朗在分析比里牛斯山的闪锌矿时发现一种新元素,他命名为镓,并把测得的

元素周期表的发现

一、元素周期表发现史 在化学教科书中,都附有一张“元素周期表”。这张表揭示了物质世界的秘密,把一些看来似乎互不相关的元素统一起来,组成了一个完整的自然体系。它的发明,是近代化学史上的一个创举,对于促进化学的发展,起了巨大的作用。看到这张表,人们便会想到它的最早发明者——门捷列夫。 德米特里·伊万诺维奇·门捷列夫生于一八三四年二月七日俄国西伯利亚的托波尔斯克市。这个时代,正是欧洲资本主义迅速发展时期。生产的飞速发展,不断地对科学技术提出新的要求。化学也同其它科学一样,取得了惊人的进展。门捷列夫正是在这样一个时代,诞生到人间。门捷列夫从小就热爱劳动,热爱学习。他认为只有劳动,才能使人们得到快乐、美满的生活;只有学习,才能使人变得聪明。 门捷列夫在学校读书的时候,一位很有名的化学教师,经常给他们讲课。热情地向他们介绍当时由英国科学家道尔顿始创的新原子论。由于道尔顿新原子学说的问世,促进了化学的发展速度,一个一个的新元素被发现了。化学这一门科学正激动着人们的心。这位教师的讲授,使门捷列夫的思想更加开阔了,决心为化学这门科学献出一生。 门捷列夫在大学学习期间,表现出了坚韧、忘我的超人精神。疾病折磨着门捷列夫,由于丧失了无数血液,他一天一天的消瘦和苍白了。可是,在他贫血的手里总是握着一本化学教科书。那里面当时有很多没有弄明白的问题,缠绕着他的头脑,似乎在召呼他快去探索。他在用生命的代价,在科学的道路上攀登着。他说,我这样做“不是为了自己的光荣,而是为了俄国名字的光荣。”——过了一段时间以后,门捷列夫并没有死去,反而一天天好起来了。最后,才知道是医生诊断的错误,而他得的不过是气管出血症罢了。 由于门捷列夫学习刻苦和在学习期间进行了一些创造性的研究工作,一八五五年,他以优异成绩从学院毕业。毕业后,他先后到过辛菲罗波尔、敖德萨担任中学教师。这期间,他一边教书,一边在极其简陋的条件下进行研究,写出了《论比容》的论文。文中指出了根据比容进行化合物的自然分组的途径。一八五七年一月,他被批准为彼得堡大学化学教研室副教授,当时年仅二十三岁。 攀登科学高峰的路,是一条艰苦而又曲折的路。门捷列夫在这条路上,也是吃尽了苦头。当他担任化学副教授以后,负责讲授《化学基础》课。在理论化学里应该指出自然界到底有多少元素?元素之间有什么异同和存在什么内部联系?新的元素应该怎样去发现?这些问题,当时的化学界正处在探索阶段。近五十多年来,各国的化学家们,为了打开这秘密的大门,进行了顽强的努力。虽然有些化学家如德贝莱纳和纽兰兹在一定深度和不同角度客观地

门捷列夫元素周期表介绍

门捷列夫元素周期表介绍 德米特里;伊万诺维奇;门捷列夫,19世纪俄国科学家,发现化学元素的周期性,依照原子量,制作出世界上第一张元素周期表,并据以预见了一些尚未发现的元素。下面是为你搜集门捷列夫元素周期表的相关内容,希望对你有帮助! 门捷列夫元素周期表门捷列夫元素周期表是现代化学学科的依据,也是很多化学家进行实验和化学研究最好的帮手,可以说元素周期表真正把化学这门学科发扬光大了,门捷列夫本人也给世界的自然科学发展带来了太大的贡献,其实元素周期表是门捷列夫在一个偶然的环境下发现的: 他将当时已知的几种元素的原子量写在一张纸上,企图查找之间的共同点,然后把它们反复排列组合进行各种猜测,最后发现了原子是按照元素周期规律排列的,就是因为这个元素周期规律才制定了元素周期表。 在门捷列夫元素周期表中门捷列夫就告诉以后的科学家,如果把元素按照原子量的大小排列起来的话,那么就会出现很明显的周期性,这就是元素周期表的来源,也是制定元素周期表最大的依据。 再后来一个个新发现的化学元素证实了门捷列夫元素周期表的真实性,也证明了门捷列夫这种排列组合方式的正确性,后世的科学家根据元素周期表找寻新的化学元素就变得非常容易。可以说如果没

有门捷列夫世界化学的发展至少要倒退很多年。 门捷列夫的成就门捷列夫的成就之一还是元素周期表,毕竟它的发现对于化学的发展是做出了很多贡献的,他将那些令人头疼的元素以一定的规律驯服在一张表上,给人们后面的学习、研究都带来了方便,而且还预测了一些没被发现的元素。他对元素之间存在的规律的总结,为后来新元素的发现提供了方向性的指导。这些贡献和成就是不可以被忽视的,所以这必然要作为第一点来说。 门捷列夫的成就之二,其实还是与化学有关,毕竟他一生的主攻方向就是化学。所以他不仅仅是发现了那些规律,其实他在无机化学、物理化学等方面也有所涉及,而且都取得了一定的成就,只是被第一个成就的光芒盖住了,所以对它的介绍就比较少。 门捷列夫的成就之三,他是个多才之人,在实验研究这一点上涉及的东西很广泛。除了和化学有关的东西之外,他对其它的一些定律也很有研究,例如,气体、气象、度量衡等等方面。 门捷列夫简介门捷列夫全名是德米特里门捷列夫,俄国著名的化学家,他于1834年出生于俄国的西伯利亚,在具体一点就是托波尔斯克市, 他于1848年的时候,进入彼得堡专科学校进行学习。后来又于1850进入彼得堡的师范学院进行学习,主要学习的是化学。他在1855年拥有了教师资格,同时还获得了一个金质奖章。毕业后的他成为了敖德萨中学的一名教师,一般来说应该是教授化学的老师。 他在毕业之后没有因为有了工作就放弃了学习,他一直都在准备

化学元素周期表的发展史

化学元素周期表的发展史 (海南大学) 科技是人类社会发展的动力,科学技术的发展史无疑是世界上最伟大的历史。选修了《文明通史—科技史源流》这门课,我了解到许多科学技术在千万年历史中的发展轨迹,科学的探索是个艰难的过程,无数的科学家,实践家为此付诸了毕生的精力。就像对于元素周期表,人们往往将它的发现完全归功于俄国化学家门捷列夫,然而,研究元素周期律的科学家不止门捷列夫一人,在这一百年间有许多科学家都做出了贡献。我们不了解他们,但是他们却在元素周期表发展过程中占据着不可或缺的位置,可以说,没有他们,就没有元素周期表。 门捷列夫发现了元素周期律和元素周期表后,在元素周期律的指导下,利用元素之间的一些规律性知识来分类学习物质的性质,就使化学学习和研究变得有规律可循。现在,化学家们已经能利用各种先进的仪器和分析技术对化学世界进行微观的探索,并正在探索利用纳米技术制造出具有特定功能的产品,使化学在材料、能源、环境和生命科学等研究上发挥越来越重要的作用。 一.元素周期表的诞生 对元素之间的关系进行考察研究的科学家,当首推法国人拉瓦锡。1789 年,拉瓦锡曾运用分类比较法,就当时他所确认的33 种元素(部分为单质和化合物)进行过分类研究,提出了世界上第一张元素表,开创了元素分类研究的先河。 1803 年,英国物理化学家道尔顿在创立近代原子论的同时,提出了原子量概念和测定工作。然而,由于测量方法的不同和选择相对标准上的差异,原子量曾一度出现长时间的混乱现象。 1829 年,德贝莱纳对元素的原子量与化学性质之间的关系进行了分类比较研究。

1850年,培顿科弗认识到相似元素组不应限于3 个元素,而且发现组内各元素的原子量之差常为8 或其倍数。1853 年,格拉斯顿提出同组元素在原子量上有3 种不同类型。 1854年,库克将元素分为6 系。 1859年,杜马鉴于同系有机化合物分子量之间都有一个公差,从而联想到性质相似的同系元素的原子量之间也应有一个公差,但所得数值与实验值却有相当大的出入。因此,这些工作同德贝莱纳一样,仍然只局限在部分元素的分类研究上,尚未发现其本质规律。 1862 年,法国化学家尚古多进一步对原子量与元素性质之间的变化关系进行分类比较和数理分析。他将当时已知的62 个元素,按原子量的大小循环标记在绕着圆柱体上升的螺旋线上,从而创造了一个“螺旋图”,从科学认识的角度来分析,尚古多是第一个从整体上考虑元素性质与原子量之间关系的化学家,他的归纳与见解向元素周期律迈出了有力的一步。 1857 年,欧德林以当量为基础,发表了一篇论文,其中附有一个“元素表”,将元素分为13 类。1864 年,他修改了以前的元素表,以“原子量和元素符号”为题重新发表了他的第二张元素表,这张元素表还隐显出元素性质随原子量周期性变化的规律。 1865 年,纽兰兹把元素按原子量大小顺序排列后,发现“从任何一个元素起,每隔8 个元素就与第一个元素的性质相似”。这类似于八度音程,纽兰兹称其为“八音律”。为了符合八音律,他机械地依当时的原子量大小将元素排列成每列具有8 个元素的“八音律表”,整个表显得相当混乱。这种机械的研究方法无法找出元素之间的本质规律。 1864 年,迈耶尔在《现代化学理论》一书中刊出了一个“六元素表”,已经具有了周期表的雏型。1868 年,迈耶尔发表了《原子体积周期性图解》,该图充分显示出原子量与原子体积之间的周期性关系。第二年,他又制作成了他的第二张化学元素周期表,指出元素性质是原子体积的函数。

相关文档
最新文档