电解电容漏电流测试方法

电解电容漏电流测试方法

电解电容漏电流测试方法

1. 接通电源,打开电源开关。

2. 按迅响按钮,自动按钮,对应指示灯点亮。

3. 根据被测电容外壳上参数,调节电压旋钮,设定电压。最大允许漏电流值。列如:2. 2Uf/400V电容参数设定如下:调节电压旋钮设定电压为400V ,允许最大漏电流=电容标示电压*容量*固定系数0.03=2.2*400*0.03=26.4uA 将电流设定数值拨到273

4. 充电时间通常设定为60秒放电时间设定为5秒

5.将被测电容插入测试夹板,听到“滴”的一声响,电容开始自动测试,充电倒计时开始,60秒之后自动转为测试,仪器长鸣红灯亮为不合格,测试过后转为放电。放点结束取下电容。短路电容两脚放电。测试完成。

电源线路滤波器中的漏电流

电源线路滤波器中的漏电流 1. 标准中的要求 保护接地器在电气设备出现故障或发生短路时,保护用户不会受到危险接触电压的伤害。为确保此基本功能,保护接地线上的电流必须加以限制,这是为什么大多数产品安全标准中包含漏电流测量和限制条款的原因。办公室设备和信息技术设备的产品安全标准EN 60950-1进行了相关说明。 尽管都使用漏电流这个术语进行描述,但是标准在实际上对接触电流和保护导体电流进行了区分。接触电流是人在接触电气装置或设备时,流过人体的所有电流。另一方面,保护导体电流是在设备或装置正常运行时,流过保护接地导体的电流。此电流也称为漏电流。 所有电气设备的设计都必须避免产生危及用户的接触电流和保护导体电流。一般来说,接触电流不得超过3.5 mA,采用下文所述的测量方法进行测量。 3.5 mA的极限值并不适用于所有设备,因此,在标准中,还对配备工业型电源接线器(B 型可插拔设备)和保护接地器的设备进行了补充规定。如果保护接地电流不超过输入电流的5%,那么接触电流可以超过3.5 mA。另外,等电位联结导体的最小截面积必须符合EN 60950-1的规定。最后,但不是最不重要的,制造商必须在电气设备上附带下述警告标签之一。 “警告! 强接触电流。先接地。” “警告! 强漏电流。先接地。” 除了普通的产品安全标准之外,还有关于无源EMI滤波器的安全标准。在欧洲,新颁布了EN 60939,自2006年1月1日起代替了当时现行的EN 133200。然而,此标准没有关于滤波器漏电流的附加要求。美国的EMI滤波器标准,UL 1283,与此不同。不仅需要进行所有常规安全试验,还需要确认滤波器的漏电流。在默认情况下,此漏电流不允许超过0.5 mA。否则,滤波器必须附带一个安全警告,说明滤波器不适用于住宅区。必须提供接地连接器以防触电,另外滤波器必须连接到接地电源引出线或接头上。 2. 漏电流的计算 本节将说明计算漏电流的方法。因为元件存在误差,并且电网(对于3相供电网)的不平衡只能估计,所以实际结果不一定等于测量结果。另一方面,对顺序生产的每一个滤波器都进

铝电解电容的耐压测试方法

电解电容器的耐压测试方法 电解电容器耐压测试及应用 电容的耐压,表示电容在一定条件下连续使用所能承受的电压。如果加在电容上的工作电压超过额定电压,电容内部的绝缘介质就有可能被击穿,造成极片间短路或严重漏电。因此,电容的工作电压不能大于其额定耐压,以保证电路可靠工作。 对于电解电容器,漏电流是性能指标中重要的一项。电解电容的漏电流与电压的关系密切,漏电流随工作电压的增高而增大。当工作电压接近阳极的赋能电压时,漏电流会急剧上升。通过测试电解电容的漏电电流,可以推算出它的极限耐压和额定耐压,对于电路中电容耐压的取值,有直接的参考意义。 根据这个原理,笔者设计并制作了~款电容耐压测试仪,其线路简单、成本低廉、制作容易,较好地解决了业余条件下电容耐压测试的问题。 变压器T1和T2型号相同,背靠背对接,提供高低压两组电源,并起到隔离作用。低压的经整流滤波后,由R1、DWl、Q1、Ral~Ral 1组成电流可调的恒流源。高压的经整流滤波后由Rbl~RblO、DW2分压,Q2输出可调的直流电压。使用时选择合适的电压Uc和电流Jc,将被测电容接到Cxa、Cxb两点上,此时会看到电压表指针缓慢偏转,达到一定的位置后静止,指针所指的电压即为该电容在漏电电流为lc时所承受的耐压。 波段开关K3、K4(各单挡11位)分别是测试电压和电流(即漏电流)选择开关,其测试量程如表1所示。表2为测试电路中的元件清单。 一、测试电路的使用方法 1.将测试电压调到比电容额定电压高一些的挡位。如测试35V的申容。可将挡位放到64V,测试50v的电容,可将挡位放到64M或96V.挡位高一些对测试结果影响不大,只是挡位越高,三极管Q1的功耗相应会大一些。 2.选择合适的测试电流。测试电流应根据电容容量来选择,容量越大测试电流也越大。对于4700μF以上的电容,可选择大于10mA的测试电流;对于1000~4700μF的电,容,可选择5mA左右的测试电流:对于10μF以下的电容,可选择0.2~1mA的测试电流。 3.红色鳄鱼夹接电容正极,黑色鳄鱼夹接电容负极。接好后看到电压表指针先匀速缓慢偏转。正常情况下偏转位置应超过额定电压,当达到某一值时其指针偏转变慢,并且越来越慢,最终静止下来,此时电容的漏电流等于Q1集电极的恒流电流,电压表所指示的电压,为此电容在漏电电流为Ic时所承受的耐压,可粗略认为是该电容的极限耐压。 4.测试完毕后将开关K2闭合,待电容放电后取下。 表3是利用附图的测试电路测量的部分电解电容器的产品实例。 二、测试经验总结 1.电容容量越大,测试电流(漏电流)也应相应变大。 国产的铝电解电容器,在额定电压6.3~450V,标称容量10~680μF时,漏电流可按下列公式计算:I≤(KxCxU)/1000公式中:I为漏电流(mA);K为系数(20℃±5℃时,K=O.03);U为额定工作电压(V);C为标称容量(μF); 2.由于电解电容器只能单向工作,如将电解电容正负端接反测试,在5mA电流下测试其电压会极低,大约只有4V 左右。 3.长期不用的电解电容器,由于氧化膜的分解,容量、耐压都有一定的衰减,在第一次使用时,应先加低压(1/2额定耐压)老化一段时间(等效电解电容器的赋能)。 4.同样的容量和耐压的电解电容器,其体积较大、分量较重的一般耐压性能更好些;同样的容量和耐压的电解电容器,其相同的测试电流,电压指针偏转快的,漏电流较小。 5.正品电解电容极限耐压一般为其额定电压的120%左右。 6.当工作电压高于额定电压时,电容就较容易击穿。因此选用电解电容时,应使额定电压高于实际工作电压,并要预留一定的余量,以应付电压的波动。一般情况下,额定电压应高于实际工作电压的10%~20%,对于工作电压稳定性较差的电路,可酌情预留更大的余量。 7.使用本电路测试电解电容器,不会造成电容的损坏。 三、测试电路的改进 1.由于没有购买到合适的电压表头,DC250V以上挡不能指示。如果能够换成DC320v表头就比较理想。表头量程也不宜太大,否则会降低分辨率,用这样的表头去测试低耐压电容时,会造成读数偏差太大。 2.为了取得更准确的测试电压,可将Rbl~Rbl0分压电阻换成相应稳压值的稳压管(加限流电阻)或多圈精密可调电阻。 3.V1若换成数字式电压表,电压读数将更加直观、精确。不过需另外加装一组DC5v浮动电源。

电解电容测试指导书

1目的 为了规范电解电容器来料检验及抽样计划,并促进来料质量的提高,特制定该检验规范。 2适用范围 适用于IQC对电解电容器来料的检验。 3准备设备、工具: 4外观物理检测 4.1首先需检查待测电容是否有正规的《产品规格说明书》,其中需包括产品名称、规格型号、安装尺寸、工艺要求、技术参数以及供应商名称、地址及其联系方式,以确保此批次产品是由正规厂商提供。电容器上的标识应包括:商标、工作电压、标准静电容量、极性、工作温度范围。 4.2参考《产品规格说明书》的工艺参数,观察电容的外观、颜色、及其材质等参数是否与其所标注的工艺指标一致。 4.3用游标卡尺对电容的安装尺寸进行确认,确保电容的直径、高度以及引岀端的直径与间距等参数在产品工艺的误差范围之内,且外观尺寸要符合本公司选用要求。 4.4检查电容的外观,确保其外观整洁、无明显的变形、破损、裂纹、花斑、污浊、锈蚀等不良状况; 且其标识清晰牢固、正确完整。 4.5检查其引岀端子,保证其端子端正、无氧化、无锈蚀、无影响其导电性能等状况,且引岀端子无扭曲、变形和影响插拔的机械损伤。 4.6检查电解电容标注的生产日期不应超过半年,并作好记录。 5容量与损耗测试 5.1用电桥测试其实际容量与标称容量是否一致(电解电容一般会有±20%勺误差范围),其损耗角 正切值tan 9 (即D值)大小是否符合国家标准(电解电容器tan 9 0.25 )。 5.2对Zen tech电桥测试仪的使用方法:正确连接电源以后,按POWE!键开启测试仪的工作电压; 按LCR键选择测试类型(L:电感,C:电容,R:电阻)。 5.3按UP'与DOWN!选择测试量程(疗、nF、pF),按FREQ键选择测试频率(100HZ 120HZ 1KHZ,可根据厂商提供的技术参数来选择所需的测试频率,本试验选择100HZ'。

漏电流测试方法

测量接地漏电流 漏电比对人墙MD(地),容易理解和考虑漏电流接地端子的电流。 上的MD(红色和黑色),您认为图左侧的代码表示你的手或脚 测量正常状态 ?连接? 连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。 插入之间的地面和地面终端适配器导致3P · 2P墙的MD,测量电流从插入被测ME设备的3P接地引脚泄漏。 开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

?测量? 打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。 其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量μAMV)。 再次切换极性,测量功率,并具有重要价值的测量。 ?决定? 另一种形式,无论附加,0.5毫安大致正常 单一故障条件(一电源线开路)测量 ?连接? 删除连接2P 3P ·正常情况下,适配器,该适配器只有一个刀片极2P 3P连接· 2P剥离(漏电电流∵ 单一故障条件下,只有电力导线断开one 。) 壁挂2P插头插座条。 开关电源极性连接到墙上插座旋转2P半条。 交换式电源供应断开的导线连接到其他2P刀片更换地带极适配器3P · 2P。

?测量? 打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。 其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量μAMV)。 极性开关电源,开关电源的测量4供应断开的导线,最大测量值。 ?决定? 另一种形式连接,正常值小于1mA无关。 外部泄漏电流测量 测量正常状态 ?连接? 连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。3P · 2P适配器地线连接到地面的墙。 ME的设备金属部件测试(如果外部覆盖着绝缘设备,如铝箔贴为20cm × 10CM部分)之间插入墙壁和地面终端的医师,设备的测试ME外观测量泄漏电流。 开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

电解电容器测试方法详解

电解电容器测试方法详解 1目的 为了规范电解电容器来料检验及抽样计划,并促进来料质量的提高,特制定该检验规范。 2适用范围 适用于本公司IQC对电解电容器来料的检验。 3准备设备、工具: 所需工具及其规格型号如表一所示: 表一(工具规格型号) 品名规格/型号数量品名规格/型号数量 调压器0V~450V/三相1台电流表UNI-T 1台 万用表FLUKE-117C 1台游标卡尺mm/inch 1把电桥测试仪Zen tech 1台双综示波器LM620C型1台高低温交变湿 1台温度计1支热试验箱 4外观物理检测 4.1首先需检查待测电容是否有正规的《产品规格说明书》,其中需包括产品名称、规格型号、安装尺寸、工艺要求、技术参数以及供应商名称、地址及其联系方式,以确保此批次产品是由正规厂商提供。电容器上的标识应包括:商标、工作电压、标准静电容量、极性、工作温度范围。4.2参考《产品规格说明书》的工艺参数,观察电容的外观、颜色、及其材质等参数是否与其所标注的工艺指标一致。 4.3用游标卡尺对电容的安装尺寸进行确认,确保电容的直径、高度以及引出端的直径与间距等参数在产品工艺的误差范围之内,且外观尺寸要符合本公司选用要求。 4.4 检查电容的外观,确保其外观整洁、无明显的变形、破损、裂纹、花斑、污浊、锈蚀等不良状况;且其标识清晰牢固、正确完整。 4.5检查其引出端子,保证其端子端正、无氧化、无锈蚀、无影响其导电性能等状况,且引出端子无扭曲、变形和影响插拔的机械损伤。 4.6 检查电解电容标注的生产日期不应超过半年,并作好记录。 5容量与损耗测试 5.1用电桥测试其实际容量与标称容量是否一致(电解电容一般会有±20%的误差范围),其损耗角正切值tanθ(即D值)大小是否符合国家标准(电解电容器tanθ≤0.25)。 5.2对Zen tech电桥测试仪的使用方法:正确连接电源以后,按“POWER”键开启测试仪的工作电压;按“LCR”键选择测试类型(L:电感,C:电容,R:电阻)。

漏电流测试操作规范

XASM/JS 1105 漏电流测试操作规范 编写:练伟平 审核:杨锡联 批准:王明莉 西安外科医学科技有限公司 2011.11

1.适用范围 漏电流是国家标准GB9706.1中规定的医用电气设备的安全要求之一。本文规定了对低温等离子体多功能手术系统漏电流测试的方法、要求、测试步骤及对所用仪器。 2.使用仪器 CS5505F医用设备漏电测试仪。 本仪器可满足国家标准GB9706.1中漏电流的测试要求。 3.测试仪技术指标 漏电流测试范围及精度:0 ~10mA(±2%+2个字) 带载能力:500VA 采用网络符合GB9706.1中的频率特性 4.测试依据: GB9706.1通用要求中的19条。 正常状态下的对地漏电流、外壳漏电流、患者漏电流。 单一故障状态下的对地漏电流、外壳漏电流、患者漏电流。 5.要求 表1漏电流允许值 6.测试方法及步骤 测试前必须确定本测试仪器是在检定的有效期内,并对其进行运行检查,确保测量的有效性。 6.1接线: a)测试仪器接保护地线. b)将被测设备的电源输入插头插入仪器的输出插座。 c)将仪器MDA线与被测设备的接地端子连接。 d)将仪器MDB线与被测设备的外壳连接。

e)打开电源,电流设置到1mA ,时间设置为10sec。 f)L、N转换设置到自动。 6.2对地漏电流测试:MDB按钮置于OFF,按下START键,输出电压调至242V, 此时显示的读数为对地漏电流值。直至设定的时间结 束。按下G键,重复测量为单一故障状态下的对地漏电 流。 6.3外壳漏电流测试:MDB按钮置于ON ,按下START键,输出电压调至242V, 此时显示的读数为外壳漏电流值。直至设定的时间结 束。按下G键,重复测量为单一故障状态下的外壳漏电 流。 6.4患者漏电流:将仪器MDB线与被测刀头的金属外壳连接,MDB按钮置于 ON ,按下START键,输出电压调至242V,此时显示的读 数为患者漏电流值。直至设定的时间结束。按下G键,重 复测量为单一故障状态下的患者漏电流。 6.4判定 机器漏电流允许值见表1. 当测量值超过设置值时, 仪器会自动报警。按下【复位】键可解除报警。 7. 注意事项:本仪器的电源输入插座应带有保护接地线。 本仪器的电源输入插座应保持相线和中线(L、N)的正确接法。 使用后填写仪器使用记录。

电容阻值降低、漏电失效分析

电容阻值降低、漏电失效分析 2014-08-02 摘要: 本文通过无损分析、电性能测试、结构分析和成分分析,得出导致电容阻值下降、电容漏电是多方面原因共同作用的结果:(1)MLCC本身内部存在介质空洞(2)端电极与介质结合处存在机械应力裂纹(3)电容外表面存在破损。 1.案例背景 MLCC电容在使用过程中出现阻值降低、漏电失效现象。 2.分析方法简述 透视检查NG及OK样品均未见裂纹、孔洞等明显异常。 图1.样品X射线透视典型照片

从PCBA外观来看,组装之后的电容均未受到严重污染,但NG样品所受污染程度比OK样品严重,说明电容表面的污染可能是引起电容失效的潜在原因。EDS能谱分析可知,污染物主要为助焊剂与焊锡的混合物,金属锡所占的比例约为16(wt.)%。从电容外观来看,所有样品表面均未见明显异常,如裂纹等。 图2.电容典型外观照片 利用数字万用表分别测试NG电容和OK电容的电阻,并将部分失效样品机械分离、清洗后测试其电阻,对电容进行失效验证。电学性能测试表明,不存在PCB上两焊点间导电物质(污染物)引起失效的可能性,失效部位主要存在于电容内部。

对样品进行切片观察,OK样品和NG样品内部电极层均连续性较差,且电极层存在孔洞,虽然电极层孔洞的存在会影响电容电学性能,但不会造成电容阻值下降,故电极层孔洞不是电容漏电的原因。 对NG样品观察,发现陶瓷介质中存在孔洞,且部分孔洞贯穿多层电极,孔洞内部可能存在水汽或者离子(外来污染),极易导致漏电,而漏电又会导致器件内局部发热,进一步降低陶瓷介质的绝缘性从而导致漏电的增加,形成恶性循环;左下角端电极与陶瓷介质结合处存在机械应力裂纹,可导电的污染物可夹杂于裂纹中,导致陶瓷介质的介电能力下降而发生漏电,使绝缘阻值下降,此外裂纹内空气中的电场强度较周边高,而其击穿电场强度却远比周边绝缘介质低,从而电容器在后续工作中易被击穿,造成漏电;除此之外,电容表面绝缘层存在严重破损,裂纹已延伸至内电极,加之表面污染物的存在,在恶劣潮湿环境下就会与端电极导通,形成漏电。 对比失效样品,OK样品电容内部结构成分一致,内电极为Ni电极,电极层连续性较差,且存在较多细小孔洞。但并未发现贯穿相邻电极的孔洞和机械应力裂纹的存在,电容表面破损程度亦较低,故不存在漏电现象。

电解电容纹波及寿命测试方法

Electrolytic Capacitor Ripple Current Derating Test Method and Life Time Evaluation From:郭雪松 Date:Oct-27-04 一.SPEC 1.电解电容零件工程规格书中之Standard Rating表格,其中规定了不同规格的电解电容Rated Ripple Current值,例如:Sharp机种PWPC C904(滤波电容) 67L215L-820-15N (CNN公司KXG Series) 2.此电容用于电源输入端滤波,因此采用120Hz时的Rated Ripple Current规格715mA。 3.而用于评估电解电容Ripple Current之Spec要依据以下公式: SPEC=Spec(component)×频率系数(FM)×温度系数(TM)注:FM/TM取值方法见附表 4.OTPV 评估电解电容Ripple Current的Derating规格为85%,因此测试值

线电流的有效值(rms),测试时要调整输入电压值(90V~264V)达到纹波电流最大。见图示: Irms 三.附表(FM&TM取值方法):NCC公司产品为例 1.Multiplying Factors on KMG Series(radial lead type) Frequency Multipliers Temperature Multipliers 2. Multiplying Factors on KY Series Frequency Multipliers

漏电流测试仪故障排除方法

漏电流测试仪故障排除方法 【摘要】电解电容器漏电流测试仪在使用过程中很难避免大电流给仪表的冲击,以及长时间使用元器件老化、性能下降等因素,造成漏电流测试仪工作异常。本文对漏电流常见故障进行总结、分析及排除。 【关键词】漏电流;超差;反相放大器 1漏电流测试仪的工作原理 漏电流测试仪对电解电容器漏电流测量原理如图1所示。图1 图中:Cx——被测电容器 R0——标准电阻 Ix——电容器的漏电流 U——电容器漏电流在R0上的电压降 IX=■ 图2 测得R0上的电压值U并将其改为电流刻度,即可直读漏电流Ix值,此即所谓压降测量法。 图2是漏电流测试仪的方框图。当经过充分放电的被测电容Cx连接极化电源进行充电的瞬间所产生的充电脉冲,触发充—测转换电路翻转,使继电器K 流过电流,KS吸合,Cx正端通过KS接点与地连通,使Cx的充电电流不经过R0,Cx就获得较大的电流快速充电,从而提高了测试速度。当选定的充电时间结束时,充—测转换电路复原,KS释放,仪器进入测试状态。Cx的漏电流在R0上产生的电压降经过测量放大器放大后,在漏电流表P2上读出。测量放大器的输出同时接声光报警部分的比较器,与预置的门限进行比较,当这个输出高于预置时,声、光同时报警。 图3 2故障及排除方法 故障(1):在0.3μA~3μA档测量漏电流时,表针指示值大,甚至满度,同时超差指示灯亮,并且表针无规律摆动。 图4 测试部分电路图如图3。 分析诊断:微电流档位工作时,受外界脉冲的干扰影响比较大,造成测试环境不稳。 解决方法:根据电路参数,通过试验,在地与正测试端子之间加25V,1μF 电容后故障消除。 故障(2):某一档电流指示值小,并且超差。 分析诊断:图3中,由V14,15,54,N2和R0、Rf组成100倍反相比例放大器,有较深的负反馈。对负载来说,放大器是电源,希望所有的电压(或功率)都加在负载上,不要被自己的内阻(放大器的输出电阻)消耗掉,所以反相放大器的输出电阻越小越好。反相放大器的输出阻抗越低,带负载能力越强。由此可知,当测试电路通道工作正常,则问题存在于该档位的输出电阻上,使用数字万用表测量该电阻阻值确实变大。 解决方法:根据电路图更换电阻后故障现象消失。 故障(3):小于25V的电容器充电时,充电指示灯不亮。

如何测试电容器质量的好坏

如何测试电容器质量的好坏? 在没有特殊仪表仪器的条件下,电容器的好坏和质量高低可以用万用表电阻档进行检测,并加以判断。容量大(1μF以上)的固定电容器可用万用表的电阻档(R×1000)测量电容器两电极,表针应向阻值小的方向摆动,然后慢慢回摆至∞附近。接着交换测试棒再试一次,看表针的摆动情况,摆幅越大,表明电容器的电容量越大。若测试棒一直碰触电容器引线,表针应指在∞附近,否则,表明该电容器有漏电现象,其电阻值越小,说明漏电量越大,则电容器质量差;如在测量时表针根本不动,表明此电容器已失效或断路;如果表针摆动,但不能回到起始点,则表明电容器漏电量较大,其质量不佳。 压力表对于容量较小的电容器,用万用表来测量往往看不出表针摆动,此时,可以借助一个外加直流电压和用万用表直流电压档进行测量,其方法如图1所示,即把万用表调到相应的直流电压档,负(黑)测试棒接直流电源负极,正(红)测试棒接被测的电容器一端,另一端接电源正极。 一只性能良好的电容器在接通电源的瞬间,万用表的表针应有较大摆幅;电容器的容量越大,其表针的摆幅也越大,摆动后,表针能逐渐返回零位。如果电容器在电源接通的瞬间,万用表的指针不摆动,则说明电容器失效或断路;若表针一直指示电源电压而不作摆动,表明电容器已被击穿短路;若表针摆动正常,但不返回零位,说明电容器有漏电现象,所指示的电压数值越高,表明漏电量越大。需要指出的是:测量容量小的电容器所用的辅助直流电压不能超过被测电容器的耐压,以免因测量而造成电容器击穿损坏。要想准确测量电容器的容量,需要采用电容电桥或Q表。上述的简易检测方法,只能粗略判断压力表电容器的好坏。 方法一:指针式万用表测量。 1、用万用表电阻档检查电解电容器的好坏 电解电容器的两根引线有正、负之分,在检查它的好坏时,对耐压较低的电解电容器(6V或 l0V),电阻档应放在R×100或 R×1K档,把红表笔接电容器的负端,黑表笔接正端,这时万用表指针将摆动,然后恢复到零位或零位附近。这样的电解电容器是好的。电解电容器的容量越大,充电时间越长,指针摆动得也越慢。 2、用万用表判断电解电容器的正、负引线 一些耐压较低的电解电容器,如果正、负引线标志不清时,可根据它的正接时漏电电流小(电阻值大),反接时漏电电流大的特性来判断。具体方法是:用红、黑表笔接触电容器的

电气设备泄漏电流测试方法及注意事项

电气设备泄漏电流测试方法及注意事项? ? ??测量泄漏电流的原理和测量绝缘电阻的原理本质上是完全相同的,而且能检出缺陷的 (1)试验电压高,并且可随意调节,容易使绝缘本身的弱点暴露出来。因为绝缘中的某些缺陷或弱点,只有在较高的电场强度下才能暴露出来。 (2)泄漏电流可由微安表随时监视,灵敏度高,测量重复性也较好。 (3)根据泄漏电流测量值可以换算出绝缘电阻值,而用兆欧表测出的绝缘电阻值则不可换算出泄漏电流值。 (4)可以用i=f(u)或i=f(t)的关系曲线并测量吸收比来判断绝缘缺陷。泄漏电流与加压时间的关系曲线如图1-1所示。在直流电压作用下,当绝缘受潮或有缺陷时,电流随加压时间下降得比较慢,最终达到的稳态值也较大,即绝缘电阻较小。 1. 测量原理 对于良好的绝缘,其泄漏电流与外加电压的关系曲线应为一直线。但实际上的泄漏电流与外加电压的关系曲线仅在一定的电压范围内才是近似直线,如图1-2中的OA段。若超过此范围后,离子活动加剧,此时电流的增加要比电压增加快得多,如AB段,到B点后,如果电压继续再增加,则电流将急剧增长,产生更多的损耗,以致绝缘被破坏,发生击穿。在预防性试验中,测量泄漏电流时所加的电压大都在A点以下。 将直流电压加到绝缘上时,其泄漏电流是不衰减的,在加压到一定时间后,微安表的读数就

等于泄漏电流值。绝缘良好时,泄漏电流和电压的关系几乎呈一直线,且上升较小;绝缘受潮时,泄漏电流则上升较大;当绝缘有贯通性缺陷时,泄漏电流将猛增,和电压的关系就不是直线了。通过泄漏电流和电压之间变化的关系曲线就可以对绝缘状态进行分析判断。2. 影响测量结果的主要因素 (1)高压连接导线 由于接往被测设备的高压导线是暴露在空气中的,当其表面场强高于约20kV/cm时,沿导线表面的空气发生电离,对地有一定的泄漏电流,这一部分电流会流过微安表,因而影响测量结果的准确度。 一般都把微安表固定在试验变压器的上端,这时就必须用屏蔽线作为引线,用金属外壳把微安表屏蔽起来。电晕虽然还照样发生,但只在屏蔽线的外层上产生电晕电流,而这一电流就不会流过微安表,防止了高压导线电晕放电对测量结果的影响。 根据电晕的原理,采取用粗而短的导线,并且增加导线对地距离,避免导线有毛刺等措施,可减小电晕对测量结果的影响。 (2)表面泄漏电流 (a)未屏蔽(b)屏蔽 反映绝缘内部情况的是体积泄露电流。但是在实际测量中,表面泄露电流往往大于体积泄漏电流,这给分析、判断被试设备的绝缘状态带来了困难,因而必须消除表面泄漏电流对真实测量结果的影响。 消除的办法是使被试设备表面干燥、清洁、且高压端导线与接地端要保持足够的距离;另一

漏电流安规测试学习心得

泄露电流安规测试 泄露电流测试目的 IEC60990《接触电流和保护导体电流的测量方法》中提到接触电流是“当人体或动物接触一个或多个装置或设备的可接触零部件时,流过他们身体的电流。”如图1所示,接触电流也称之为泄漏电流,注意不要与耐压测试中的漏电流混为一谈。 个人理解:耐压测试中漏电流是3.5kV输入电压下板卡的漏电流总和,主要是衡量板卡绝缘能力;接触电流是市电输入电压下由整机设备与人体到大地形成回路,流经人体的电流值,主要是衡量对人体的伤害能力。 图1 泄露电流示意图 泄露电流分类 1) 对地漏电流 对于I类设备的电子产品可触及的金属部件或是外壳应具备良好的接地线路,以作为基本绝缘意外的一种防电击保护措施。但是我们也经常遇到一些使用者随意将I类设备当成II 类设备使用,或是说其I类设备电源输入端直接将地端拔除,这样就存在一定的安全隐患。即便如此,作为生产商有义务去避免这种情况对使用者造成的危险,这就是为什么要测试接触漏电流的目的。 对地漏电流是指在正常条件下由电网部分穿过或跨过绝缘流入I类设备保护接地导线的电流,即经由电源线上的接地线流回大地。在接地线良好的情况下,该电流不会对人造成点击伤害。对地漏电流与接触漏电流无关,其量值和测量方法也不同,对地漏电流的测量通常是在设备接地系统有缺陷的情况下,从设备泄露到地的电流。因此I类设备应保证接地连续性良好,接地电阻小于规定值0.1Ω,为故障电流提供低阻返回路径,从而保证可触及件不带电,人碰触才是安全。对地漏电流主要应用在I类设备测试,目前电视主板没有要求。 2) 接触漏电流 接触漏电流是指在正常或单一故障条件下,当人体接触到不同配电系统的I类或II类设备时,可能流过人体的电流。接触漏电流产生的路径有两种:a、电网电源——绝缘隔离系统——人体——大地,该电流的大小由绝缘隔离系统决定。b、设备的某一部分流经人体

电解电容漏电流测试仪安全管理规定

编号:SY-AQ-05814 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 电解电容漏电流测试仪安全管 理规定 Safety management regulations of electrolytic capacitor leakage current tester

电解电容漏电流测试仪安全管理规 定 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 一、目的:为指导和规范电解电容漏电流测试仪的安全使用。 二、范围:仅适用于本公司电解电容漏电流测试仪。 三、安全操作使用规程 1.在对仪器进行操作前,应首先详细阅读说明书,或在对本仪器熟悉的人员指导下进行操作,以免产生不必要的疑问。 2.仪器使用必须符合额定使用条件:环境温度:0-40℃;相对湿度20-80%PH;大气压强:86-106Kpa。 3.仪器应在技术指标规定的环境中工作,仪器特别是联接测试件的测试导线应远离强电磁场,以免对测量产生干扰。 4.应选择合适的电压量程档,在测量过程中不允许调节测量电压。 5.被测电容器的正负数一定要正确联接。

6.对食品通电检查和校准时,注意调整管BUS13A(BU508A)的外壳是带电的,高压大电容两极上也是带电的,应注意以防触电。 7.仪器切断电源后,高压在电容上的高电压需几分钟放完。 8.对仪器进行更换元件时,注意将电源插头拔下,以防止触及电源开关而触电。 9.仪器在接通电源之前,应将电压调节旋钮向左旋至最小,工作选择按钮置于放电位置,否则电压输出接线柱与外壳间有极化电源输出,会使连接测试夹具时触电。 10.在使用仪器过程中,转换电压量开关时,注意要将电压调节旋钮左旋至最小,以免电压受冲击而损坏。 11.严禁各类腐蚀性物品接触设备,关机后必须切断电源。 这里填写您的公司名字 Fill In Your Business Name Here

电气设备泄漏电流测试方法及注意事项

电气设备泄漏电流测试方法及注意事项 测量泄漏电流的原理和测量绝缘电阻的原理本质上是完全相同的,而且能检出缺陷的 (1)试验电压高,并且可随意调节,容易使绝缘本身的弱点暴露出来。因为绝缘中的某些缺陷或弱点,只有在较高的电场强度下才能暴露出来。 (2)泄漏电流可由微安表随时监视,灵敏度高,测量重复性也较好。 (3)根据泄漏电流测量值可以换算出绝缘电阻值,而用兆欧表测出的绝缘电阻值则不可换算出泄漏电流值。 (4)可以用i=f(u)或i=f(t)的关系曲线并测量吸收比来判断绝缘缺陷。泄漏电流与加压时间的关系曲线如图1-1所示。在直流电压作用下,当绝缘受潮或有缺陷时,电流随加压时间下降得比较慢,最终达到的稳态值也较大,即绝缘电阻较小。 1. 测量原理 对于良好的绝缘,其泄漏电流与外加电压的关系曲线应为一直线。但实际上的泄漏电流与外加电压的关系曲线仅在一定的电压范围内才是近似直线,如图1-2中的OA段。若超过此范围后,离子活动加剧,此时电流的增加要比电压增加快得多,如AB段,到B点后,如果电压继续再增加,则电流将急剧增长,产生更多的损耗,以致绝缘被破坏,发生击穿。在预防性试验中,测量泄漏电流时所加的电压大都在A点以下。 将直流电压加到绝缘上时,其泄漏电流是不衰减的,在加压到一定时间后,微安表的读数就等于泄漏电流值。绝缘良好时,泄漏电流和电压的关系几乎呈一直线,且上升较小;绝缘受潮时,泄漏电流则上升较大;当绝缘有贯通性缺陷时,泄漏电流将猛增,和电压的关系就不

是直线了。通过泄漏电流和电压之间变化的关系曲线就可以对绝缘状态进行分析判断。2. 影响测量结果的主要因素 (1)高压连接导线 由于接往被测设备的高压导线是暴露在空气中的,当其表面场强高于约20kV/cm时,沿导线表面的空气发生电离,对地有一定的泄漏电流,这一部分电流会流过微安表,因而影响测量结果的准确度。 一般都把微安表固定在试验变压器的上端,这时就必须用屏蔽线作为引线,用金属外壳把微安表屏蔽起来。电晕虽然还照样发生,但只在屏蔽线的外层上产生电晕电流,而这一电流就不会流过微安表,防止了高压导线电晕放电对测量结果的影响。 根据电晕的原理,采取用粗而短的导线,并且增加导线对地距离,避免导线有毛刺等措施,可减小电晕对测量结果的影响。 (2)表面泄漏电流 (a)未屏蔽(b)屏蔽 反映绝缘内部情况的是体积泄露电流。但是在实际测量中,表面泄露电流往往大于体积泄漏电流,这给分析、判断被试设备的绝缘状态带来了困难,因而必须消除表面泄漏电流对真实测量结果的影响。 消除的办法是使被试设备表面干燥、清洁、且高压端导线与接地端要保持足够的距离;另一种是采用屏蔽环将表面泄漏电流直接短接,使之不流过微安表。 (3)温度 温度对泄漏电流测量结果有显著影响。温度升高,泄漏电流增大。 测量最好在被试设备温度为30~80℃时进行。因为在这样的温度范围内,泄漏电流的变化

电解电容漏电流测试仪操作规程示范文本

电解电容漏电流测试仪操作规程示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

电解电容漏电流测试仪操作规程示范文 本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 一、测试前注意事项 在接通电源线前应关掉电源开关,并将调压旋钮逆时 针方向调至最低端。如果220V电源的地线接地性能不良, 应将仪器前面板的接地柱妥善接地。 二、操作步骤 1.接通电源,调节测试电压。通过电压调节旋钮将电压 调至所需电压。 2.选择合适的漏电流值,根据产品的要求,通过电流预 置的BCD 拨盘将漏电流设定值输入仪器,仪器将自动选择 合适的量程。 3.选择充放电时间,根据电容量大小将充电时间放电时

间置于适当的值上,通过二位BCD 拨盘设置。 4.开机后充电状态灯闪烁,是等待充电的标志,当仪器选择自动测试状态(即自动开关左边的状态灯被点亮)此时接上电容(注意电容极性不可接反),仪器将自动转入充电状态。充电结束后,自动转入测试状态。显示第一次的漏电流采样数据,仪器自动设置锁定有效,2 秒钟后自动转入放电状态,放电定时结束后,仪器自动转入等待充电状态。自动测试一个循环结束。 5.如果仪器处于非自动状态,锁定处于有效状态。在等待充电时,接上电容,仪器自动转入充电状态,充电结束,自动转入测试状态,其显示的是测试状态第一次采样的漏电 流数据,并一直处于测试状态。 6. 如果仪器处于非自动状态,锁定处于无效时,在等待充电时,接上电容,仪器自动转入充电状态,充电结

电解电容测试操作

电解电容测试操作 测试操作时先用两表笔任意麓碰电容的两引脚然后调换表笔再碰一次如果电容是好的万用表指针会向右摆动一下随即向左迅速返回无穷大位置。电容量越大指针摆动幅度越大如果反复调换表笔触碰电容两引脚万用表指针始终不向右摆动说明该电容的容量已低于或者已经消失。NXP代理商测量中若指针向右摆动后不能再向左回到无穷大位置说明电容漏电或已经击穿短路测试时要注意为了观察到指针向右摆动的情况应反复调换表笔触碰电容器两引脚进行测量直到确认电容有无充电现象为止。 在采用上述三种方法进行测试时都应注意正确操作不要用手指同时接触被测电容的两个引脚否则人体电阻将影响测试的准确性容易造成误判。特别是使用万用表的高阻挡进行测量时若手指同时触到电容两引脚或两表笔的金属部分将使指针回不到无穷大的位置给测试者造成错觉误认为被测电容漏电。TI代理效字万用表测量将电容的两脚插人数字万用表的。插座内将数字万用衰置于相应的挡位即可。电电容的检舅电解电容既可以用数字万用表测量也可能用指针万用衷测量用敷字万用表测量电解电容时只需将电容的两脚插人数字万用表的。插座内将数字万用表置于相应的挡位即可。由于散字万用表电容测量挡量程有限般最大只能测量因此散字万用表只能对部分电解电容进行测量。 下面重点说明用指针万用表测量电解电容的方法和技巧。挡位的选择电解电容的容量较一般无极性电容大得多所以测量时应针对不同容量选用合适的量程根据经验一般情况下—的电容可用挡测量大于的电容可用挡测量测量漏电阻将万用表红表笔接咆解电容的负极黑表笔接正极在刚接触的瞬间万用表指针即向右偏转较大幅度对于同一电阻挡容量越大摆幅越大接着逐渐向左回转直到停在某一位置。此时的阻值便是电解电容的正向漏电阻。此值越大说明漏电流越小电容性能越好然后将红、黑表笔对调万用表指针将重复上述摆动现象。但此时所测阻值为电解电容的反向漏电阻此值略小于正向漏电阻。贴片钽电容即反向漏电流比正向漏电流要大实际使用经验表明电解电容的漏电阻一般应在几百以上否则将不能正常工作。在测试中若正向、反向均元充电的现象即表针不动则说明容量消失或内部断路如果所测阻值很小或为零说明电容嗣电大或已被击穿损坏不能再使用。极性判别对于正、负极标志不明的电謦电容器可利用上述测量漏电阻的方法加以判别。即先任意潮一下电阻记住其大小然后交换表笔再测出一个阻值两次测量中阻值大的那一次便是正向接法即黑表笔接的是正撅红表笔接的是负极。 检测大容量电解电容器的漏电阻用万用表检测电解电容器的漏电阻是利用表内的电池给电解电容充电的原理进行的。一旦将万用表电阻挡位确定下来充电的时间长短便取决于电容的容量大小对于同一咆阻挡而言容量越大充电时间越长例如选用挡测量一只的电解电容待其充完电显示出漏电阻约需左右显然时间过长不太实用但是万用表的不同电阻挡的内阻是不一样的。电阻挡位越高内阻越大电阻挡位越低内阻越小一般万用表的挡的内阻仅是挡的千分之一利用万用表这一特点采用变换电阻挡位的方法是可以比较快速地将大容量电解电容嚣的电阻测出的。钽电容具体操作方法是先使用或低阻挡视容量而定进行测量使电容器很快充足电指针迅速向左回旋到无穷大位置。这时再拨到挡若指针停在无穷大处说明罱电阻极小用挡已经测不出来若指针又缓慢向右摆动最后停在某一刻度上此时的读数即是被测电解电容的电阻值。wxq$#

电解电容漏电流测试仪操作规程(正式)

编订:__________________ 单位:__________________ 时间:__________________ 电解电容漏电流测试仪操作规程(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-7534-73 电解电容漏电流测试仪操作规程(正 式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、测试前注意事项 在接通电源线前应关掉电源开关,并将调压旋钮逆时针方向调至最低端。如果220V电源的地线接地性能不良,应将仪器前面板的接地柱妥善接地。 二、操作步骤 1.接通电源,调节测试电压。通过电压调节旋钮将电压调至所需电压。 2.选择合适的漏电流值,根据产品的要求,通过电流预置的BCD 拨盘将漏电流设定值输入仪器,仪器将自动选择合适的量程。 3.选择充放电时间,根据电容量大小将充电时间放电时间置于适当的值上,通过二位BCD 拨盘设置。 4.开机后充电状态灯闪烁,是等待充电的标志,

当仪器选择自动测试状态(即自动开关左边的状态灯被点亮)此时接上电容(注意电容极性不可接反),仪器将自动转入充 电状态。充电结束后,自动转入测试状态。显示第一次的漏电流采样数据,仪器自动设置锁定有效,2 秒钟后自动转入放电状态,放电定时结束后,仪器自动转入等待充电状态。自动测试一个循环结束。 5.如果仪器处于非自动状态,锁定处于有效状态。在等待充电时,接上电容,仪器自动转入充电状态,充电结束,自动转入测试状态,其显示的是测试状态第一次采样的漏电 流数据,并一直处于测试状态。 6. 如果仪器处于非自动状态,锁定处于无效时,在等待充电时,接上电容,仪器自动转入充电状态,充电结束,自动转入测试状态,仪器将循环采集漏电流数据并显示出来。 三、保养维护 1. 严禁将带电的电容接入仪器,以防损坏电流检

电解电容漏电流测试仪安全操作规程

电解电容漏电流测试仪操作规程 一、测试前注意事项 在接通电源线前应关掉电源开关,并将调压旋钮逆时针方向调至最低端。如果220V电源的地线接地性能不良,应将仪器前面板的接地柱妥善接地。 二、操作步骤 1.接通电源,调节测试电压。通过电压调节旋钮将电压调至所需电压。 2.选择合适的漏电流值,根据产品的要求,通过电流预置的BCD 拨盘将漏电流设定值输入仪器,仪器将自动选择合适的量程。 3.选择充放电时间,根据电容量大小将充电时间放电时间置于适当的值上,通过二位BCD拨盘设置。 4.开机后充电状态灯闪烁,是等待充电的标志,当仪器选择自动测试状态(即自动开关左边的状态灯被点亮)此时接上电容(注意电容极性不可接反),仪器将自动转入充 电状态。充电结束后,自动转入测试状态。显示第一次的漏电流采样数据,仪器自动设置锁定有效,2秒钟后自动转入放电状态,放电定时结束后,仪器自动转入等待充电状态。自动测试一个循环结束。 5.如果仪器处于非自动状态,锁定处于有效状态。在等待充电时,接上电容,仪器自动转入充电状态,充电结束,自动转入测试状态,其显示的是测试状态第一次采样的漏电

流数据,并一直处于测试状态。 6.如果仪器处于非自动状态,锁定处于无效时,在等待充电时,接上电容,仪器自动转入充电状态,充电结束,自动转入测试状态,仪器将循环采集漏电流数据并显示出来。 三、保养维护 1.严禁将带电的电容接入仪器,以防损坏电流检测部份。 2.仪器在使用过程中,应定期对工作特性进行检验和校准。正常情况下,本仪器半年进行一次检定。 四、安全注意事项 1.仪器在通电后主板上两只调整管(BU508A)上始终带有较高的电压或者仪器切断电源后,高压滤波电容器需3分钟以上才能将电荷放尽,只要电容上带电,调整管上也带电。因此在实际测试操作时应该戴上绝缘手套,以防不注意在测试过程中触摸到带有较高电压的测试夹具。

相关文档
最新文档