天线测试系统

天线测试系统
天线测试系统

天线测试系统

一,天线测试系统集成团队介绍

天线测试系统集成团队由10多名行业专家组成,大部分具有10多年的行业经验。可以提供天线测试系统技术咨询,暗室设计,近远场和紧缩场方案设计,交钥匙系统集成。

专业团队中,包含软件开发工程师,暗室设计工程师,天线扫描架和转台等机械设计工程师,射频链路设计工程师,系统总体设计工程师,系统集成安装和调试工程师等。

4008085255

二,系统集成能力

神州技测能够设计和集成以下系统:

车载天线通讯天线

车载雷达测量系统紧缩场测量系统

天线罩测量系统终端OTA测量系统

雷达目标模拟测量系统芯片天线测量系统

车载天线部件测量系统幅相校准系统

整车天线测量系统相控阵紧缩场测量系统

图1:车载雷达远场测量系统

图2:5G通信紧缩场测量系统

天线测试方法介绍

天线测试方法介绍 对天线与某个应用进行匹配需要进行精确的天线测量。天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。例如,500MHz以下的低频天线通常是使用锥形微波暗室(anechoic chamber),这是20世纪60年代就出现的技术。遗憾的是,大多数现代天线测试工程师不熟悉这种非常经济的技术,也不完全理解该技术的局限性(特别是在高于1GHz的时候)。因此,他们无法发挥这种技术的最大效用。 随着对频率低至100MHz的天线测量的兴趣与日俱增,天线测试工程师理解各种天线测试方法(如锥形微波暗室)的优势和局限的重要性就愈加突出。在测试天线时,天线测试工程师通常需测量许多参数,如辐射方向图、增益、阻抗或极化特性。用于测试天线方向图的技术之一是远场测试,使用这种技术时待测天线(AUT)安装在发射天线的远场范围内。其它技术包括近场和反射面测试。选用哪种天线测试场取决于待测的天线。 为更好地理解选择过程,可以考虑这种情况:典型的天线测量系统可以被分成两个独立的部分,即发射站和接收站。发射站由微波发射源、可选放大器、发射天线和连接接收站的通信链路组成。接收站由AUT、参考天线、接收机、本振(LO)信号源、射频下变频器、定位器、系统软件和计算机组成。 在传统的远场天线测试场中,发射和接收天线分别位于对方的远场处,两者通常隔得足够远以模拟想要的工作环境。AUT被距离足够远的源天线所照射,以便在AUT的电气孔径上产生接近平面的波阵面。远场测量可以在室内或室外测试场进行。室内测量通常是在微波暗室中进行。这种暗室有矩形的,也有锥形的,专门设计用来减少来自墙体、地板和天花板的反射(图1)。在矩形微波暗室中,采用一种墙面吸波材料来减少反射。在锥形微波暗室中,锥体形状被用来产生照射。 图1:这些是典型的室内直射式测量系统,图中分别为锥形(左)和矩形(右)测试场。

天线测试方法介绍

天线测试方法介绍 来源:Vince Rodriguez公司 对天线与某个应用进行匹配需要进行精确的天线测量。天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。例如,500MHz 以下的低频天线通常是使用锥形微波暗室(anechoic chamber),这是20世纪60年代就出现的技术。遗憾的是,大多数现代天线测试工程师不熟悉这种非常经济的技术,也不完全理解该技术的局限性(特别是在高于1GHz的时候)。因此,他们无法发挥这种技术的最大效用。 随着对频率低至100MHz的天线测量的兴趣与日俱增,天线测试工程师理解各种天线测试方法(如锥形微波暗室)的优势和局限的重要性就愈加突出。在测试天线时,天线测试工程师通常需测量许多参数,如辐射方向图、增益、阻抗或极化特性。用于测试天线方向图的技术之一是远场测试,使用这种技术时待测天线(AUT)安装在发射天线的远场范围内。其它技术包括近场和反射面测试。选用哪种天线测试场取决于待测的天线。 为更好地理解选择过程,可以考虑这种情况:典型的天线测量系统可以被分成两个独立的部分,即发射站和接收站。发射站由微波发射源、可选放大器、发射天线和连接接收站的通信链路组成。接收站由AUT、参考天线、接收机、本振(LO)信号源、射频下变频器、定位器、系统软件和计算机组成。 在传统的远场天线测试场中,发射和接收天线分别位于对方的远场处,两者通常隔得足够远以模拟想要的工作环境。AUT被距离足够远的源天线所照射,以便在AUT的电气孔径上产生接近平面的波阵面。远场测量可以在室内或室外测试场进行。室内测量通常是在微波暗室中进行。这种暗室有矩形的,也有锥形的,专门设计用来减少来自墙体、地板和天花板的反射(图1)。在矩形微波暗室中,采用一种墙面吸波材料来减少反射。在锥形微波暗室中,锥体形状被用来产生照射。

天线测试平台搭建方法介绍

NSAT-5000微波天线自动测试系统介绍 一、研发背景 天线测试一般有两方面的特性:电路特性(输入阻抗,效率等)和辐射特性(方向图,增益,极化,相位等)。天线测试系统的任务就是用实验的方法检定和检验天线的这些参数特性。 NSAT-5000微波天线自动测试系统突破单一测试的局限性,提供专业的测试步骤,实现天线电路特性和辐射特性测试,帮助用户大幅度的提高测试效率。借助系统软件可对系统内各个设备进行同步远程控制。 本测试系统由工业电脑、矢量网络分析仪、频谱分析仪、远程数据通信装置、合成信号源等设备搭配专业的天线测试系统软件所组成。能够实现对天线各端口进行自动化测试,用户只要录入被测天线的批次号、产品型号以及产品编号,便可对天线进行自动测试,保存测试数据到本地电脑。用户可根据需要查询测试数据并生成报表。 二、软件特点 ●兼容中电41所(思仪)、是德科技(Keysight)、安捷伦(Aglient)、 日本安立(Anritsu)、罗德与施瓦茨(R&S)、韩国兴仓(Protek)、 HP等主流仪器型号。 ●自动对系统内各个设备进行同步远程控制并对天线的电路特性(输入 阻抗,效率等)和辐射特性(方向图,增益,极化,相位等)完成测 试。 ●自动测量天线的幅度方向图、增益、相位中心等指标。

●自动保存配置信息、测试数据保存到本地电脑,方便随时查询。 ●自动生成测试报告,用户可根据需要定制报告模板。 ●操作方便简单,提高测试效率。 三、主要测试项目 测试项目所用仪器 主瓣电平信号源,矢网 旁瓣电平(dB)信号源,矢网 增益信号源,矢网 天线效率信号源,矢网水平面半功率波束宽度(°)信号源,矢网 垂直面半功率波束宽度(°)信号源,矢网 隔离度(dB)信号源,矢网 交叉极化比(dB)信号源,矢网 前后比(dB)信号源,矢网 电压驻波比信号源,矢网 输入阻抗信号源,矢网 主方向倾斜度信号源,矢网 方向图一致性(dB)信号源,矢网 四、基于硬件 ●信号源 ●矢量网络分析仪 ●频谱分析仪 ●远程数据通信装置 五、系统图示 NSAT-5000天线测试系统由工业电脑、频谱分析仪、远程数据通信装置、合成信号源转台等设备搭配专业的天线测试系统软件所组成。

RFID天线调试总结

RFID 天线调试总结 一. R FID 天线工作原理 RFID 天线不是传统意义上的天线,传统天线是通过向空中辐射电磁波来传输电磁信号,天线工作于远场区,为了能把电磁信号辐射到空中,天线的长度需和工作的波长相比拟。RFID 天线的工作距离远小于传统天线,传统天线的工作距离远大于波长,例如手机天线需要接收来自几百米甚至几十公里以外的基站信号,收音机天线需要接收来自几十甚至几百公里以外的发射塔的信号。RFID 天线工作距离远小于工作波长,工作于近场耦合区。例如ISO14443-A/B 的工作距离只有几个厘米,远小于22.12m 的工作波长,通过电磁耦合进行电磁能量的传输,RFID 天线可以看作是一个耦合线圈。RFID 天线是利用安培定律:电流流经线圈,在线圈周围产生磁场,再利用电磁感应定律:时变磁场穿过闭合空间产生感应电压,让标签得电开始工作。标签和读卡器也通过该电磁场来进行信息交换。 二. R FID 天线等效电路 RFID 天线可以用如图1所示的等效电路表示。线圈电感为Lant ,Rs_ant 为线圈的损耗电阻,Cant 为线圈之间和连接器之间的寄生电容。 图1 天线等效电路 要使得天线工作于13.56MHz ,那么可以在天线外部并联或串联一个电容,将电容和天线线圈组成一个LC 谐振电路,调整该并联或串联的电容大小,使得谐振频率为13.56MHz 。那么此时,读写器可通过此谐振电路将能量传输至射频卡。由汤姆逊公式: (1 2f π= 可知,天线的工作频率(谐振频率)和Lant 、C 有关。 三. 天线调试 读写卡模块天线原始匹配电路如图2所示。

图2 天线匹配电路 该天线匹配电路采用串联匹配的形式,由于读卡芯片支持双天线,且为了增强抗干扰能力,匹配电路采用此平衡电路。电容C1~C6是匹配电路用于调整输入阻抗和工作频率的,电阻R1,R2是调整天线Q值的,在此,天线Q值确定,所以不用调整该电阻值。 读写卡模块样机制作出来未调节天线匹配电路时,用公司门禁卡(S50卡,后面测试均使用该卡测试)测试读卡距离仅为3.6cm左右,远远达不到要求。通过用网络分析仪测量天线,Smith圆图如图3所示: 图3 未调电容前的天线Smith图 由图可知,此时的谐振点偏低,那么需要将谐振点调高,即需要将电容调小。对应图2中,需要将C2,C3并联后的值,以及C4,C5并联后的值调小,调试过程中,发现将C3,C5的值调为36pF时,用公司门禁卡(S50卡)测试读卡距离,发现有5cm左右,用网络分析仪测量天线,Smith圆图如图4所示:

天线方向图测试系统操作说明

大连理工大学实验预习报告 姓名:牛玉博班级:电通1202 学号:201201203 实验六天线方向图测试 本系统主要用于线天线E面方向图测试,可动态、实时绘制极坐标和直角坐标系方向图曲线,保存测试数据用于后续分析处理。 系统使用步骤示意如图0.1所示。 图0.1 系统使用步骤示意图 1系统连接 测试系统由发射装置、接收装置和控制器三大部分组成,三部分的连接示意如图1.1所示。连接时注意信号线要根据待测工作频率接至对应端子,并将接收装置方向调整到正确姿态。

图1.1 系统连接示意图 发射装置包含400MHz 和900MHz 两个频点的发射电路和天线,如图1.2所示。接收装置包含400MHz 和900MHz 两个频点的接收电路和天线,并具有天线旋转机构,如图1.3所示。控制器利用触摸屏完成所有测试操作和方向图曲线的实时绘制,如图1.4所示。 图1.2 发射装置 图1.3 接收装置 此处少一图(图1.4 测试控制器)、待发。 2 控制器操作 2.1 打开控制器电源,等待系统启动,进入提示界面,如图2.1所示。

图2.1 方向图测试系统提示界面 2.2点击界面任意位置,进入“实测方向图”界面,如图2.2所示。 图2.2 实测方向图界面 2.3点击图2.2中的“频率选择”按钮,选择与硬件链接对应的工作频率。 2.4点击“天线长度”数字框,输入实际天线长度(单位为毫米),并按“确 定”确认,如图2.3所示。

图2.3 天线长度输入界面 2.5点击“机械回零”按钮,接收天线旋转,当到达机械零点基准点时,自 动停止旋转,如图2.4所示。注意:机械回零完成之前不要做其它操作! 图2.4 机械归零界面 2.6点击“归一化”按钮,接收天线旋转,搜索信号最大值,并提示“归一 化进行中”。当到天线旋转一周时,搜索结束,如图2.5所示。注意:归一化完成之前不要做其它操作!

天线及其测量方法

现代微波与天线测量技术
第 6 讲:无源天线及其测量技术
彭宏利
博士
2008.11
微波与射频研究中心 上海交通大学-电信学院-电子工程系

第 8 节:无源天线及其测量技术
8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 能的影响 8.8. 8.9. 8.10. 8.11. 天线概述; 天线主要性能指标; Helical 外置天线; PIFA 内置天线; Monopole 内置天线; PIFA 和 Monopole 天线比较; 天线性能与环境: 其它部件对手机天线性 天线测量条件和测量参数; 天线方向图测量技术; 天线增益测量技术; 天线极化参数测量
第 1/ 39 页

8.1. 天线概述
8.1.1. 天线的定义
在无线电发射和接收系统中,用来发射或接收电磁波的元件,被称为天线。
8.1.2. 天线的作用
天线的作用是转换电磁波的型态:
? ? ? ? 发射天线将电路传输结构中的导引波转换成空间中的辐射波; 接收天线将空间中的辐射波转换成电路传输结构中的导引波; 接收和发射天线是互易的。 导引波(Guided wave) :电磁波被局限在一般电路中,沿传输线往特定的方向前进, 分析参数为电压和电流。 ? 辐射波(Radiation wave) :电磁波可以往空间任意方向传播,分析参数为电场和磁场。
8.1.3. 天线工作机理
第 2/ 39 页

导线载有交变电流时,就可以形成电磁波的辐射,辐射的能力与导线的长短和形状有关。 如果两平行导线的距离很近,则两导线所产生的感应电动势几乎可以抵消,辐射很微弱。如果 两导线张开,则由于两导线的电流方向相同,两导线所产生的感应电动势方向相同,因而辐射 较强。 当导线的长度l远小于波长时,导线的电流很小,辐射很微弱。当导线的长度可与波长相 比拟时,导线上的电流就大大增加,能形成较强的辐射。通常将能产生显著辐射的直导线称为 振子。
8.1.4. 天线分类 基站天线:
第 3/ 39 页

天线测试方法选择及评估

天线测试方法选择及评估 对天线与某个应用进行匹配需要进行精确的天线测量。天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。例如,500MHz以下的低频天线通常是使用锥形微波暗室(anechoic chamber),这是20世纪60年代就出现的技术。遗憾的是,大多数现代天线测试工程师不熟悉这种非常经济的技术,也不完全理解该技术的局限性(特别是在高于1GHz的时候)。因此,他们无法发挥这种技术的最大效用。 随着对频率低至100MHz的天线测量的兴趣与日俱增,天线测试工程师理解各种天线测试方法(如锥形微波暗室)的优势和局限的重要性就愈加突出。在测试天线时,天线测试工程师通常需测量许多参数,如辐射方向图、增益、阻抗或极化特性。用于测试天线方向图的技术之一是远场测试,使用这种技术时待测天线(AUT)安装在发射天线的远场范围内。其它技术包括近场和反射面测试。选用哪种天线测试场取决于待测的天线。 为更好地理解选择过程,可以考虑这种情况:典型的天线测量系统可以被分成两个独立的部分,即发射站和接收站。发射站由微波发射源、可选放大器、发射天线和连接接收站的通信链路组成。接收站由AUT、参考天线、接收机、本振(LO)信号源、射频下变频器、定位器、系统软件和计算机组成。 在传统的远场天线测试场中,发射和接收天线分别位于对方的远场处,两者通常隔得足够远以模拟想要的工作环境。AUT被距离足够远的源天线所照射,以便在AUT的电气孔径上产生接近平面的波阵面。远场测量可以在室内或室外测试场进行。室内测量通常是在微波暗室中进行。这种暗室有矩形的,也有锥形的,专门设计用来减少来自墙体、地板和天花板的反射(图1)。在矩形微波暗室中,采用一种墙面吸波材料来减少反射。在锥形微波暗室中,锥体形状被用来产生照射。 图1:这些是典型的室内直射式测量系统,图中分别为锥形(左)和矩形(右)测试场。 近场和反射测量也可以在室内测试场进行,而且通常是近场或紧缩测试场。在紧缩测试场中,反射面会产生一个平面波,用于模拟远场行为。这使得可以在长度比远场距离短的测试场中对天线进行测量。在近场测试场中,AUT被放置在近场,接近天线的表面上的场被测量。随后测量数据经过数学转换,即可获得远场行为(图2)。图3显示了在紧缩测试场中由静区上的反射面产生的平面波。 图2:在紧缩测试场,平坦波形是由反射测量产生。 一般来说,10个波长以下的天线(中小型天线)最容易在远场测试场中测量,这是因为在可管理距离内往往可以轻松满足远场条件。对大型天线(electrically large antenna)、反射面和阵列(超过10个波长)来说,远场通常在许多波长以外。因此,近场或紧缩测试场可以提供更加可行的测量选项,而不管反射面和测量系统的成本是否上升。 假设天线测试工程师想要在低频下进行测量。国防部门对此尤感其兴趣,因为他们需要研究诸如在低频下使用天线等事项,以便更好地穿透探地雷达(GPR)系统中的结构(针对工作在400MHz范围的射频识别(RFID)标签),以及支持更高效的无线电设备(如软件定义无线电(SDR))和数字遥感无线电设备。在这种情况下,微波暗室可以为室内远场测量提供足够好的环境。 矩形和锥形是两种常见的微波暗室类型,即所谓的直接照射方法。每种暗室都有不同的物理尺寸,因此会有不同的电磁行为。矩形微波暗室处于一种真正的自动空间状态,而锥形

远场天线测试系统

远场天线测量系统 睿腾万通 科技有限公司

目录 1概述 (3) 2用户需求分析 (4) 2.1用户需求 (4) 2.2用户远场环境 (4) 3远场天线测量系统特点 (5) 4远场天线测量系统 (5) 4.1系统组成 (5) 4.2系统清单 (6) 4.3系统布局 (8) 4.4系统原理 (8) 4.5系统测试能力 (11) 4.6射频链路预算 (11) 4.7系统扩展性 (12) 5分系统设计 (12) 5.1机械子系统 (12) 5.2控制子系统 (16) 5.3射频子系统 (17) 5.4天线测量软件 (20) 6培训 (21) 6.1安装期间培训 (22) 7系统维护、保修等 (23) 7.1服务优势 (23) 7.2专业的售后服务保障团队 (23) 7.3系统维护服务保障 (24)

1概述 成都睿腾万通科技有限公司很高兴能有机会为客户推荐一套由本公司研发、集成的的远场天线测量系统。睿腾万通公司是一家专门从事天线测量产品的研发、集成、生产与销售的高科技企业。公司以电子科技大学为技术依托,技术团队由多名业内资深的技术专家组成,团队成员的专业领域覆盖电磁场与微波技术,软件工程,自动化控制,结构机械等,具有博士、硕士学历人员占40%。公司具体从事业务覆盖通用近场、远场的开发与集成,基于通用天线测量系统的功能升级,数字阵、相控阵列快速测量与诊断的解决方案,以及天线测量技术咨询与服务。公司掌握远近场天线测量的核心算法与控制,具有丰富的系统集成与研发能力。 我们为国内多个用户提供过系统集成方案,测试频率从500MHz至110GHz,集成系统包括室内远场、室外远场、平面近场及紧缩场。 本方案推荐了一套多轴转台远场天线测量系统,以满足客户的当前以及未来产品的测量需求。推荐的远场测量系统采用4轴被测天线转台,集成是德科技的射频组建,使用睿腾万通公司自主开发的远场天线测量软件及控制系统,构成一套具有高可靠性,高性能的远场测量系统,测量系统除了能够进行常规的远场测量外,还具天线罩参数测量、相控阵及数字阵列的扩展功能。更进一步的细节将在后面的章节有所描述。 为了使客户充分地了解和使用此套天线测量系统的特性和功能,睿腾万通将在现场安装验收期间提供近场测量系统涉及到的测量理论、系统应用、实际操作和维护的详细培训。并在用户使用过程中提供良好的技术服务的咨询。 我们衷心希望能够同用户的专家合作,提供一套高性能远场测试系统。这是一个令人兴奋的工程,我们期待与客户在此项目上完美愉快和顺利的合作。

各种近远场天线测量系统比较

按照天线场区的划分,天线测量系统可分为远场测量系统和近场测量系统。 1. 远场测量系统 远场测量系统按使用环境可分为室外远场测量系统和室内远场测量系统。 室外远场需要较长的测量距离,通常用天线高架法来尽量减小地面反射,其他架设方法还有地面反射法和斜距法。室外远场测量需要在合适的外部环境和天气下进行,同时,室外远场对安全和电磁环境有较高要求。 室内远场在微波暗室中进行,暗室四周和上下铺设吸波材料来减小电磁反射。如果暗室条件满足远场测量条件,可选择传统远场测量法,如果测量距离不够远场条件,可以选择紧缩场,通过反射天线在被测天线处形成平面电磁波。 2. 近场测量系统 近场测量在天线辐射近场区域实施。在三至五个波长的辐射近场区,感应场能量已完全消退。采集这一区域被测天线辐射的幅度和相位数据信息,通过严格的数学计算就可以推出被测天线测远场方向图。 按照扫描方式的不同,常用的近场测量系统可以分为平面近场系统、柱面近场系统和球面近场系统。 (1)近场测量系统 平面近场测量系统在辐射近场区的平面上采集幅相信息,这种类型的测试系统适用于增益>15dBi的定向天线、阵列天线等,最大测量角度<± 70 º。

(2)柱面测量系统 柱面近场测量系统在辐射近场区的柱面上采集幅相信息,这种类型的测试系统适用于扇形波束和宽波瓣的天线。 (3)球面测量系统 球面近场测量系统在辐射近场区的球面上采集幅相信息,这种类型的测试系统适用于低增益的宽波瓣或全向天线。 3.如何选择天线测量系统,需要考虑到的几个重要的特性和指标: 1.天线应用领域; 2.远场角度范围:远场波瓣图坐标系、各种天线性能参数定义、副瓣和后瓣特性; 3.电尺寸:根据电尺寸和计算出远场距离; 4.方向性指标:宽波瓣或窄波瓣; 5.工作频率和带宽:工作频率设计到吸波材料尺寸和暗室工程设计及造价; 6.环境和安全性要求:天气、地表环境等因素; 7.其他因素:转台或铰链、通道切换开关等。 近场(平面、柱面、球面)测量系统与远场|(室外、室内、紧缩场)测量系统的能力比较

天线测试大纲详解

第二部分近场工作区反射电平测试方法一、测试项目及频率 二、测试主要仪器设备 三、近场工作区反射电平测试原理及方法 3.1、近场工作区反射电平测试原理 采用自由空间电压驻波比法测量近场工作区反射电平,测量原理是基于微波暗室中存在有直射信号和反射信号,微波暗室中空间任意一点的场强是直射信号和反射信号的矢量合,在空间形成驻波,驻波数值的大小就反映了微波暗室内反射电平的大小。

图2-1 VSWR 法测量原理图 如图2-1所示,当接收天线主瓣对准发射天线时,所接收到的信号为E D 。移动接收天线,则接收天线的直射信号E D 与反射信号E R 的相对相位将会改变,此时接收天线收到的信号幅度将产生波动,如图2-2所示,这一波动反映空间固有驻波,由此即可得到反射电平。 图2-2 暗室空间驻波图 将接收天线转到比最大电平低a (dB )的方位角θ时,则所接收的直射信号E θ=E D 10a/20。当反射信号与直射信号同相时合成场最大,这时以b 表示: D R a D D R E E E E E E b +=+=20 10lg 20lg 20θ 式中:E R 接收天线处于方位角θ时的等效反射信号 E D 沿室轴照射的直射波场强 a 接收天线处于方位角θ时的方向图电平 当反射信号与直射信号反相时合成场最小,这时以c 表示: D R a D D R E E E E E E c -=-=20 10lg 20lg 20θ 则反射电平:

11011010lg 20lg 2020/20 /20/+-==--)()()(c b c b a D R E E R 110110lg 2020/)(20/)(+-+=--c b c b a 因此测出空间驻波曲线和接收天线方向图,就可以计算出微波暗室反射电平。 3.2、测试方法 在近场工作区内针对主反射墙的吸波材料进行特定频段吸收特性的测试。 3.3、测试位置的选取 测试近场工作区反射电平时,发射天线先置于暗室中心轴线上,接收天线置于正对被测墙壁的一个合理位置,并沿两天线轴线移动一段距离进行反射电平的测试。测试位置如图2-3、图2-4所示。 图2-3 近场静区测试位置示意图(俯视图) 图2-4 近场静区测试位置示意图(侧视图) 3.4、测试设备连接示意图

手机智能天线测试系统

手机智能天线测试系统 本文描述了一项由德州仪器公司(TI)发起、弗吉尼亚理工学院和州立大学的弗吉尼亚科技天线组(VTAG)和移动便携式无线研究组(MPRG)合作完成的研究项目。 该项目重点确定智能发送和接收手机天线的可行性,其目的是为了论证这种天线具有更低的功耗、更大的容量及更好的链接可靠性。研究课题包括开发新的智能天线算法及评估链接可靠性和容量的提高。为了评估智能天线在实际应用环境中的性能,研究者采集了一套综合的时空向量信道测量方法。数据采集由VTAG开发的四个阵列硬件测试平台完成,它们是手持式天线阵列测试平台(HAAT)、MPRG天线阵列测试平台(MAAT)、失量脉冲响应(VIPER)和发射分集测试平台(TDT)。 图1:在多径环境下采用HAAT的典型试验。一个发射器用于分集组合试验,第二个发射器可用于采用自适应波束成型算法的抗干扰试验。 智能天线可大大提高第三代手持式无线设备的性能。MPRG和VTAG两个研究团队共同组成了一个联合小组负责研究TI公司智能手机天线的关键特性,包括采集天线及传输测量数据、评估分集及自适应算法、仿真整体系统性能,以及量化对带智能天线的手机造成影响的基本现象。自该项目于1998年7月启动以来,我们已开发了三种工具:手持式天线阵列测试平台(HAAT)、向量多径传播仿真器(VMPS)、以及宽带VIPER测量系统。我们已使用这些工具及MPRG天线阵列测试平台(MAAT)来了解手机天线阵列的传输环境,这些信息已经用来预测手机智能天线的性能。 广泛的2.05GHz测量表明,在可靠性为99%时,在户外和室内非直线可视环境下的窄带系统上实现7-9dB链路增益预算。这些增益可利用手机分集和自适应的小天线阵列获得,天线间的隔离间距为0.15波长或更大。其他的测量表明,利用自适应波束形成(beamforming)算法可将单个干扰信号降低25-40dB。因此,可靠性、系统容量和传输功率性能都可得到大大提高。 系统开发 1 手持式天线阵列测试平台 HAAT系统可用来评估在分集组合和自适应波束形成试验中各种天线配置的性能(典型的应用如图1)。图2给出了一个采用HAAT系统的典型试验场景。接收器将来自两个或更多接收信道的信号下变频到基带。这些信号被记录在数字录音带上,以便利用适当的算法进行离线处理。接收器在2.8米长的轨道上以模仿人行走的恒定速度移动。一个小型手持式无线电装置支撑着两个天线,天线的间隔和方向是可变的。该系统具有如下特性:

NSI2000天线远场测量系统工作触发脉冲的研究及新测量系统的搭建

NSI2000天线远场测量系统工作触发脉冲的研究及新测量系统的搭建 发表时间:2018-12-25T16:14:11.623Z 来源:《电力设备》2018年第23期作者:王文钊 [导读] 摘要:工程测试中,需要抛开NSI2000测量系统的射频部分,单独控制使用系统的机械部分以完成不同的测量。 (中国电子科技集团公司第三十九研究所陕西省西安市 710065) 摘要:工程测试中,需要抛开NSI2000测量系统的射频部分,单独控制使用系统的机械部分以完成不同的测量。本文研究了该测量系统的工作触发原理,可根据触发信号情况以实现新测量系统的搭建。同时也可更好的诊断发现问题,为更多样化的使用远场测量系统打下基础。 关键词:天线;测量系统;触发脉冲 本文就某工程测试中遇到的在远场测试条件下针对被测对象为扫频发射天线(频率不断变化且为发射模式)无法同步采集数据获得方向图的问题进行了相应的分析和研究,提供了一种简捷有效的解决办法。 我所目前远场测试系统为点频测试,因此无法按照工程测试需求的扫频模式发射与接收信号。为解决上述情况,需抛开NSI2000远场测量系统的射频部分,单独控制使用系统的机械部分,搭建新的测量系统。因此必须首先对原系统触发脉冲进行研究,分析其工作原理与特性,构建新系统使各个部分同步起来,保证其顺利工作。以实现转台方位轴处在不同角度位置时测得天线的方向图,完成测量任务。 1 NSI2000天线远场测量系统组成 该系统位于我所跟踪仿真实验室内,由NSI上方位下俯仰二维转台、NSI发射端极化转台,射频系统及计算机系统组成。图一为系统的基本控制图。 图一系统控制图 如上图示,转台控制器将触发信号传送给接收机(PNA),因此,我们选择PNA作为观察触发信号的最终位置。 2 工作触发脉冲信号分析 为便于分析,我们在触发信号进入PNA的端口,即PNA后面板MEASTRIGIN口,用一个BNC接头的三通将一根电缆接入示波器通道一观察信号。如图二。此时,需要一名工作人员在控制室操作系统,使其处于正常工作状态,另一名工作人员在暗室中观察测试时示波器上的触发信号。 图二测量连接图 1>系统处于单频点测试时的触发信号。 此时,将扫描范围设定为100度,点数为5,即每隔25度采集一次数据,以便更清晰的分析信号。将频率波束设为一个频点。 使用示波器测量波形时,转动示波器的水平、垂直位移旋钮与水平、垂直灵敏度旋钮,将示波器设置为常规测量状态。设置好示波器后,使系统开始工作,同时观察示波器。但是,扫描结束后,发现示波器显示屏上未捕捉到任何触发信号。只显示保持高电平。 经查阅分析,发现是示波器的采样率与记录长度无法捕捉到正常的触发信号。因此,在研究讨论后决定使用示波器的触发释放模式。在这种情况下,即便是没有触发,也能引起示波器的扫描。采用这种方法点击开始测试后会看到在系统正常工作下,每采集一个点之前,在示波器显示屏上图像就会抖动一下,右上角从“触发?”如图三,显示为“已被触发”如图四。这就证明捕捉到一次触发。 按测量设置,此次测量共捕捉到七个触发信号。第一个与最后一个分别为转台转动到位与测量结束信号。同时测量到该触发信号为下降沿触发,幅度为5.00V,脉冲宽度为13.0μs。 2>系统处于多频点测试时的触发信号 由于我所大部分工程为多频点测量,在分析了单频点的情况后,下面来研究多频点测试时系统工作的触发信号。首先,保持测量设置不变。将频点增加为两个。 保持示波器的设置状态,点击开始测试后,观察示波器所显示的与单频点测量时一样。 3 新测量系统搭建 观察采集到的信号,得出该测量系统的工作触发脉冲为下降沿触发,幅度为5.00V脉冲宽度为13.0μs,并且触发信号不受点频或多频测量干扰。这样针对本文引言中提出的测试问题可搭建如下系统加以解决。

基于射频矢量网络分析仪的天线测试系统

基于射频矢量网络分析仪的天线测试系统 郭荣斌王亚海 中国电子科技集团公司第四十一研究所青岛266555 摘要为射频天线远场方向图的测试提供了两种经济实用的测试系统 射频一体化矢量网络分析仪AV3620方向图引言 天线是电子信息系统必不可少的重要组成部分 天线测试技术已成为发展电子信息系统的核心技术之一数量巨大射频天线国外从事天线测试技术研究的厂家比较多代表产品有Agilent85301B天线测量系统 该所以AV3630矢量网络分析仪为核心 该系统可以根据用户的测试要求和场地等实际情况组成等多种组合形式工作频率范围覆盖了45MHz但随着数字移动通信的飞速发展成本低价格便宜的天线自动测量系统 工作原理 最后给出了测试系统结果 基于射频矢量网络分析仪的天线测试系统的组成 在数字通信电子战装备的推动下家族化 由于射频矢量网络分析仪具有成本低价格便宜 是理想的频率变换和数据采集设备外配天线转台就可以组成简易天线测试系统 该系统主要由矢量网络分析仪控制计算机及测量控制软件等四个部分组成价格非常便宜 但由于矢量网络分析仪信号源输出功率有限A V3619矢量网络分析仪设置为传输测量方式通过GP-IB接口控制转台和矢量网络分析仪协调工作 图1 自动生成人机对话界面 信号源功率测量点数等参数 然后进行频率响应校准 可以采用矢量网络分析仪外触发方式转台控制器输出旋转脉冲给天线转台旋转

口测量点数与触发脉冲数相等 而矢量网络分析仪的测量点数与外触发脉冲有一一对应关系并保持旋转和采样均匀同步 将天线转台旋转的角度与矢量网络分析仪的测量值用直角坐标或极坐标的形式显示出来 图2 AV3620 天线测试系统 基于矢量网络分析仪的天线测试系统测量仪器与仪器之间的同步问题对AV3620高精度射频一体化矢网也是适用的 旋转脉冲同步方式就不适用图2给出了基于A V3620矢量网络分析仪的射频天线自动测试系统框图 可以采用图1所示的测量方式用矢量网络分析仪内置信号源做测试信号图2所示采用外配信号源的方案 带来的问题外配信号源与矢量网络分析仪之间同步问题 通过GP-IB接口控制天线转台 通过人机对话界面可以设置测量频率扫描角度利用AV3620矢量网络分析仪固定频率偏移测试功能 为实现同步锁相接收参考天线输出经放大器放大在计算机的控制下 适时同步触发矢量网络分析仪采集数据采集数据并绘制方向图 测试系统分析 为了拓展射频矢量网络分析仪的应用空间 可以根据用户实际需求组成不同类型的天线测试系统 测量天线参数主要有频率范围主瓣宽度

近场天线测量作业

一. 利用一维驻相法推导天线的远场方向函数与柱面波谱() n a h ,()n b h 的关系 式。 22Λk h ρr sin θz r cos θ ?r ?sin θ0cos θρ??θcos θ0sin θφ??φ010z =-==?????? ? ???=- ? ??? ??? ??????? () ()1 j π 2 2n j Λρ4n 2H Λρj e e πΛρ-??= ??? () ()1 j π 2 2n j Λρ4n 2H Λρj e e πΛρ--??'= ??? () ()()()() n 422jn φjhz n,h n n j ??M r H ΛρρH Λφe e ρ-??'=-???? () ()() ()()()()()24222jn φjhz n,h n n n jh nh Λ???N r ΛH ΛρρH ΛρΛφH Λρz e e k k ρk -??'=-++???? ()()()()()()44n,h n,h n n n E a h M r b h N r dh ∞ +∞ -∞ =-∞??= +???? ∑? ()()()()()()44n,h n,h n n n k H a h N r b h M r dh j ωμ∞ +∞ -∞ =-∞ ? ?= +? ???-∑? 先计算 ()() ()()()()() ()()4n,h n n 22jn φjhz n n n 11j πj π22n j Λρn j Λρjn φjhz 44n 1j π j π 2 n jn φ44n a h M r dh j ??a h H ΛρρH Λφe e dh ρjn 22??a h j e e ρj e e Λφe e dh ρπΛρπΛρ2jn ??a h j e e ρe ΛφπΛρρ+∞ -∞ +∞ --∞ +∞-----∞+∞ --∞ ??'=-???? ????????=- ? ???? ???????????=-? ?????? ???())j Λρjhz 1 j π j π 2 jr θh cos θ n jn φ44n e e dh 2jn ??a h j e e ρe Λφe dh πΛρρ--+∞ --+-∞ ?????=-?? ??????

天线近场远场定义

天线的辐射场分为三个区域,分别是电抗性近场,辐射近场(又称为“菲涅耳区”),以及辐射远场(又称为“夫琅和费区”)。我们平时所说的近场和远场的边界是菲涅耳区与夫琅和费区边界的瑞利距离,用的是波程差作判据:“从源天线按球面波前到达待测天线之边缘与待测天线之中心的波程差为λ/16”。这个就是大家所熟悉的R=2D^2/λ。R就是待测天线到远场区边界的距离,D是天线物理口径的最大尺寸(这个物理口径的最大尺寸是这个意思:假设用一个圆球将天线包裹起来,这个圆球最小的直径。),λ就是工作波长。 假设有一个900MHz的手机,手机的板长为100mm,用的是一般的PIFA或monopole天线。由于手机天线所在的PCB都较小,PCB的地已经是辐射体而不是一般的反射体,即天线的一部分,再加上天线本身有一定的剖面高度。所以算下来,D大约取100mm多一点,按照前面的公式计算远场距离R大约为60mm。这样看来,手机天线的远场似乎并不“远”,也没多大嘛,那为什么我们平时测试手机天线的探头要离得那么远呢?[em02] 问题就在于,手机天线属于电小天线,而电小天线是不适用波程差判据的。电小天线需要附加判据,其中一种就是:“旋转待测天线导致测试距离的改变对所得测量结果影响不大,即峰谷起伏不确定度在额定值内。”计算公式就不附上了,假设峰谷起伏不确定度为0.5dB,计算所得待测天线旋转效应足够小的最小距离R=164mm,这个距离就比较远了。[em09] 我上面的说法涉及一些比较晦涩的理论,并且知识跨度有一定的跳跃性,可能不是特别直观易懂,有兴趣地可以去看看约翰克劳斯教授的《天线》中的“天线测量”一章,可以加深理解。 本文来自:我爱研发网(https://www.360docs.net/doc/d417040852.html,) - R&D大本营 详细出处:https://www.360docs.net/doc/d417040852.html,/bbs/Archive_Thread.asp?SID=203729&TID=3 相当专业撒,确实有点难懂? 再问下什么样的天线可看作电小天线,为什么电小天线不适用波程差判断?[/QUOTE] 什么是电小天线?按照H.A.Wheeler的定义是l/λ≤1/2π的天线称为电小天线。式中l为天线的最大物理尺寸,λ为工作波长。但是关于电小天线的定义,并没有一个严格的界限。R.W.P.King认为l/λ≤1/10的是电小天线,而S.A.Schlkunoff以及H.T.Friis则定义为l/λ≤1/8。天线测量中,从有限尺寸的源天线获取平面波阵面,源必须离测试天线无限远。也就是说,严格意义上的远场距离是无限远。但是无限远的测试距离不现实也没有必要。源天线的球面波引起待测天线最大物理尺寸D上的相位误差为22.5o也就是(λ/16的波程差)说,控制在这种误差范围内的天线测量被认为是有足够精度的。这也就是为什么一般定义这个远场距离。 如果不对旁瓣电平有很高的精度要求,2D^2/λ的测量距离对中高增益的天线是合适的。问题在于,电小天线由于天线尺寸的减小,增益降低,旁瓣电平增大,方向图峰谷起伏较大。单纯使用波程差的判据是不完善的,甚至可能引起谬误,所以要附加一个峰谷起伏判据。本文来自:我爱研发网(https://www.360docs.net/doc/d417040852.html,) - R&D大本营 详细出处:https://www.360docs.net/doc/d417040852.html,/bbs/Archive_Thread.asp?SID=203729&TID=3

天线测试方法介绍

天线测试方法介绍 天线测试方法介绍 对天线与某个应用进行匹配需要进行精确的天线测量。天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。例如,500MHz以下的低频天线通常是使用锥形微波暗室(Anechoic Chamber),这是20世纪60年代就出现的技术。遗憾的是,大多数现代天线测试工程师不熟悉这种非常经济的技术,也不完全理解该技术的局限性(特别是在高于1GHz的时候)。因此,他们无法发挥这种技术的最大效用。随着对频率低至100MHz的天线测量的兴趣与日俱增,天线测试工程师理解各种天线测试方法(如锥形微波暗室)的优势和局限的重要性就愈加突出。在测试天线时,天线测试工程师通常需测量许多参数,如辐射方向图、增益、阻抗或极化特性。用于测试天线方向图的技术之一是远场测试,使用这种技术时待测天线(AUT)安装在发射天线的远场范围内。其它技术包括近场和反射面测试。选用哪种天线测试场取决于待测的天线。 为更好地理解选择过程,可以考虑这种情况:典型的天线测量系统可以被分成两个独立的部分,即发射站和接收站。发射站由微波发射源、可选放大器、发射天线和连接接收站的通信链路组成。接收站由AUT、参考天线、接收机、本振(LO)信号源、射频下变频器、定位器、系统软件和计算机组成。 在传统的远场天线测试场中,发射和接收天线分别位于对方的远场处,两者通常隔得足够远以模拟想要的工作环境。AUT被距离足够远的源天线所照射,以便在AUT的电气孔径上产生接近平面的波阵面。远场测量可以在室内或室外测试场进行。室内测量通常是在微波暗室中进行。这种暗室有矩形的,也有锥形的,专门设计用来减少来自墙体、地板和天花板的反射(图1)。在矩形微波暗室中,采用一种墙面吸波材料来减少反射。在锥形微波暗室中,锥体形状被用来产生照射。

毫米波紧缩场天线测试系统概述

根据天线测量和RCS测量的远场条件: 。当目标尺寸D很大、波长 很短时,测试距离R必须很大。人们希望能在测量距离小、占地不大的条件下,找到进行远场天线和RCS测量的场地。 紧缩场天线测量系统就是这样一种天线测量系统,可以在近距离内提供一个性能优良的准平面波测试区。紧缩场的英文名称为CATR(Compact Anternna Test Range)。它采用精密的反射面,将电源产生的球面波在近距离内变换为平面波,从而满足远场测试要求。 紧缩场天线测量系统就是能在较小的微波暗室里模拟远场的平面波电磁环境,利用常规的远场测试设备和方法,进行多项测量和研究,如天线方向图测量、增益比较、雷达散射截面测量、微波成像等,同时可以进行微波电路、元器件的网络参数测量和高频场仿真。 微波暗室是一个能够屏蔽外界电磁干扰、抑制内部电磁多路径反射干扰、对来波能够几乎全部吸收的电磁测量环境,是进行天线参数测试及电磁波辐射、散射特性测试的理想场所。它具有工作频带宽、信号电平稳定、易于保密、可全天候工作、不受外界电磁环境干扰等一系列优点。在毫米波波段,由于对暗室尺寸和吸波材料的高度要求不大,这个暗室的造价非常低。使得毫米波天线测量系统的构成成本大幅度下降。 与外场和室内近场比较,紧缩场的优点是: 1.) 收、发天线间的距离短,大大减小了实际占有的空间。 2.) 紧缩场产生的平面波将聚集在平面波束内,暗室内四侧壁的照射电平低,从而降低了对暗室的要求。在微波暗室设计合理,并采用背景对消的条件下,可使紧缩场的背景电平达到-60~-70dBsm。 3.) 便于实现待测天线发射波瓣的测试(换接容易,不需电缆)。 4.) 安装在微波暗室的紧缩场保密性好,而且可全天候高效地工作,便于测试管理。另外,室内紧缩场受气候环境影响小,改善了测试条件,因而提高了RCS的测量效率。 5.) 紧缩场的工作频率可以从几百MHz到几百GHz,能满足毫米波和亚毫米波测试要求。 由此可见,紧缩场是电磁散射研究特别重要的测试装备,也是高性能雷达天线测试、卫星整星测试、毫米波天线及毫米从系统性能测试的重要基础设施。 HD毫米波紧缩场天线测量系统由毫米波暗室(组装式或用户自备)、紧缩场天线、馈源组合、馈源转台、天线测试转台(二维、三维、四维)、毫米波信号源、毫米波测量接收机(频谱仪或矢量网络分析仪)、数据采集分系统、数据处理机(计算机)及显示输出设备等组成,其原理框图如下图所示:

天线测试方法

天线测试方法 一、测试依据。 天线是将传输线中的电磁能转化成自由空间的电磁波,或将空间电磁波转化成传输线中的电磁能的专用设备。在移动网络通信中从基站天线到用户手机天线,或从用户手机天线到基站天线的无线连接,它的运行质量在整个网络运行质量中所占的位置是十分明显的。因此,移动网络的好坏也就自然与天线密切相关。为了便于介绍天线测试方法先从天线的几个基本特性谈起。 1、天线辐射的方向图 天线辐射电磁波是有方向性的,它表示天线向一定方面辐射电磁波的能力。反之,作为接收天线的方向性表示了它接收不同方向来的电磁波的能力。我们通常用垂直平面及水平平面上表示不同方向辐射(或接收)电磁波功率大小的曲线来表示天线的方向性,并称为天线辐射的方向图。同时用半功率点之间的夹角表示了天线方向图中的水平波束宽度及垂直波束宽度。 2、天线的增益 天线通常是无源器件,它并不放大电磁信号,天线的增益是将天线辐射电磁波进行聚束以后比起理想的参考天线,在输入功率相同条件下,在同一点上接收功率的比值,显然增益与天线的方向图有关。方向图中主波束越窄,副辩尾辩越小,增益就越高。可以看出高的增益是以减小天线波束的照射范围为代价的。 3、天线的驻波比 天线驻波比表示天馈线与基站(收发信机)匹配程度的指标。驻波比的产生,是由于入射波能量传输到天线输入端 B 未被全部吸收(辐射)、产生反射波,迭加而形成的. VSWR 越大,反射越大,匹配越差.那么,驻波比差,到底有哪些坏处?在工程上可以接受的驻波比是多少?一个适当的驻波比指标是要在损失能量的数量与制造成本之间进行折中权衡的。 4、天线的极化 天线辐射电磁波中电场的方向就是天线的极化方向。由于电磁波在自由空间传播时电场的取向有垂直线极化的水平线极化的圆极化的,因而天线也就相应的垂直线极化的天线水平线极化的天线。特别值得一提的双极化天线,它是在一副天线罩下水平线极化与垂直线极化两副天线做在一起的天线。 二、测试方法 用移动基站给待测天线发送一个GSM频段中的频点,并且配合天线转台匀速旋转一周同时用高灵敏度频率扫描仪为数据采样接收机采集所用频点的场强。 三、测试器材 A V3635天线测试系统是以高灵敏度幅相接收机为核心,通过外配天线转台、激励/本振信号源和天线测试装置实现天线远场、近场的自动测量,由于成功地解决了远距离微波传输、控制信号传送、数据采集速度提高、宽频带自动稳幅等技术,整个测试系统具有智能化程度高、测试速度快和测量参数种类齐全等特点,广泛应用在天线设计开发制造、以天线为终端的武器装备的测试、通信、电子对抗与电子干扰等军用和民用领域。

相关文档
最新文档