(完整版)变压器的动态分析(有答案)

(完整版)变压器的动态分析(有答案)
(完整版)变压器的动态分析(有答案)

对变压器动态分析的考查

1、 如图所示,某理想变压器的原线圈接一交流电,副线圈接如图所示电路,开关S 原来闭

合,且R 1=R 2.现将S 断开,那么交流电压表的示数U 、交流电流表的示数I 、电阻R 1上的功率P 1及该变压器原线圈的输入功率P 的变化情况正确的是 ( )

A .U 增大

B .I 增大

C .P 1减小

D .P 减小

答案 AD

解析 开关S 由闭合到断开时,负载的总电阻变大,变压器的输出电压U 2不变,则输

出电流I 2变小,R 上的电压变小,R 1上的电压U 变大,电阻R 1上的功率P 1=U 2R 1R 1=U 2R 1,R 1不变,U 变大,则P 1增大,故A 正确,C 错误.由电流与匝数的关系可知电流表的示数I 减小,B 错误.输出功率P 出=I 2U 2,U 2不变,I 2减小,则P 出减小,输入功率等于输出功率,所以D 正确.

2、(2012·福建理综·14)如图所示,理想变压器原线圈输

入电压u =U m sin ωt ,副线圈电路中R 0为定值电阻,R 是滑

动变阻器.和是理想交流电压表,示数分别用U 1和U 2表

示;和是理想交流电流表,示数分别用I 1和I 2

表示.下列说法正确的是 ( )

A .I 1和I 2表示电流的瞬时值

B .U 1和U 2表示电压的最大值

C .滑片P 向下滑动过程中,U 2不变、I 1变大

D .滑片P 向下滑动过程中,U 2变小、I 1变小

解析 电路中交流电表的示数为有效值,故A 、B 项均错误;P 向下滑动过程中,R 变

小,由于交流电源和原、副线圈匝数不变,U 1、U 2均不变,所以I 2=U 2R 0+R

变大,由I 1I 2=n 2n 1,得I 1=n 2n 1

I 2变大,故C 项正确,D 项错误. 答案 C

3、 如图甲所示,T 为理想变压器,原、副线圈匝数比为10∶1,副线圈所接电路中,电压

表V 1、V 2和电流表A 1、A 2都为理想电表,电阻R 1=4 Ω,R 2=6 Ω,R 3的最大阻值为12 Ω,原线圈两端加上如图乙所示规律变化的电压.在R 3的滑片自最下端滑动到最上端

的过程中,以下说法正确的是 ( )

图5 A .电压表V 1的示数增大 B .电压表V 2的示数为20 2 V C .电流表A 1、A 2的示数都增大

D .电压表V 1的示数与电流表A 1的示数的乘积一直减小

答案 D

解析 当R 3的滑片向上移动时,R 2、R 3的总电阻减小,分压减小,所以电压表V 1的示

数减小,A 错误.由变压比公式220 V U 2=101

得U 2=22 V ,B 错误.根据“串反并同”得电流表A 1的示数增大,电流表A 2的示数减小,C 错误.电压表V 1的示数与电流表A 1的示数的乘积为电阻R 2、R 3消耗的功率之和,由于P 入=P 出=P 1+P 23,且P 入=P 出不变,P 1增大,故P 23减小,D 正确.

4、 (2011·福建理综·15)图甲中理想变压器原、副线圈的匝数之比n 1∶n 2=5∶1,电阻R =20

Ω,L 1、L 2为规格相同的两只小灯泡,S 1为单刀双掷开关.原线圈接正弦交变电源,输入电压u 随时间t 的变化关系如图乙所示.现将S 1接1,S 2闭合,此时L 2正常发光.下列说法正确的是 ( )

A .输入电压u 的表达式u =202sin (50πt ) V

B .只断开S 2后,L 1、L 2均正常发光

C .只断开S 2后,原线圈的输入功率增大

D .若S 1换接到2后,R 消耗的电功率为0.8 W

答案 D 解析 由图象乙可知U m =20 2 V ,T =0.02 s ,故ω=2πT

=100π rad/s ,即输入电压u 的表达式u =202sin (100πt ) V ,所以A 项错误.断开S 2后两灯串联,总电压仍为4 V ,

所以L 1、L 2均不能正常发光,B 项错误.根据P 入=P 出=U 2R 总

可知断开S 2后R 总增大,P

入变小,P 出变小,C 项错误.若S 1接2,由P =U 2R 可得P =4220

W =0.8 W ,D 项正确. 5、 某同学自制变压器,原线圈为n 1匝,在做副线圈时,将导线ab 对折后并在一起,在铁

芯上绕n 2圈,从导线对折处引出一个接头c ,连成图所示电路.S 为单刀双掷开关,线圈电阻不计,原线圈接u 1=U m sin ωt 的交流电源.下列说法正确的是 ( )

A .S 接b 时,电压表示数为

2n 2U m n 1 B .S 接c 时,电压表示数为2n 2U m 2n 1

C .S 接c 时,滑动触头P 向下移动,变压器输入功率变大

D .S 接c 时,滑动触头P 向上移动,变压器输入电流变大

答案 BD

解析 S 接b 时,双导线ab 产生的感应电动势抵消为零,电压表示数为零,选项A 错

误;S 接c 时,副线圈的电动势就是一个n 2线圈产生的感应电动势,由U 1U 2=n 1n 2、U 1=U m 2

,所以U 2=2n 2U m 2n 1

,选项B 正确;P 向下滑时,R 变大,消耗的功率变小,因此输入功率也变小,同理分析,P 向上滑时,R 减小,回路电流变大,由I 1n 1=I 2n 2知输入电流变大,选项C 错误,D 正确.

6、 如图甲所示,理想变压器原、副线圈的匝数分别是n 1、n 2,b 是原线圈的中心抽头,图

中电表均为理想的交流电表,副线圈接定值电阻R ,其余电阻不计.从某时刻开始在原线圈c 、d 两端加上如图乙所示的交变电压.当单刀双掷开关由a 拨向b 后,下列说法正确的是 ( )

甲 乙 A .副线圈输出电压的频率变小 B .电压表的示数变大

C .电流表的示数变小

D .原线圈的输入功率变大

答案 BD

解析 变压器不会改变交流电的频率,A 项错误;当开关由a 拨向b 后,n 1变小,由U 1U 2=n 1n 2

,且U 1=U m 2

不变,可知n 1变小,n 2、U 1不变时,U 2变大,即电压表的示数变大,同样电流表示数也要变大,B 项正确,C 项错误;由P 入=P 出=U 2I 2可知,D 项正确.

7、(2010·海南·9)如图所示,一理想变压器原、副线圈

匝数之比为4∶1,原线圈两端接入一正弦交流电源;副线圈电

路中R 为负载电阻,交流电压表和交流电流表都是理想电表.下

列结论正确的是 ( )

A .若电压表读数为6 V ,则输入电压的最大值为24 2 V

B .若输入电压不变,副线圈匝数增加到原来的2倍,则电流表的读数减小到原来的一

C .若输入电压不变,负载电阻的阻值增加到原来的2倍,则输入功率也增加到原来的2

D .若保持负载电阻的阻值不变,输入电压增加到原来的2倍,则输出功率增加到原来

的4倍

答案 AD

解析 本题考查变压器的原理以及交流电的有关知识,意在考查考生对交变电流的认识

和理解.因为电压表的读数为6 V ,则变压器的输出电压的有效值为6 V ,由U 1U 2=n 1n 2

,故U 1=4U 2=24 V ,所以输入电压的最大值为U m =2U 1=24 2 V ,所以选项A 正确;若输入电压不变,副线圈匝数增加,则U 2增大,由I 2=U 2R

可知,电流表示数增大,所以选项B 错;输入电压和匝数比不变,则电压值不变,当负载电阻R 变大时,则I 2=

U 2R ,电流变小,又P 1=P 2=U 2I 2,故输入功率也减小,所以选项C 错;若负载电阻R 不变,输

入电压变为原来的2倍,则输出电压也变为原来的2倍,I 2=U 2R

则输出电流也变为原来的2倍,故输出功率P 2=U 2I 2变为原来的4倍,所以选项D 正确.

8、 (2011·山东理综·20)为保证用户电压稳定在220 V ,变电所需适时进行调压,图甲为调压

变压器示意图.保持输入电压u 1不变,当滑动接头P 上下移动时可改变输出电压.某次检测得到用户电压u 2随时间t 变化的曲线如图乙所示.以下正确的是 ( )

甲 乙

A .u 2=1902sin (50πt ) V

B .u 2=1902sin (100πt ) V

C .为使用户电压稳定在220 V ,应将P 适当下移

D .为使用户电压稳定在220 V ,应将P 适当上移

答案 BD 解析 由题图乙知交变电流的周期T =2×10-2 s ,所以ω=2πT

=100π rad/s ,故u 2=U m sin ωt =1902sin (100πt ) V ,A 错误,B 正确.由U 1U 2=n 1n 2得U 2=n 2n 1

U 1,欲使U 2升高,n 1应减小,P 应上移,C 错误,D 正确.

9、如图所示的电路中,有一自耦变压器,左侧并联一只理想电压表V 1后接在稳定的交流电源上;右侧串联灯泡L 和滑动变阻器R ,R 上并联一只理想电压表V 2.下列说法中正确的是

( )

A .若F 不动,滑片P 向下滑动时,V 1示数变大,V 2示数变小

B .若F 不动,滑片P 向下滑动时,灯泡消耗的功率变小

C .若P 不动,滑片F 向下移动时,V 1、V 2的示数均变小

D .若P 不动,滑片F 向下移动时,灯泡消耗的功率变大

解析 若F 不动,滑片P 向下滑动时,滑动变阻器接入电路中的电阻变大,则副线圈回路中总电阻变大,则回路中电流减小,灯泡两端电压减小,功率变小,滑动变阻器两端电压变大,V 2的示数变大,而原线圈两端电压不变,则A 错误,B 正确;若P 不动,滑片F 向下移动时,根据理想变压器特点可知原线圈两端电压不变,副线圈两端电压减小,则副线圈回路中电流变小,灯泡L 消耗的功率减小,电压表V 2的示数变小,C 、D 错误. 答案 B

10、 调压变压器就是一种自耦变压器,它的构造如图甲所示.线圈AB 绕在一个圆环形的铁

芯上,CD 之间输入交变电压,转动滑动触头P 就可以调节输出电压.图甲中两电表均为理想交流电表,R 1、R 2为定值电阻,R 3为滑动变阻器.现在CD 两端输入图乙所示正弦式交流电,变压器视为理想变压器,那么 ( )

A .由乙图可知CD 两端输入交流电压u 的表达式为u =362sin 100t (V)

B .当滑动触头P 逆时针转动时,MN 之间输出交流电压的频率变大

C .当滑动变阻器滑动触头向下滑动时,电流表读数变大,电压表读数也变大

D .当滑动变阻器滑动触头向下滑动时,电阻R 2消耗的电功率变小

答案 D

解析 由题图乙可知u =362sin 100πt (V),A 错误.M 、N 之间输出交流电压的频率由输入的交流电压的频率决定,B 错误.滑动变阻器的滑动触头向下滑动时,R 3减小,由

“串反并同”可知电压表读数减小,电流表读数增大,R 2消耗的电功率P 2=U 2

R 2减小,C 错误,D 正确.

11、如图所示,理想变压器原线圈的匝数n 1=1 100匝,副线圈的匝数n 2=110匝,R 0、R 1、

R 2均为定值电阻,且R 0=R 1=R 2,电流表、电压表均为理想电表.原线圈接u =2202sin (314t ) (V)的交流电源.起初开关S 处于断开状态.下列说法中正确的是

( )

A .电压表示数为22 V

B .当开关S 闭合后,电压表示数变小

C .当开关S 闭合后,电流表示数变大

D .当开关S 闭合后,变压器的输出功率增大

答案 BCD

解析 电源电压的有效值为U 1=220 V ,由U 1U 2=n 1n 2

可知U 2=22 V ,而电压表示数只是R 1两端的电压,一定小于U 2,A 项错误.S 闭合后,负载总电阻变小,而U 2不变,由P 出=U 22R 总知P 出变大,I 2=U 2R 总

变大,而P 入=P 出=U 1I 1,U 1不变,I 1应变大,即电流表示数变大;电阻R 0的分压U 0=I 2R 0,U 0变大,则电压表示数U ′=U 2-U 0应变小.综上所述,选项B 、C 、D 正确.

变压器的常见故障及处理方法

浅议变压器常见故障及处理 令狐采学 摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。 关键词:变压器原理结构参数异常处理 引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。而实际中由于发电机结构上的限制,通常只能发出10kv 的电压,因此,必须经过变压器的升压才可以完成电能的输送。变压器也理所应当成为电力系统中核心设备之一。如果变压器出现了故障,就会在很大程度上影响电能的输送以及正常的变电运行,所以能够掌握和分析变压器常见的故障和异常现象,及主要原因,提出防范解决措施,就显得尤为重要。 电力变压器是利用电磁感应原理制成的一种静止的电力设备。它可以将某一电压等级的交流电能转换成频率相同的另一种或几种电压等级的交流电能,是电力系统中重要电气设备。下面将从变压器的分类、结构、异常现象和原因分析等几个方面进行介绍: 一、变压器的分类、结构及主要参数

(一)、变压器的分类 根据用途的不同,变压器可以分为电力变压器(220kv以上的是超高压变压器、35-110kv的是中压变压器、10kv为配电变压器)、特种变压器(电炉变压器、电焊变压器)、仪用互感器(电压、电流互感器)。 根据相数分为,单相变压器和三相变压器。 根据冷却方式分为,油浸自冷式、强迫风冷式、强迫油冷式和水冷式变压器。 根据分接开关的种类分为有载调压变压器和无载调压变压器。 根据绕组数分为,单绕组变压器、双绕组变压器和三绕组变压器。 (二)、变压器的结构 虽然变压器的种类依据不同方式进行分类,有很多种,但是一般常用的变压器的结构都很相似: 1、绕组:变压器的电路部分。 2、铁芯:变压器的磁路部分。 3、油箱:变压器的外壳,内装满变压器油(绝缘、散热)。 4、油枕:对油箱里的油起到缓冲作用,同时减小油箱里的油与空气的接触面积,不易受潮和氧化。 5、呼吸器:利用硅胶吸收空气中的水分。 6、绝缘套管:变压器的出线从油箱内穿过油箱盖时必须经过绝缘套管以使带电的引线与接地的油箱绝缘。

配电变压器故障分析

配电变压器故障分析 配电变压器在运行过程中,由于安装和管理不当及使用寿命等原因,经常会出现各种故障。 绝缘老化 变压器在正常负载下,绝缘材料使用期限一般在20年左右。当绝缘枯焦、变黑、失去原有的弹性而变得脆弱时,只要绕组稍受振动或绕组间略有相对摩擦,已老化的绝缘就容易损坏,造成匝间或层间短路。由于绝缘老化而引起的事故很多,因此,必须认真监测变压器的负载和油温,不允许超过规定过负载运行,以免加速绝缘老化和缩短变压器的使用寿命。 绝缘油劣化 绝缘油有很好的电气性能和合适的黏度,它能增加绕组相间、层间以及绕组与铁心、外壳之间的绝缘强度,使运行中变压器的绕组、铁心得到冷却;另外,绝缘油能使变压器主绝缘保持原有的化学性能和物理性能,保护金属不受腐蚀。油纸的劣化会导致变压器发生故障。因此,要加强对绝缘油的维护和监视。

(1)严格按规定取样和做试验,发现不合格时应立即处理。 (2)监视变压器的负载和上层油温有无异常。 (3)减少油与空气接触的机会,防止水分渗入。 过电压 过电压一般分外部过电压和内部过电压。外部过电压主要由雷击引起,主要预防措施是安装避雷器;内部过电压是当电力系统中的参数发生变化时,由电磁振荡和积聚引起的,避雷器也能起到防护作用。 绝缘子损坏 因为测试、维护、检修工作不全面而引起的绝缘子损坏占多数。应加强对绝缘子的预防性试验,维护、检修工作人员应严格按照规程操作,防止人为损坏。 引线及绝缘故障 (1)引线连接处焊接不牢或引线与端头处接触不良、端头的螺钉未拧紧,均能引起局部发热而使接点熔毁,造成引线断线。

(2)水分或大量潮气进入变压器内,使绝缘损坏而击穿。 (3)变压器出口处短路,绕组匝间绝缘损坏。 (4)在高压绕组加强段或低压绕组端部处,因线包绝缘膨胀,堵塞油道,使内部绝缘老化而引起匝间短路。 磁路故障 (1)穿心螺杆及夹板碰触铁芯。 (2)硅钢片间绝缘损坏。 (3)铁芯未接地或接地不当。

油浸电力变压器设计手册-沈阳变压器(1999) 6负载损耗计算

目录 1 概述SB-007.6 第 1 页 2 绕组导线电阻损耗(P R)计算SB-007.6 第 1 页 3 绕组附加损耗(P f)计算SB-007.6 第1页3.1 层式绕组的附加损耗系数(K f %)SB-007.6 第 1 页3.2 饼式绕组的附加损耗系数(K f %)SB-007.6 第 2 页3.3 导线中涡流损耗系数(K w %)计算SB-007.6 第 2 页 3.3.1 双绕组运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 2 页3.3.2 降压三绕组变压器联合运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 3 页 SB-007.6 第3 页3.3.3 升压三绕组(或高-低-高双绕组)变压器联合运行方式的最大纵向漏 磁通密度(B m)计算 3.3.4 双绕组运行方式的涡流损耗系数(K w %)简便计算SB-007.6 第4 页3.4 环流损耗系数(K C %)计算SB-007.6 第 4 页3. 4.1 连续式绕组的环流损耗系数(K C %)计算SB-007.6 第4 页3.4.2 载流单螺旋―242‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第5 页 SB-007.6 第5 页3.4.3 非载流(处在漏磁场中间)单螺旋―242‖换位的绕组环流损耗系数 (K C2 %)计算 3.4.4 载流双螺旋―交叉‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第6 页 SB-007.6 第7 页3.4.5 非载流(处在漏磁场中间)双螺旋―交叉‖ 换位的绕组环流损耗 系数(K C2 %)计算 4引线损耗(P y)计算SB-007.6 第7 页5杂散损耗(P ZS)计算SB-007.6 第8 页5.1小型变压器的杂散损耗(P Z S)计算SB-007.6 第8 页5.2中大型变压器的杂散损耗(P Z S)计算SB-007.6 第9 页5.3 特大型变压器的杂散损耗(P Z S)计算SB-007.6 第10 页

变压器7种常见故障解析

变压器7种常见故障解析 变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。 1、绕组故障 主要有匝间短路、绕组接地、相间短路、断线及接头开焊等。产生这些故障的原因有以下几点: ①在制造或检修时,局部绝缘受到损害,遗留下缺陷; ②在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高绝缘老化; ③制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏; ④绕组受潮,绝缘膨胀堵塞油道,引起局部过热; ⑤绝缘油内混入水分而劣化,或与空气接触面积过大,使油的酸价过高绝缘水平下降或油面太低,部分绕组露在空气中未能及时处理。 由于上述种种原因,在运行中一经发生绝缘击穿,就会造成绕组的短路或接地故障。匝间短路时的故障现象使变压器过热油温增高,电源侧电流略有增大,各相直流电阻不平衡,有时油中有吱吱声和咕嘟咕嘟的冒泡声。轻微的匝间短路可以引起瓦斯保护动作;严重时差动保护或电源侧的过流保护也会动作。发现匝间短路应及时处理,因为绕组匝间短路常常会引起更为严重的单相接地或相间短路等故障。 2、套管故障 这种故障常见的是炸毁、闪落和漏油,其原因有: ①密封不良,绝缘受潮劣比,或有漏油现象; ②呼吸器配置不当或者吸入水分未及时处理; ③变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹; ④电容芯子制造上有缺陷,内部有游离放电; ⑤套管积垢严重。 3、铁芯故障 ①硅钢片间绝缘损坏,引起铁芯局部过热而熔化; ②夹紧铁芯的穿心螺栓绝缘损坏,使铁芯硅钢片与穿心螺栓形成短路; ③残留焊渣形成铁芯两点接地; ④变压器油箱的顶部及中部,油箱上部套管法兰、桶皮及套管之间。内部铁芯、绕组夹件等因局部漏磁而发热,引起绝缘损坏。 运行中变压器发生故障后,如判明是绕组或铁芯故障应吊芯检查。首先测量各相绕组的直流电阻并进

变压器常见故障大汇总及案例分析

电力变压器常见故障的分析与处理 变压器是靠电磁感应原理工作的,改变电压、联络电网、传输和分配电能;电力变压器是变电站核心设备,结构复杂,运行环境恶劣,发生故障和事故对电网和供电可靠性影响大,需要针对具体情况立即采取措施;变压器故障的分析判别牵扯的学科领域多,既要有电工、高电压、绝缘材料、化学分析等基础知识,还要熟悉自动化、热学等;变压器的故障种类多,表现形式千差万别,需要熟悉结构原理、熟悉现场运行条件、熟悉每台设备特点等,具体问题,具体分析。 第一章:大型变压器显性故障的特征与现场处理 显性故障:是指故障的特征和表现形式比较直观明显的故障,在此,结合现场实际,对大型变压器显性故障的原因和特征进行了叙述和分析,介绍了现场常见的处理办法,也是一些比较简单的办法。 一、外观异常和故障类型: 变压器在运行过程中发生异常和故障时,往往伴随相应外观特征,通过这些简单的外部现象,可以发现一些缺陷并对异常和故障进行定性分析,提出进一步分析或处理的方案。而且可以对一些比较复杂的故障确定检修和试验方案.以下从几个方面进行分析和处理:

1、防爆筒或压力释放阀薄膜破损。 当变压器呼吸不畅,进入变压器油枕隔膜上方的空气,在温度升高时,急剧膨胀,压力增加,若引起薄膜破损还会伴有大量的变压器油喷出;主要有以下原因和措施: 1)呼吸器因硅胶多或油封注油多、管路异物而堵塞。硅胶应占呼吸器的2/3,油封中有1/3的油即可,可用充入氮气的办法对管路检查2)(油枕)安装检修时紧固薄膜的螺栓过紧或油枕法兰不平,(压力释放阀)外力损伤或人员误碰。更换损坏的薄膜或油枕. 3)变压器内部发生短路故障,产生大量气体。一般伴随瓦斯继电器动作;可先从瓦斯继电器中取气样,若点火能够燃烧,需取油样色谱分析和进行电气检查,确定故障性质,故障原因未查明,消除缺陷前变压器不能投运。 4)弹性元件膨胀器内部卡涩.更换或由制造厂处理. 5)隔膜结构的油枕在检修或安装时注油方法不当,未按规定将油枕上部的气体排净。停电将变压器油注满油枕,再将变压器油放至合适的油位高度。 6)胶囊结构的油枕因油位低等原因,胶囊堵塞油枕与变压器本体的管路联结口。在管路联结口处装一支架,防止胶囊直接堵塞联结口。 2、套管闪络放电。 套管闪络放电会使其本身发热、老化,引发变压器出口短路事故;低压套管尤其严重;其主要原因和措施有:

配电变压器损坏原因分析及对策(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 配电变压器损坏原因分析及对策 (标准版)

配电变压器损坏原因分析及对策(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 1原因分析 在广大农村,配电变压器时常损坏,特别是在农村用电高峰期和雷雨季节更是时有发生,笔者通过长期跟踪调查发现导致配电变压器损坏的主要原因有以下几个方面。 1.1过载 一是随着人们生活的提高,用电量普遍迅速增加,原来的配电变压器容量小,小马拉大车,不能满足用户的需要,造成变压器过负载运行。二是由于季节性和特殊天气等原因造成用电高峰,使配电变压器过载运行。由于变压器长期过载运行,造成变压器内部各部件、线圈、油绝缘老化而使变压器烧毁。 1.2绕组绝缘受潮 一是配电变压器的负荷大部分随季节性和时间性分配,特别是在农村农忙季节配电变压器将在过负荷或满负荷下使用,在夜晚又是轻负荷使用,负荷曲线差值很大,运行温度最高达80℃以上,而最低温

度在10℃。而且农村变压器因容量小没有安装专门的呼吸装置,多在油枕加油盖上进行呼吸,所以空气中的水分在绝缘油中会逐渐增加,从运行八年以上的配电变压器的检修情况来看,每台变压器底部水分平均达100g以上,这些水分都是通过变压器油热胀冷缩的呼吸空气从油中沉淀下来的。二是变压器内部缺油使油面降低造成绝缘油与空气接触面增大,加速了空气中水分进入油面,降低了变压器内部绝缘强度,当绝缘降低到一定值时变压器内部就发生了击穿短路故障。 1.3对配电变压器违章加油 某电工对正在运行的配电变压器加油,时隔1h后,该变压器高压跌落开关保险熔丝熔断两相,并有轻微喷油,经现场检查,需要大修。造成该变压器烧毁的主要原因:一是新加的变压器油与该变压器箱体内的油型号不一致,变压器油有几种油基,不同型号的油基原则上不能混用;二是在对该配电变压器加油时没有停电,造成变压器内部冷热油相混后,循环油流加速,将器身底部的水分带起循环到高低压线圈内部使绝缘下降造成击穿短路;三是加入了不合格变压器油。 1.4无功补偿不当引起谐振过电压 为了降低线损,提高设备的利用率,在《农村低压电力技术规程》中规定配电变压器容量在100kVA以上的宜采用无功补偿装置。如果补

高中物理-变压器及其电路的动态分析练习

高中物理-变压器及其电路的动态分析练习 1.心电图仪是将心肌收缩产生的脉动转化为电压脉冲的仪器,其输出部分可以等效为虚线框内的交流电源和定值电阻R0串联,如图1所示.心电图仪与一理想变压器的原线圈连接,一可变电阻R与该变压器的副线圈连接.在交流电源的电压有效值U0不变的情况下,将可变电阻R的阻值调大的过程中() 图1 A.通过原线圈的电流不变,通过副线圈的电流不变 B.通过原线圈的电流不变,通过副线圈的电流变小 C.通过原线圈的电流变小,通过副线圈的电流变小 D.通过原线圈的电流变大,通过副线圈的电流变大 2.如图2所示,在A、B间接入正弦交流电U1=220V,通过理想变压器和二极管D1、D2给阻值R=20Ω的纯电阻负载供电,已知D1、D2为相同的理想二极管,正向电阻为0,反向电阻无穷大,变压器原线圈n1=110匝,副线圈n2=20匝,Q为副线圈正中央抽头,为保证安全,二极管的反向耐压值至少为U0,设电阻R 上消耗的热功率为P,则() 图2 A.U0=402V,P=80W B.U0=40V,P=80W

C.U0=402V,P=20W D.U0=40V,P=20W 3.如图3甲所示,理想变压器原、副线圈的匝数比n1∶n2=10∶1,R1=R2=20Ω,C为电容器.已知加在原线圈两端的正弦式交变电流的电压随时间变化的规律如图乙所示,则() 图3 A.交流电的频率为100Hz B.副线圈中交流电压表的示数为202V C.电阻R1消耗的电功率为20W D.通过R2的电流始终为零 4.如图4所示电路中,变压器为理想变压器,a、b接在电压有效值不变的交流电源两端,R0为定值电阻,R为滑动变阻器.现将变阻器的滑片从一个位置滑动到另一位置,观察到电流表A1的示数增大了0.2A,电流表A2的示数增大了0.8A,则下列说法正确的是() 图4 A.电压表V1示数增大 B.电压表V2、V3示数均增大 C.该变压器起升压作用 D.变阻器滑片是沿c→d的方向滑动 5.如图5甲所示的电路中,理想变压器原、副线圈匝数比为5∶1,原线圈输入如图乙所示的电压,副线圈接火灾报警系统(报警器未画出),电压表和电流表均为理想电表,R0为定值电阻,R为半导体热敏电阻(其阻值随温度的升高而减小).下列说法中正确的是()

变压器的常见故障与处理

变压器的常见故障与处理 5.8 变压器的常见故障及处理 5.8.1 绝缘降低:变压器在运行中,往往会出现绝缘降低的现象。绝缘降低最基本的特点,是绝缘电阻下降,以致造成运行泄露电流增加,发热严重,温升增高,从而进一步促进绝缘老化。若延续下去,后果非常严重,绝缘下降的原因之一就是绝缘受潮;原因之二是绝缘老化,一些年久失修的老变压器,最容易出现这类故障;原因之三是油质劣化,绝缘性变差。 5.8.2 温升过高:温升过高最明显的象征是,电流表指针超过了预定界限,变压器发热和油面上升,严重时保护装置动作,切断电器。温升过高原因有: 1.电流过大,负荷过重,超过变压器容量允许限度 Y/Y0-12连接的变压器,但三相负荷不平衡时会发生过热。变压器可能断线,如在接线时对外一相断线,则对内绕组有环流通过,将发生局部过负荷,变压器夹紧螺栓松脱,磁阻增大,无功负荷增大,在同样有功负荷时产生过流。绕组反接,造成运行时反电势不足,而产生过电流。变压器带负荷投入也会发生过电流。 2.通风不良更多知识可关注微信公众号:AZPT991 变压器表面积尘,变压器风道阻塞,风叶片损坏,风扇电动机转速降低,环境温度升高等,是造成通风不良原因的主要原因。应针对上述各种情况分别加以处理。如果环境温度过高,应加强通风或降低变压器负荷。 3.变压器内部的损坏 如线圈损坏,短路,油质不良等。应当针对损坏情况进行修理。 (1)油面不正常:油面也由油枕上的油位指示计进行观察。正常情况下,指示计指在零位上下±25℃的范围以内。若超过此限度,即为不正常运行。 (2)油面变化的情况有两种:一种是油面升高,这主要是伴随温升的增加而产生。此时可针对温升情况加以处理。当油面高出规定的油面时,应当放油。另一种是油面降低。这就要检查是否有漏油处,如有漏油处要进行堵塞。 (3)备用的变压器,还应检查是否由于油凝固所制,这时需要让它带负荷运行,进行观察。若油面较定油面显著降低时,应当加油,且油质油温要符合标准。4.声响异常 (1)变压器运行正常时是发出连续匀称的嗡嗡声。各型变压器声音大小不一。变

电力变压器常见故障及处理方法

编号:SM-ZD-29412 电力变压器常见故障及处 理方法 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

电力变压器常见故障及处理方法 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1、在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是电网中最重要和最关键的设备、变压器如果发生严重事故,不但会导致自身损坏,还会中断电力供应,后患无穷。 2、常见故障及其诊断措施 2.1铁心多点接地 变压器铁心只允许有一点接地,若出现两点及以上接地,为多点接地。多点接地运行将导致铁心出现故障,危及变压器安全运行。应及时处理。 吊壳检查(1)铁心夹件垫脚与铁轭间的绝缘纸板是否脱落破损,按要求更换厚度相同的新纸板。 (2)紧固铁心夹件所有螺丝,防止铁心移位、变形。 (3)清除油中金属异物、金属颗粒及杂质,清除油箱各部位油泥,对变压器进行真空滤油、注油、彻底清除油中水分及杂质。

配电变压器常见故障分析(正式版)

文件编号:TP-AR-L5164 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 配电变压器常见故障分 析(正式版)

配电变压器常见故障分析(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声

音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接

某电力变压器继电保护设计(继电保护)

1 继电保护相关理论知识 1.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 1.2.1 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 1.2.2继电保护基本原理和保护装置的组成 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护:(1)反映电气量的保护 电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别.就可以构成各种不同原理的继电保护装置。 例如:反映电流增大构成过电流保护; 反映电压降低(或升高)构成低电压(或过电压)保护; 反映电流与电压间的相位角变化构成方向保护; 反映电压与电流的比值的变化构成距离保护。 除此以外.还可根据在被保护元件内部和外部短路时,被保护元件两端电流相位或功率方向的差别,分别构成差动保护、高频保护等。 同理,由于序分量保护灵敏度高,也得到广泛应用。 新出现的反映故障分量、突变量以及自适应原理的保护也在应用中。

电力变压器常见故障及处理方法

仅供参考[整理] 安全管理文书 电力变压器常见故障及处理方法 日期:__________________ 单位:__________________ 第1 页共5 页

电力变压器常见故障及处理方法 1、在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是电网中最重要和最关键的设备、变压器如果发生严重事故,不但会导致自身损坏,还会中断电力供应,后患无穷。 2、常见故障及其诊断措施 2.1铁心多点接地 变压器铁心只允许有一点接地,若出现两点及以上接地,为多点接地。多点接地运行将导致铁心出现故障,危及变压器安全运行。应及时处理。 吊壳检查(1)铁心夹件垫脚与铁轭间的绝缘纸板是否脱落破损,按要求更换厚度相同的新纸板。 (2)紧固铁心夹件所有螺丝,防止铁心移位、变形。 (3)清除油中金属异物、金属颗粒及杂质,清除油箱各部位油泥,对变压器进行真空滤油、注油、彻底清除油中水分及杂质。 2.2变压器渗油 变压器渗油会影响变压器的安全,造成不必要的停运及事故隐患,因此,我们有责任解决变压器渗油问题。 油箱焊接渗油:平面接缝处渗油可直接进行焊接、拐角及加强筋连接处渗油则渗漏点难找准,补焊后往往由于内应力的作用再次渗漏油。对于这样的漏点可加用铁板进行补焊,两面连接处,可将铁板裁成仿锤状进行补焊;三面连接处可根据实际位置将铁板裁成三角形补焊。 高压套管升高座或进入孔法兰渗油:主要原因是胶垫安装不合适造成的。处理方法为:对法兰紧固螺丝,将施胶枪嘴拧入该螺丝孔,然后用高压将密封胶注入法兰间隙,直至各法兰螺丝帽有胶挤出为止。 第 2 页共 5 页

低压侧套管渗油:原因是受母线拉伸和低压侧引线引出偏短,胶珠压在螺纹上造成的,可按规定对母线加装软连接;如低压引出线偏短,可重新调整引出线长度;如引出线无法调整,可在安装胶珠的各密封面加密封胶;为了增大压紧力可将瓷质压力帽换成铜质压力帽。 2.3接头过热 载流接头是变压器的重要组成部分,接头连接不好,将引起发热甚至烧断,严重影响变压器的正常运行和电网的安全运行,因此,接头过热问题一定要及时解决。铜铝连接,变压器的引出线头都是铜制的,在室外和潮湿的环境中,不能将铝导体用螺栓与铜端头连接。因为当铜与铝的接触面间渗入含有溶解盐的水份。即电解液时,在电耦的作用下,会产生电解反应,铝被强烈电腐蚀。触头很快遭到破坏,引起发热造成事故,为避免上述现象的发生,就必须采用一头为铝、另一头为铜的特殊过渡接头。普通连接,在变压器上是较多见的,它们都是过热的重点部位,对平面接头,对接面加工成平面,清除平面上的杂质,并抹导电膏,确保接触良好。 油浸电容式套管发热:处理的方法可以用定位套固定方式的发热套管,先拆开将军帽,若将军帽引线接头丝扣烧损,应用牙攻进行修理,确保丝扣配合良好,然后在定位套和将军帽之间垫一个和定位套截面大小一致、厚度适宜的薄垫片,重新安装将军帽,使将军帽在拧紧情况下,正好可以固定在套管顶部法兰上。引线接头和将军帽丝扣公差配合应良好,否则应更换。确保在拧紧的情况下,丝扣之间应有足够的压力,减少接触电阻。 作为一名电力检修工人,发现并及时处理设备缺陷是我的职责,彻底处理好每一项设备隐患是我的荣耀,我会一直朝着这个目标努力工作 第 3 页共 5 页

配电变压器常见故障分析论文

配电变压器常见故障分析(论文)

————————————————————————————————作者:————————————————————————————————日期:

№配电变压器常见故障分析 年月日

配电变压器常见故障分析 摘要 电力行业,是一门影响国计民生。随着和谐社会的发展与进步,电能使用量电网维护管理工作的也越来越显得重要。配电变压器作为电网中的核心部件,更应该注意日常的维护及管理,这样才能够更好的确保电网的正常运行。在进行配电变压器的运行维护的过程中需要清楚配电变压器经常出现的故障,并能够找出解决的办法,为电网的安全、正常的工作提供前提条件。本文对配电变压器事故率高的现象,着重分析了配电变压器烧坏的几种主要原因,提出了具体的防范措施,为防止发生配电变压器烧毁故障提供借鉴。 关键词:配电变压器日常故障原因分析运行维护

目录 摘要 (1) 引言 (3) 第一章原因分析 (4) 1.1 变压器铁芯多点接地 (4) 1.1.1 变压器铁芯接地原因 (4) 1.1.2 变压器铁芯硅钢片短路 (4) 1.2 变压器绝缘性能降低 (4) 1.2.1 变压器电流激增 (4) 1.2.2 绕组绝缘受潮 (4) 1.3 变压器无载调压开关 (5) 1.3.1 分接开关裸露受潮 (5) 1.3.2 高温过热 (5) 1.3.3 本身缺陷 (6) 1.3.4 外部人为原因 (6) 1.4 雷击与谐振 (6) 1.4.1 雷击过电压 (6) 1.4.2 系统发生铁磁谐振 (6) 1.5 一/二次熔体选择不当 (7) 1.6 二次侧短路 (7) 1.7 其它 (7) 第二章防范措施 (8) 2.1 投运前检测 (8) 配电变压器投运前必须进行现场检测,其主要内容如下。 (8) 2.2 运行中注意事项 (9) 结论 (9) 参考文献 (10) 致谢 (10)

设计变压器的基本公式精编版

设计变压器的基本公式 为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T) Bm=(Up×104)/KfNpSc 式中:Up——变压器一次绕组上所加电压(V) f——脉冲变压器工作频率(Hz) Np——变压器一次绕组匝数(匝) Sc——磁心有效截面积(cm2) K——系数,对正弦波为4.44,对矩形波为4.0 一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。 变压器输出功率可由下式计算(单位:W) Po=1.16BmfjScSo×10-5 式中:j——导线电流密度(A/mm2) Sc——磁心的有效截面积(cm2) So——磁心的窗口面积(cm2) 3对功率变压器的要求 (1)漏感要小 图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。 图9双极性功率变换器波形 功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。 (2)避免瞬态饱和

一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。它衰减得很快,持续时间一般只有几个周期。对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。所以一般在控制电路中都有软启动电路来解决这个问题。 (3)要考虑温度影响 开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40℃考虑,磁心温度可达60~80℃,一般选择Bm=0.2~0.4T,即2000~4000GS。 (4)合理进行结构设计 从结构上看,有下列几个因素应当给予考虑: 漏磁要小,减小绕组的漏感; 便于绕制,引出线及变压器安装要方便,以利于生产和维护; 便于散热。 4磁心材料的选择 软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点,而被广泛应用于开关电源中。 软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列,锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体的组成部分是Fe2O3,NiO,ZnO 等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共用天线匹配器等。 在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。 开关电源用铁氧体磁性材应满足以下要求:

知识讲解变压器基础

变压器 编稿:张金虎审稿:李勇康 【学习目标】 1.知道原线圈(初级线圈)、副线圈(次级线圈)的概念。 2.知道理想变压器的概念,记住电压与匝数的关系。 3.知道升压变压器、降压变压器概念。 4.会用1122UnUn?及1122IUIU?(理想变压器无能量损失)解题。 5.知道电能输送的基本要求及电供电的优点。 6.分析论证:为什么在电能的输送过程中要采用高压输电。 7.会计算电能输送的有关问题。 8.了解科学技术与社会的关系。 【要点梳理】 要点一、变压器的原理 1.构造:变压器由一个闭合的铁芯、原线圈和副线圈组成,两个线圈都是由绝缘导线绕制而成的,铁芯由涂有绝缘漆的硅钢片叠合而成。是用来改变交流电压的装置(单相变压器的构造示意图及电路图中的符分别如图甲、乙所示)。 2.工作原理 变压器的变压原理是电磁感应。如图所示,当原线圈上加交流电压U时,原线圈中就有交变电流,它在铁芯中产生交变的磁通量,在原、副线圈中都要产生感应电动势。如果副线圈是闭合的,则副线圈中将产生交变的感应电流,它也在铁芯中产生交变磁通

量,在原、副线圈中同样要引起感应电动势。由于这种互相感应的互感现象,原、副线圈间虽然不相连,电能却可以通过磁场从原线圈传递到副线圈。其能量转换方式为:原线圈电能→磁场能→副线圈电能。 要点诠释: (1)在变压器原副线圈中由于有交变电流而发生互相感应的现象,叫做互感现象。 (2)互感现象是变压器工作的基础:变压器通过闭合铁芯,利用互感现象实现了电能向磁场能再到电能的转化。 (3)变压器是依据电磁感应工作的,因此只能工作在交流电路中,如果变压器接入直流电路,原线圈中的电流不变,在铁芯中不引起磁通量的变化,没有互感现象出现,变压器起不到变压作用。 要点二、理想变压器的规律 1.理想变压器 没有漏磁(磁通量全部集中在铁芯内)和发热损失(原、副线圈及铁芯上的电流的热效应不计)的变压器,即没有能量损失的变压器叫做理想变压器。 要点诠释: (1)因为理想变压器不计一切电磁能量损失,因此,理想变压器的输入功率等于输出功率。 (2)实际变压器(特别是大型变压器)一般都可以看成是理想变压器。 2.电压关系 根据知识点一图甲所示,理想变压器原、副线圈的匝数分别为12nn、,原线圈两端加交变电压1U,通过闭合铁芯的磁通量发生改变。由于穿过原、副线圈的磁通量变化率相同,在原、副线圈两端分别产生感应电动势12EE、,由法拉第电磁感应定律得11ФEnt???,22ФEnt???,于是有1122EnEn?。 对于理想变压器,不考虑原、副线圈的电压损失,则11UE?,22UE?,即 1122UnUn?。同理,当有几组副线圈时,则有312123UUUnnn?? ? 要点诠释: (1)1122UnUn?,无论副线圈一端是空载还是有负载,都是适用的。 (2)据1122UnUn?知,当21nn>时,21UU>,这种变压器称为升压变压器;当21nn<时,21UU<,这种变压器称为降压变压器。 (3)变压器的电动势关系、电压关系是有效值(或最大值)间的关系。 3.功率关系:对于理想变压器,不考虑能量损失,PP?入出。 4.电流关系:由功率关系,当只有一个副线圈时:1122IUIU?,得

变压器常见故障及处理电子教案

变压器常见故障及处 理

变压器常见故障及处理 1 异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接触,或者是因为静电放电引起的异常响声,而各种测量表计指示和温度均无反应,这类响声虽然异常,但对运行无大危害,不必立即停止运行,可在计划检修时予以排除。 2 温度异常

变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。 引起温度异常升高的原因有: ①变压器匝间、层间、股间短路; ②变压器铁芯局部短路; ③因漏磁或涡流引起油箱、箱盖等发热; ④长期过负荷运行,事故过负荷; ⑤散热条件恶化等。 运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。 3 喷油爆炸 喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。 (1)绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。 (2)断线产生电弧:线组导线焊接不良、引线连接松动等因素在大电流冲击下可能造成断线,断点处产生高温电弧使油气化促使内部压力增高。 (3)调压分接开关故障:配电变压器高压绕组的调压

配电变压器的故障分析

配电变压器的故障分析 王平 1.变压器常见故障 变在送电和运行中,常见的故障和异常现象有: (1)变压器在经过停运后送电或试送电时,往往发现电压不正常,如两相高一相低或指示为零;有的新投运变压器三相电压都很高,使部分用电设备因电压过高而烧毁; (2)高压保险丝熔断送不上电; (3)雷雨过后变压器送不上电; (4)变压器声音不正常,如发出“吱吱”或“霹啪”响声;在运行中发出如青蛙“唧哇唧哇”的叫声等; (5)高压接线柱烧坏,高压套管有严重破损和闪络痕迹; (6)在正常冷却情况下,变压器温度失常并且不断上升; (7)油色变化过甚,油内出现炭质; (8)变压器发出吼叫声,从安全气道、储油柜向外喷油,油箱及散热管变形、漏油、渗油2.变压器故障分析 从变压器的声音判断故障 (1)缺相时的响声当变压器发生缺相时,若第二相不通,送上第二相仍无声,送上第三相时才有响声;如果第三相不通,响声不发生变化,和二相时一样。发生缺相的原因大致有三方面:①电源缺一相电;②变压器高压保险丝熔断一相;③变压器由于运输不慎,加上高压引线较细,造成振动断线(但未接壳)。 (2)调压分接开关不到位或接触不良当变压器投入运行时,若分接开关不到位,将发出较大的 “啾啾”响声,严重时造成高 压熔丝熔断;如果分接开关接触不良,就会产生轻微的“吱吱”火花放电声,一旦负荷加大,就有可能烧坏分接开关的触头。遇到这种情况,要及时停电修理。 (3)掉入异物和穿心螺杆松动当变压器夹紧铁心的穿心螺杆松动,铁心上遗留有螺帽零件或变压 器中掉入小金属物件 时,变压器将发出“叮叮当当”的敲击声或“呼, 呼, ”的吹风声以及“吱啦吱啦”的像磁铁吸动小垫片的响声,而变压器的电压、电流和温度却正常。这类情况一般不影响变压器的正常运行,可等到停电时进行处理。 (4)变压器高压套管脏污和裂损当变压器的高压套管脏污,表面釉质脱落或裂损时,会发生表面 闪络,听到“嘶嘶”或 “哧哧”的响声,晚上可以看到火花。 (5)变压器的铁心接地断线当变压器的铁心接地断线时,变压器将产生“哔剥哔剥”的轻微放电 声。 ( 6)内部放电送电时听到“噼啪噼啦”的清脆击铁声,则是导电引线通过空气对变压器外壳的放电声;如果听到通过液体沉闷的“噼啪”声,则是导体通过变压器油面对外壳的放电声。如属绝缘距离不够,则应停电吊心检查,加强绝缘或增设绝缘隔板。

电力变压器课程设计

1 前言 随着工农业生产和城市的发展,电能的需要量迅速增加。为了解决热能资源(如煤田)和水能资源丰富的地区远离用电比较集中的城市和工矿区这个矛盾,需要在动力资源丰富的地区建立大型发电站,然后将电能远距离输送给电力用户。同时,为了提高供电可靠性以及资源利用的综合经济性,又把许多分散的各种形式的发电站,通过送电线路和变电所联系起来。这种由发电机、升压和降压变电所,送电线路以及用电设备有机连接起来的整体,即称为电力系统。 电力系统是有各种电力系统元件组成的,它们包括发电、输变电、负荷等机械、电气主设备以及控制、保护等二次辅助设备。WDT-Ⅲ型电力系统综合自动化试验系统是一个完整的电力系统典型模型,它为我们提供了一个自动化程度很高的多功能实验平台,是为了适应现代化电力系统对宽口径“复合型”高级技术人才的需要而研制的电力类专业新型教学试验系统。 本设计所要完成的工作是利用VC语言开发WDT电力系统综合自动化实验台监控软件,主要是完成准同期控制器监控软件的编写,它要求能显示发电机及无穷大系统的相关参数,如电压、频率和相位角,并能发送准同期合闸命令。

2 电力系统实验台 WDT-Ⅲ型电力系统综合自动化实验教学系统主要由发电机组、试验操作台、无穷大系统等三大部分组成(如图2.1所示)。 图 2.1 WDT-Ⅲ型电力系统综合自动化试验系统 2.1 发电机组 该系统的发电机组主要由原动机和发电机两部分构成,另外,它还包括了测速装置和功率角指示器(用于测量发电机电势与系统电压之间的相角 ,即发电机转子相对位置角),测得的发电机的相关数据传输回实验操作台,与无穷大系统的相关参数进行比较,从而确定系统是否满足了发电机并网条件。 2.1.1 原动机 在实际的发电厂中,原动机一般用的是水轮机、气轮机、柴油机或者其他形式的动力机械,将水流,气流,燃料燃烧或原子核裂变产生的能量转换为带动发电机轴旋转的机械能,从而带动发电机转子的旋转。 在WDT-Ⅲ型电力系统综合自动化试验台的发电机组中,原动机是由直流发电机(P N=2.2kW,U N=220V)模拟实现其功能的。直流电动机(模拟原动机)与发电机的结

变压器常见故障及处理

变压器常见故障及处理 1 异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接触,或者是因为静电放电引起的异常响声,而各种测量表计指示和温度均无反应,这类响声虽然异常,但对运行无大危害,

不必立即停止运行,可在计划检修时予以排除。 2 温度异常 变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。 引起温度异常升高的原因有: ①变压器匝间、层间、股间短路; ②变压器铁芯局部短路; ③因漏磁或涡流引起油箱、箱盖等发热; ④长期过负荷运行,事故过负荷; ⑤散热条件恶化等。 运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。 3 喷油爆炸 喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。 (1)绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。 (2)断线产生电弧:线组导线焊接不良、引线连接松动等因素在大电流冲击

相关文档
最新文档