动力反应谱分析

动力反应谱分析
动力反应谱分析

什么是结构反应谱分析?

相关标签:

?反应谱

?结构设计计算

?结构动力分析

反应谱分析建立在振型分解反应谱理论基础上。振型分解理论将结构的地震作用响应分解为各振型分量的叠加,即对应每个振型都有一个地震作用,然后通过一定的组合方法(SRSS,CQC,ABS等)叠加各振型结构的地震响应得到最终总的结构地震响应值。

振型分解法的数学和力学的本质:首先是利用功的互等定理(贝蒂定理)得到的振型正交性质,从而将多自由度结构振动偏微分方程组解耦成若干等效单自由度体系的常微分方程组,进而得到结构位移响应的解答。

当然,对于地震作用这样的复杂问题,结构振动的偏微分方程组的精确解是难以得到的,而必须采用数值解法。常采用的数值解法有Wilson-θ法,New mark-β法等。这些数值积分方法都有对应的求解程序,结构工程师不需要很精通这些数值求解方法的具体过程,而只需要建立一些概念即可。

这里需要注意一个概念:振型分析反应谱法只适用线弹性体系。如果考虑结构的弹塑性性质,则这种方法不适用。

这是为什么呢?这就是振型正交性,由于功的互等定理建立在材料线弹性假定的基础上,故由此得到的振型正交性也仅适用于线弹性体系。这也就是为什么大震下的结构弹塑性不采用振型分解反应谱法,隔震结构也不能采用这种方法的原因。

还要注意的一个概念就是:反应谱。什么是反应谱?从概念上讲,反应谱是在特定的地震波作用下,单自由度体系的某一响应量值与自振周期的关系曲线。

这里注意两个概念,一是单自由度,二是特定的地震作用。

其实,反应谱可分为地震反应谱和设计反应谱两种,工程上用得最为广泛的是设计反应谱,是根据多条地震反应谱由统计的方法取平均或取包络并通过人为调整最终得到的,存在一些人为的调整因素。

再进一步明确一个概念,反应谱曲线与哪些因素有关?

首先,设防烈度决定反应谱曲线地震响应的最大值;其次,设计地震分组和场地类别决定了特征周期。也许不少人对特征周期这个概念比较含糊,不知道究竟是什么。其实,我的理解,特征周期就是设计反应谱曲线下降段对应的结构周期值,很大程度上属于人为定义的概念。当特征周期取得大一些,我们会发现设计反应谱曲线对应数值一般将变大。

这就是为什么01抗震规范较89抗震规范,在特征周期上就做了调整使之增大,从而人为加大了地震作用的计算值,从某种意义上加大了结构的抗震安全储备。

再次,设计反映谱还和结构的阻尼比有关。结构的阻尼比越小,反应谱曲线的数值一般就越大。这是因为阻尼是阻碍结构振动的一种能量削弱,因此从结构概念上讲,阻尼越大对结构越有利。这就是为什么现在耗能减震技术在抗震领域非常有用的一个原因。

虽然振型分解反应谱法仅适用于线弹性结构,但这种方法仍是工程界最为广泛使用的地震作用方法,其概念明确,而且计算精度能满足工程要求,且软件操作便捷易懂,便于工程技术人员掌握。

地震响应的反应谱法与时程分析比较 (1)

发电厂房墙体地震响应的反应谱法与时程分析比较 1问题描述 发电厂房墙体的基本模型如图1所示: 图1 发电厂墙体几何模型 基本要求:依据class 9_10.pdf的最后一页的作业建立ansys模型,考虑两个水平向地震波的共同作用(地震载荷按RG1.60标准谱缩放,谱值如下),主要计算底部跨中单宽上的剪力与弯矩最大值,及顶部水平位移。要求详细的ansys反应谱法命令流与手算验证过程。以时程法结果进行比较。分析不同阻尼值(0.02,0.05,0.10)的影响。 RG1.60标准谱 (1g=9.81m/s2) (设计地震动值为0.1g) 频率谱值(g) 33 0.1 9 0.261 2.5 0.313 0.25 0.047 与RG1.60标准谱对应的两条人工波见文件rg160x.txt与rg160y.txt 2数值分析框图思路与理论简介 2.1理论简介 该问题主要牵涉到结构动力分析当中的时程分析和谱分析。时程分析是用于确定承受任意随时间变化荷载的结构动力响应的一种方法。谱分析是模态分析的扩展,是用模态分析结果与已知的谱联系起来计算模型的位移和应力的分析技术。 2.2 分析框架: 时程分析:在X和Z两个水平方向地震波作用下,提取底部跨中单宽上的剪力、弯矩值和顶部水平位移,并求出最大响应。 谱分析:先做模态分析,再求谱解,由于X和Z两个方向的单点谱激励,因此需进行两次谱分析,分别记入不同的工况最后组合进行后处理得出结够顶部水平位移、底部单宽上剪力和弯矩的最大响应。 3有限元模型与荷载说明 3.1 有限元模型 考虑结构的几何特性建立有限元模型,首先建立平面几何模型,并将模型进行合理的切割,采用plane42单元,使用映射划分网格的方法生产平面单元(XOY平面)。然后,采用solid45

SolidWorks Simulation响应谱分析简介

SolidWorks Simulation响应谱分析简介 在Solidworks Simulation Premium 2011中,添加了一个线性动力分析模块——“响应波谱分析”。 插图一 响应谱分析又名冲击谱分析,是一种近似的方法用于预测受到基础激励(强迫振动)的结构峰值响应的分析方法。取代耗时的时间域瞬态分析,可以采用响应谱分析快速地近似分析结构的峰值响应(如动应力等)。响应谱分析可以作为一种设计工具。它用于计算结构对多频信息瞬态激励的响应,这些激励可能来源于地震、飞行噪声/飞行过程、导弹发射等,频谱是载荷时间历程在频率域上的表示法,您可以使用响应波谱分析而非时间历史分析,来估测结构对随机载荷或与时间有关的载荷环境(例如地震、风载荷、海浪载荷、喷气发动机推力或火箭发动机振动)的响应。 响应谱分析可以被应用多种领域,如航空电子设备 (飞行器 / 导弹)、航天飞机零件、飞行器部件及任何受到地震或其他不稳定载荷的结构或部件。下面就来看下,在Solidworks Simulation中是如何进行响应谱分析的。 首先,建立新的自命,选择线性动力类型,并从子类型中选择响应波谱分析。 插图二

在响应波谱分析中,模态分析结果作为已知波谱用来计算模型中的位移和应力。因此在,响应波谱分析算例属性中需设定要包含的模态分析频率数或相关参数。 插图三 在响应波谱选项中可以选择模式组合方法: 插图四

不同的组合方法会对结果有所影响,其中绝对值和方法结果最为保守。之后按照Simulation常规方法赋予零件材料参数及交互关系(注意,线性动力分析中,只可使用结合与允许贯通两种接触选项),并对结构给予合理约束,本例中是对电路板相应固定点添加固定约束。 插图五 响应波谱分析的载荷可以为统一基准激发或选定的基准激发,类型则有位移、速度、加速度三类,这里选择统一基准激发,并选择加速度,并使用如下参数: 插图六

反应谱与时程理论对比

反应谱是在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形。更直观的定义为:一组具有相同阻尼、不同自振周期的单质点体系,在某一地震动时程作用下的最大反应,为该地震动的反应谱。 反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静 力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK= αG 其中α为地震影响系数,即单质点弹性体系在地震时最大反应加速度。另一方面地震影响系数也可视为作用在质点上的地震作用与结构重力荷载代表值之比。 目前,反应谱分析法比较成熟,一些主要国家的抗震规范均将它作为基本设计方法。不过,它主要适合用于规则结构。对于不规则结构以及高层建筑,各国规范多要求采用时程分析法进行补充计算。 地震作用反应谱分析本质上是一种拟动力分析,它首先使用动力法计算质点地震响应,并使用统计的方法形成反应谱曲线,然后使用静力法进行结构分析。但它并不是结构真实的动力响应分析,只是对于结构动力响应最大值进行估算的近似方法,在线弹性范围内,反应谱分析法被认为是高效而且合理的方法。反应谱分为加速度反应谱、速度反应谱和位移反应谱。基于不同周期结构相应峰值的大小,我们可以绘制结构速度及加速度的反应谱曲线。一般情况下,随着周期的延长,位移反应谱为上升曲线,速度反应谱为平直曲线,加速度反应谱为下降曲线,目前结构设计主要依据加速度反应谱。 加速度反应谱在短周期部分为快速上升曲线,并且在结构周期与场地特征周期接近时出现峰值,后面更大范围为逐渐下降阶段。峰值出现的时间与对应的结构周期和场地特征周期有关。一般来说结构自振周期的延长,地震作用将减小。当结构自振周期接近场地特征周期时,地震作用最大。 反应谱分析方法需要先求解一个方向地震作用响应,再基于三个正交方向的分量考虑结构总响应,即基于振型组合求解一个方向的地震响应,再基于方向组合求解结构总响应。 振型组合方法有SRSS法,CQC法。 1.SRSS法 SRSS法是平方和平方根法,这种方法假定所有最大模态值在统计上都是相互独立的,通过求各参与阵型的平方和平方根来进行组合。该法不考虑各振型间的藕联作用,实际上结构模态都是相互关联的,不可避免的存在藕联效应,对那些相邻周期几乎相等的结构,或者不规则结构不适用此法。《抗规》GB50011-2010规定的SRSS法为如下所示:

Midas中震设计

在MIDAS/Gen中如何实现中震设计? 结构设计学习资料2009-11-29 23:05:09 阅读224 评论0 字号:大中小订阅 转自:https://www.360docs.net/doc/d54824381.html,/s/blog_5e1bf3ef0100fckz.html 中震弹性设计就是在中震时结构的抗震承载力满足弹性设计要求,中震不屈服的设计就是地震作用下的内力按中震进行计算。 中震弹性设计与中震不屈服的设计在MIDAS中的实现 一、中震弹性设计 1、在MIDAS/Gen中定义中震反应谱 主菜单》荷载》反应谱分析数据》反应谱函数:定义中震反应谱,即在定义相应的小震反应谱基础上输入放大系数β即可。 2、定义设计参数时,将抗震等级定为四级,即不考虑地震组合内力调整系数(即强柱弱梁、强剪弱弯调整系数。 3、其它设计参数的定义均同小震设计。 二、中震不屈服设计 1、在MIDAS/Gen中定义中震反应谱。内容同中震弹性设计。 2、定义设计参数时,将抗震等级定为四级,即不考虑地震组合内力调整系数(即强柱弱梁、强剪弱弯调整系数)。内容同中震弹性设计。 3、定义荷载组合时将地震作用分项系数取为1.0。 4、将材料分项系数定义为1.0,即构件承载力验算时取用材料强度的标准植。 5、其它操作均同小震设计。 《抗规》中对中震设计的内容涉及很少,仅在总则中提到“小震不坏、中震可修、大震不倒”的抗震设防目标,但没有给出中震设计的判断标准和设计要求,我国目前的抗震设计是以小震为设计基础的,中震和大震则是通过地震力的调整系数和各种抗震构造措施来保证的,但随着复杂结构、超高超限结构越来越多,对中震的设计要求也越来越多,目前工程界对于结构的中震设计有两种方法,第一种按照中震弹性设计,第二种是按照中震不屈服设计,而这两种设计方法在MIDAS/Gen中都可以实现,具体说明如下: 一、中震弹性设计 结构的抗震承载力满足弹性设计要求,最大地震影响系数α按表1取值,在中震作用下,设计时可不考虑地震组合内力调整系数(即强柱弱梁、强剪弱弯调整系数),但应采用作用分项系数、材料分项系数和抗震承载力调整系数,构件的承载力计算时材料强度采用设计值。 表1地震影响系数(β为相对于小震的放大系数)

midas反应谱分析

反应谱分析 北京迈达斯技术有限公司

目录 简要 (1) 设定操作环境及定义材料和截面 (2) 定义材料 (2) 定义截面 (3) 建立结构模型 (4) 主梁及横向联系梁模型 (4) 输入横向联系梁 (5) 输入桥墩 (5) 刚性连接 (7) 建立桥墩和系梁 (9) 输入边界条件 (10) 输入支座的边界条件 (10) 刚性连接 (11) 输入横向联系梁的梁端刚域 (12) 输入桥台的边界条件 (13) 输入二期恒载 (14) 输入质量 (15) 输入反应谱数据 (17) 输入反应谱函数 (17) 输入反应谱荷载工况 (18) 运行结构分析 (19) 查看结果 (20) 荷载组合 (20) 查看振型形状和频率 (21) 查看桥墩的支座反力 (24)

简要 本例题介绍使用MIDAS/CIVIL的反应谱分析功能来进行抗震设计的方法。 例题模型使用的是简化了的钢箱型桥梁模型,由主梁、横向联系梁和桥墩构成。桥台部分由于刚度很大,不另外建立模型只输入边界条件;基 础部分假设完全固定,也只按边界条件来定义。 下面是桥梁的一些基本数据。 跨 径:45 m + 50 m + 45 m = 140 m 桥 宽:11.4 m 主梁形式:钢箱梁 钢 材:GB(S) Grade3(主梁) 混 凝 土:GB_Civil(RC) 30(桥墩) 图1. 桥梁剖面图[单位: mm]

设定操作环境及定义材料和截面 开新文件(新项目),以‘Response.mcb’为名保存(保存)。 文件 / 新项目t 文件 / 保存( Response ) 将单位体系设定为kN(力), m(长度)。 工具 / 单位体系 长度>m ; 力>kN ? 定义材料 分别输入主梁和桥墩的材料数据。 模型 / 材料和截面特性 / 材料 材料号(1); 类型>S钢材 规范>GB(S); 数据库>Grade3 ? 材料号(2); 类型>混凝土 规范>GB-Civil(RC) ; 数据库>30 ? 图2. 定义材料

SAP2000之反应谱分析

反应谱分析:基本概念 地震作用本质上是一种地面运动荷载,虽然其发生的过程总体上很短暂,但是作用的大小是随时间变化的,目前结构分析的发展水平允许我们基于振型叠加法或其它方法在地震作用的整个过程中对结构的响应进行完整计算,这就是我们所常说的结构的时程分析。但是这种分析方法往往需要更复杂的计算工作,并且所进行的分析往往需要更详尽并有针对性的场地信息,这一点并不是所有实际工程都能够提供的,另外,时程分析会输出地震作用整个过程每一时刻的结构位移及内力响应,对于这些信息的统计需要大量的工作量,并且难以形成直接指导结构设计的信息。因此虽然时程分析是更为真实的结构动力分析,但是满足大部分结构规范要求和工程师需求的仍然是地震作用的反应谱分析。 地震作用反应谱分析本质上是一种拟动力分析,它首先使用动力方法计算质点地震响应,并使用统计的方法形成反应谱曲线,然后再使用静力方法进行结构分析。时程分析的不足恰好是反应谱分析方法的优点,光滑设计反应谱是地震运动的平均值,它仅包括计算每个振型中的位移和构件力的最大值,因此不需要对于多条地震波的复杂计算。并且结构反应谱分析所给出的结构响应信息可以很方便的应用于结构设计,避免了对于整个时间范围内结构响应的处理。

反应谱分析:振型组合的基本理论与方法SAP2000对于反应谱分析振型组合分析,给出了CQC法、SRSS法、ABS法、GMC法、10Pct法和Dbl Sum法等六种组合方法。我国2002新的规范规定考虑结构藕联效应的情况,可以采用SRSS和CQC两种组合方法。 1. ABS法 ABS法是绝对值相加法。这种方法的假设条件是所有振型的最大模态值都发生在相同的时间点上,通过求它们的绝对值和的方法来对振型进行组合。实际上同一时刻基本上不可能所有模态均发生最大值,因此,这一组合方法是用于计算结构中的位移或内力峰值的最保守方法。 2. SRSS法

ANSYS响应谱分析实例-平板结构

!ANSYS响应谱分析 !响应谱分析实例-平板结构 finish /CLEAR /FILENAME,example,1 /PREP7 /TITLE, DYNAMIC LOAD EFFECT ON SIMPLY-SUPPORTED THICK SQUARE PLATE ! 定义单元类型 ET,1,SHELL281 ! 定义厚度 SECTYPE,1,SHELL SECDATA,1,1,0,5 ! 定义材料属性 MP,EX,1,200E9 MP,NUXY,1,0.3 MP,ALPX,1,0.1E-5 MP,DENS,1,8000 ! 定义模型 N,1,0,0,0 N,9,0,10,0 FILL NGEN,5,40,1,9,1,2.5 N,21,1.25,0,0 N,29,1.25,10,0 FILL,21,29,3 NGEN,4,40,21,29,2,2.5 EN,1,1,41,43,3,21,42,23,2 EGEN,4,2,1 EGEN,4,40,1,4 FINISH /SOLU ANTYPE,MODAL ! 定义分析类型为模态分析 MODOPT,REDUC MXPAND,16,,,YES SFE,ALL,,PRES,,-1E6 ! 施加面载荷 D,ALL,UX,0,,,,UY,ROTZ ! 施加约束 D,1,UZ,0,0,9,1,ROTX D,161,UZ,0,0,169,1,ROTX D,1,UZ,0,0,161,20,ROTY D,9,UZ,0,0,169,20,ROTY

NSEL,S,LOC,X,.1,9.9 NSEL,R,LOC,Y,.1,9.9 M,ALL,UZ ! 选择主自由度 NSEL,ALL SOLVE *GET,F,MODE,1,FREQ FINISH /SOLU ANTYPE,SPECTR ! 定义分析类型 SPOPT,PSD,2,ON ! 利用前两阶模态并计算应力PSDUNIT,1,PRES ! 定义功率谱为面载荷谱DMPRAT,0.02 PSDFRQ,1,1,1.0,80.0 PSDVAL,1,1.0,1.0 LVSCALE,1 ! 比例使用载荷因子PFACT,1,NODE PSDRES,DISP,REL PSDCOM SOLVE FINISH /eof /POST1 SET,3,1 ! 读取位移 /VIEW,1,2,3,4 PLNSOL,U,Z PRNSOL,U,Z FINISH /SOLUTION ANTYPE,HARMIC ! 重新定义求解类型HROPT,MSUP ! 利用模态叠加法HROUT,OFF,ON KBC,1 HARFRQ,1,80 DMPRAT,0.02

如何进行ANSYS谱分析

如何进行ANSYS谱分析 谱是谱值和频率的关系曲线,反映了时间-历程载荷的强度和频率之间的关系。 响应谱代表系统对一个时间-历程载荷函数的响应,是一个响应和频率的关系曲线。 谱分析是一种将模态分析结果和已知谱联系起来的计算结构响应的分析方法,主要用于确定结构对随机载荷或随时间变化载荷的动力响应。谱分析可分为时间-历程分析和频域的谱分析。时间-历程谱分析主要应用瞬态动力学分析。谱分析可以代替费时的时间-历程分析,主要用于确定结构对随机载荷或时间变化载荷(地震、风载、海洋波浪、喷气发动机推力、火箭发动机振动等)的动力响应情况。谱分析的主要应用包括核电站(建筑和部件),机载电子设备(飞机/导弹),宇宙飞船部件、飞机构件,任何承受地震或其他不规则载荷的结构或构件,建筑框架和桥梁等。 功率谱密度(Power Spectrum Density):是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值-频率值的关系曲线,其中PSD可以是位移PSD、速度PSD、加速度PSD、力PSD等形式。数学上,PSD-频率关系曲线下面的面积就是方差,即响应标准偏差的平方值。 ANSYS谱分析分为3种类型: *响应谱分析(SPRS OR MPRS) ANSYS响应谱分为单点响应谱和多点响应谱,前者指在模型的一个点集(不局限于一个点)定义一条响应谱;后者指在模型的多个点集定义多条响应谱。 * 动力设计分析(DDAM) 动力分析设计是一种用于分析船舶装备抗震性的技术 *随机振动分析(PSD) 随机振动分析主要用于确定结构在具有随机性质的载荷作用下的响应。 与响应谱分析类似,随机振动分析也可以是单点的或多点的。。在单点随机振动分析时,要求在结构的一个点集上指定一个PSD;在多点随机振动分析时,则要求在模型的不同点集上指定不同的PSD。 一单点响应谱分析 基本步骤 (1)建立模型 (2)求得模态解 (3)求得谱解 (4)扩展模态 (5)合并模态

Midas地震波的选取方法

地震波的选取方法 建筑抗震设计规范(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。 频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期Tg值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。 持续时间的概念不是指地震波数据中总的时间长度。持时T d的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*a max之间的时段长度,k一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度 EPA=Sa/2.5 (1) 有效峰值速度 EPV=Sv/2.5 (2) 特征周期 Tg = 2π*EPV/EPA(3) 1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中同时做出绝对加速度反应谱和拟速度反应谱,找出加速度反应谱平台段的起始周期T0和结束周期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2之间的谱值求平均得Sv(注:生成谱的时候一定要用对数谱),加速度反应谱和拟速度反应谱在平台段的放大系数采用2.5,按公式(1)、(2)、(3)求得EPA、EPV、Tg。 在MIDAS程序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具>地震波数据生成器,生成后保存为SGS文件),用户可利用保存的SGS文件(文本格式文件)根据上面所述方法计算Sv、Sa、Tg=Sv/Sa。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将抗震规范中表5.1.2-2中的EPA值与Sa相比求出调整系数(即放大系数),将其代入到地震波调整系数中。将地震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范5.1.2条中规定,采用时程分析方法时,应按照场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。所谓“在统计意义上相符”指的是,其平均影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在各周期点上相差不大于20%。 在MIDAS程序中,可选取两组实际强震记录生成两个SGS文件(调整Sa后的),然后将一组人

底部剪力法--反应谱法--时程分析法概念及分析

底部剪力法/反应谱法/时程分析法一些有用的概念 从传统的观点来看,底部剪力法,反应谱法和时程分析法是三大最常用的结构地震响应分析方法。那么正确的认识它们的一些关键概念,对于建筑结构的抗震设计具有非常重要的意义。HiStruct在此简单的总结一些,全当抛砖引玉。 1. 底部剪力法 高规规定:高度不超过40m、以剪切变形为主且质量和刚度沿高度分布比较均匀的高层建筑结构,可采用底部剪力法。底部剪力法适用于基本振型主导的规则和高宽比很小的结构,此时结构的高阶振型对于结构剪力的影响有限,而对于倾覆弯矩则几乎没有什么影响,因此采用简化的方式也可满足工程设计精度的要求。底部剪力法尚有一个重要的意义就是我们可以用它的理念,简化的估算建筑结构的地震响应,从而至少在静力的概念上把握结构的抗震能力,它还是很有用的。 2. 反应谱方法 高规规定:高层建筑结构宜采用振型分解反应谱法。对质量和刚度不对称、不均匀的结构以及高度超过100m的高层建筑结构应采用考虑扭转耦联振动影响的振型分解反应谱法。反应谱的振型分解组合法常用的有两种:SRSS和CQC。虽然说反应谱法是将并非同一时刻发生的地震峰值响应做组合,仅作为一个随机振动理论意义上的精确,但是从实际上它对于结构峰值响应的捕捉效果还是很不错的。一般而

言,对于那些对结构反应起重要作用的振型所对应频率稀疏的结构,并且地震此时长,阻尼不太小(工程上一般都可以满足)时,SRSS 是精确的,频率稀疏表面上的反应就是结构的振型周期拉的比较开;而对于那些结构反应起重要作用的振型所对应的频率密集的结果(高振型的影响较大,或者考虑扭转振型的条件下),CQC是精确的。这是因为对于建筑工程上常用的阻尼而言,振型相关系数(见高规3.3.11-6)在很窄的范围内才有显著的数值。 3.反应谱分析的精确性 对于采用平均意义上的光滑反应谱进行分析而言,其峰值估计与相应的时程分析的平均值相比误差很小,一般只有百分之几,因此可以很好的满足工程精度的要求,正是在这个平均(普遍性)意义上,我们认为反应谱分析方法是精确的。但是对于单个锯齿形的反应谱而言,其分析结果与单个波的时程分析,误差可以达到10-30%之间,因此在个别(特殊性)意义上而言,反应谱分析结果是有误差的,因此,规范规定对于复杂的或者高层建筑需要采用时程分析进行补充计算和验证。 4.反应谱分析与时程分析对于高阶振型计算的不同之处 一般反应谱的高频段是采用平台段来表达的,实际上对于高阶振型反应不显著的结构而言,反应谱适用性很好,也足够准确。但是对于高柔结构而言,一般高阶振型的影响比较显著,采用时程分析的时候,

ANSYS反应谱分析内幕(精品范文).doc

【最新整理,下载后即可编辑】 ANSYS反应谱分析内幕 ANSYS结构振型分解反应谱分析有如下内容: 1)首先要定义好加速度反应谱。这里需要注意的是,规范上给的是地震影响系数谱曲线,这个曲线的函数值是以地面加速度为单位的。而我们在用这个软件算的时候就需要给出绝对的加速度值,这个绝对加速度值当然就是要在地震影响系数的基础上再乘上一个地面加速度。而地面加速度也并不一定是9.8,这与我们使用的单位制有关,如果是N/M/S,就应该是9.8,如果是N/MM/S就应该是9800。 2)求振型。一定要是相对质量矩阵进行归一化,当然modopt 命令默认的方法就可以了,为什么要这样呢,从ANSYS文档式17-110就可以看出,这个式子是求振型参与系数的,显然这个式子里面不是完整的求振型参与系数的式子,它少了分母,但是,由于对振型相对质量矩阵进行了归一化,这个分母就等于1了,这就是为什么必须要对振型相对质量进行归一化的原因了。在这一步中,可以这样理解,程序只进行了一次特征值求解,即只求出了周期和振型。如果需要看某个振型的“内力/应力/反力”,就需要对其进行模态扩展。模态扩展其实就是相当于对将“振型位移”看作“强制位移”进行静力的分析而得到静力分析的结果。 3)求谱解。其实在这一步中,程序只做了一件事,那就是求模态系数。模态系数的算法在ANSYS文档里有说明,对于不同的激励谱(位移谱、加速度谱、力谱),其算法不一样,对于加速度谱,它等于模态参与数/模态频率的平方*谱值(模态频率的平方是弧度/秒,开始 的时候我老是验算不过去这个式子,总是差一个40左右的系数,就是没有注意它的单位制,原来(2*3.14159)^2就约等于

1MIDASGTS的分析功能

分析理论手册 78第一篇 MIDAS/GTS的分析功能 1. 概要 岩土分析(geotechnical analysis)与一般的结构分析(structural analysis)有较 大差异。一般的结构分析注重荷载的不确定性,所以在分析时会加载各种荷载,然 后对分析结果进行各种组合,最后取各组合中最不利的结果进行设计。岩土分析注 重的是施工阶段和材料本身的不确定性,所以决定岩土的物理状态显得格外重要。 在岩土分析中应尽量使用实体单元模拟围岩的状态,尽量真实地模拟岩土的非线性 特点以及地基应力状态(自应力和构造应力),并且尽量真实地模拟施工阶段开挖过 程,这样才会得到比较真实的结果。 优秀的岩土分析程序应能真实地模拟现场条件和施工过程,并应为用户提供更多的 材料模型和边界条件,让用户在做岩土分析时有更多的选择。 MIDAS/GTS不仅具有岩土分析所需的基本分析功能,并为用户提供了包含最新分析 理论的强大的分析功能,是岩土和隧道分析与设计的最佳的解决方案之一。 MIDAS/GTS中提供的的分析功能如下: A. 静力分析 (static analysis) (1) 线弹性分析 (linear elastic analysis) (2) 非线性弹性分析 (nonlinear elastic analysis) (3) 弹塑性分析 (elastoplastic analysis) B. 渗流分析 (seepage analysis) (1) 稳定流分析 (steady state analysis) (2) 非稳定流分析 (transient state analysis) C. 应力-渗流耦合分析 (stress-seepage coupled analysis) D. 固结分析 (consolidation analysis) (1) 排水/非排水分析 (drained/undrained analysis) (2) 固结分析 (consolidation analysis)

(整理)运用midas_Building进行超限分析基本流程指导书

运用midas Building进行超限分析基本流程 指 * 导 * 书 初稿:王明 校对:李法冰 审核:卫江华 审定:陈德良 (2012.12版)

目录 1 运用midas进行超限分析基本流程简介 (3) 2 反应谱分析、设计基本流程及要点 (4) 2.1 概述 (4) 2.2 基本流程 (4) 2.3 反应谱分析要点及注意事项 (5) 3 弹性时程分析基本流程及要点 (10) 3.1 概述 (10) 3.2 基本操作及要点 (10) 4 静力/动力弹塑性时程分析基本流程及要点 (15) 4.1 概述 (15) 4.2弹塑性分析基本流程 (16) 4.3静力弹塑性分析要点 (16) 4.4动力弹塑性分析要点 (20) 5 相关补充分析与计算 (21) 5.1 温差工况分析 (21) 5.2 楼板详细分析 (23) 5.3 转换结构分析 (24) 5.4 舒适度分析 (25) 5.5 工程量统计 (26) 6 主要附件一览表 (29) 7 主要参考文献 (30)

1 运用midas 进行超限分析基本流程简介 midas building/Gen 在超限分析流程中应用的主要环节可见如下示意图1.1。 图1.1 超限分析基本流程示意图 注:1.图中黄色框选内容为可运用midas Building/Gen 进行分析主要内容。 或大震

2 反应谱分析、设计基本流程及要点 2.1 概述 反应谱分析是抗震设计中最常用的分析方法,反应谱分析中需要定义设计反应谱、振型组合方法、地震作用方向等数据。设计规范一般考虑地震强度和远近的影响、建筑的重要性等综合因素提供了设计反应谱函数。 2.2 基本流程 图2.2.1 运用midas Building 进行反应谱分析基本流程图 注: 1. 实际工程中基本以PKPM 导入为主,已进行过的数十个分析显示:模型中构件与荷载能够完全准确导入,但所有参数需要重新定义,具体导入过程详见[附件一]。若导入ETABS 模型,出错较多,可尝试通过广厦或盈建科二次转换; 2. 若仅进行反应谱阶段分析,则无需进行设计(浪费时间); 3. 本过程参数调整阶段基本流程见下图2.2.2。 图2.2.2 参数调整基本流程图

冲击响应谱分析原理以及合成与振动控制

冲击响应谱(SRS)是一个瞬态加速度脉冲可能对结构造成破坏的图示。它绘制了一组单自由度(SDOF)弹簧的峰值加速度响应,就像在刚性无质量的基础上一样,质量阻尼器系统都经历相同的基本激励。每个SDOF系统具有不同的固有频率;它们都有相同的粘滞阻尼因子。频谱的结果是在固有频率(水平方向)上绘制峰值加速度(垂直)得出的。一个SRS是由一个冲击波产生,使用以下过程: 指定SRS的阻尼比(5%是最常见的)、使用数字滤波器模拟频率单自由度、fn和阻尼ξ。应用瞬态作为输入,计算响应加速度波形。保留在脉冲持续时间和之后的峰值正负响应。选择其中一个极值,并将其绘制成fn的频谱振幅。对每个(对数间隔)fn重复这些步骤。 由此产生的峰值加速度与弹簧-质量阻尼系统固有频率的曲线称为冲击响应谱,简称SRS。一个SDOF机械系统由以下组件组成: ①质量,米 ②弹簧,K ③阻尼器,C Fn,固有频率和临界阻尼因子,ξ,描述一个应用系统,可以从上面的参数计算。对于小于或等于0.05的小阻尼比,频率响应的峰值发生在fn的邻近区域,其中

Q为质量因子,等于1/(2ξ)。 任何瞬态波形都可以作为SRS呈现,但这种关系不是唯一的;许多不同的瞬态波形可以产生相同的SRS。SRS不包含所有关于瞬态波形的信息,因为它只跟踪峰值瞬时加速度。 不同的阻尼比为相同的冲击波形产生不同的SRS。零阻尼会产生最大的响应,而高阻尼则会产生较平的SRS。阻尼比与质量因子Q有关,在正弦振动的情况下也可以被认为是传递率。阻尼比为5%(ξ=0.05)时,Q值为10。如果没有指定阻尼因子(或Q),则SRS图是不完整的。 ★SRS箱的频率间隔 一个SRS由多个在对数频率范围内均匀分布的箱组成。频率分布可以由两个数字来定义:一个参考频率和期望的分数倍频间隔,如1/1、1/3或1/6。(倍频程是频率的两倍)例如,250hz和500hz的频率相差一个倍频程, 1 kHz和2 kHz的频率也是一样。 比例带宽显示对于分析各种自然系统,如人类对噪声和振动的反应,是非常有用的。许多机械系统表现出的特征非常适合以比例带宽分析。 为了获得更好的频率分辨率,频率范围可以以倍频程的一部分划分比例间隔。例如,有1/3倍频间隔,每个倍频程有3个SDOF滤波器。一般来说,对于1/N个分数倍频程,每个倍频程有N个带通滤波器。这里1/N称为分数倍

midas抗震设计-反应谱分析报告

迈达斯技术

目录 简要 (1) 设定操作环境及定义材料和截面 (2) 定义材料 (2) 定义截面 (3) 建立结构模型 (4) 主梁及横向联系梁模型 (4) 输入横向联系梁 (5) 输入桥墩 (5) 刚性连接 (7) 建立桥墩和系梁 (9) 输入边界条件 (10) 输入支座的边界条件 (10) 刚性连接 (11) 输入横向联系梁的梁端刚域 (12) 输入桥台的边界条件 (13) 输入二期恒载 (15) 输入质量 (16) 输入反应谱数据 (18) 输入反应谱函数 (18) 输入反应谱荷载工况 (19) 运行结构分析 (20) 查看结果 (21) 荷载组合 (21) 查看振型形状和频率 (22) 查看桥墩的支座反力 (25)

简要 本例题介绍使用MIDAS/CIVIL的反应谱分析功能来进行抗震设计的方法。 例题模型使用的是简化了的钢箱型桥梁模型,由主梁、横向联系梁和桥墩构成。桥台部分由于刚度很大,不另外建立模型只输入边界条件;基 础部分假设完全固定,也只按边界条件来定义。 下面是桥梁的一些基本数据。 跨径:45 m + 50 m + 45 m = 140 m 桥宽:11.4 m 主梁形式:钢箱梁 钢材:GB(S) Grade3(主梁) 混凝土:GB_Civil(RC) 30(桥墩) [单位:mm] 图1. 桥梁剖面图

设定操作环境及定义材料和截面 开新文件(新项目),以‘Response.mcb’为名保存( 保存)。 文件 / 新项目t 文件 / 保存 ( Response ) 将单位体系设定为kN(力), m(长度)。 工具 / 单位体系 长度>m ; 力>kN 定义材料 分别输入主梁和桥墩的材料数据。 模型 / 材料和截面特性 / 材料 材料号 (1) ; 类型>S钢材 规>GB(S) ; 数据库>Grade3 材料号 (2) ; 类型> 混凝土 规>GB-Civil(RC) ; 数据库>30 图2. 定义材料

响应谱分析

做完模态分析之后再进行响应谱分析: (1)将Toolbox中Analysis Systems的ResponseSpectrum 选项拖到B(Modal)B6(solution)中,实现数据共享建立项目C (2)点击C5(setup)进入Mechannical界面,在Outlines(分析树)中的Modal(B5)右击Solve (3)选择Outlines(分析树)中的ResponseSpectrum(C5)在出现的Environment中的RS BASE Excitation 选择所加谱的类型(加速度、速度、位移)多数情况下是加速度(这个要根据实际情况而定) (4)这里以加速度谱为例上面选择RS Acceleration 后进行约束和赋值设定(1)边界条件Scope/Boundary Condition (2)Definition/Load Data/Tabular Data 输入你的频率和对应的加速度组 (3)Direction(方向设置)根据实际方向 (5)选择Outlines(分析树)中的ResponseSpectrum(C5)求解右击Solve (6)选择Outlines(分析树)中的solution (C6)添加所需要的变形量右击Equivalent All Result 求解完选择对应量便可以看到变形分析云图。 另外 在Outlines(分析树)中的ResponseSpectrum(C5)下的Analysia Settings中进行模态的组合选择(SRSS (默认)、CQC、ROSE),以及对阻尼比(constant damping ratio)的设定。修改模态组合的类型以及阻尼比重新求解得到对应的变形分析云图。 这个是我做的一根梁的响应谱分析步骤,我随机设置了8组频率和加速度(这个根据实际而定,越多越好但是计算量也越大),图中前面8个波浪层就是对应响应谱的结果!你那个地震波做响应谱分析的也应该是这样的,注意下谱的类型以及边界条件的约束就OK!

ANSYS反应谱分析内幕

ANSYS反应谱分析内幕ANSYS结构振型分解反应谱分析有如下内容: 1)首先要定义好加速度反应谱。这里需要注意的是,规范上给的是地震影响系数谱曲线,这个曲线的函数值是以地面加速度为单位的。而我们在用这个软件算的时候就需要给出绝对的加速度值,这个绝对加速度值当然就是要在地震影响系数的基础上再乘上一个地面加速度。而地面加速度也并不一定是9.8,这与我们使用的单位制有关,如果是N/M/S,就应该是9.8,如果是N/MM/S就应该是9800。 2)求振型。一定要是相对质量矩阵进行归一化,当然modopt命令默认的方法就可以了,为什么要这样呢,从ANSYS文档式17-110就可以看出,这个式子是求振型参与系数的,显然这个式子里面不是完整的求振型参与系数的式子,它少了分母,但是,由于对振型相对质量矩阵进行了归一化,这个分母就等于1了,这就是为什么必须要对振型相对质量进行归一化的原因了。在这一步中,可以这样理解,程序只进行了一次特征值求解,即只求出了周期和振型。如果需要看某个振型的“内力/应力/反力”,就需要对其进行模态扩展。模态扩展其实就是相当于对将“振型位移”看作“强制位移”进行静力的分析而得到静力分析的结果。 3)求谱解。其实在这一步中,程序只做了一件事,那就是求模态系数。模态系数的算法在ANSYS文档里有说明,对于不同的激励谱

(位移谱、加速度谱、力谱),其算法不一样,对于加速度谱,它等于模态参与数/模态频率的平方*谱值(模态频率的平方是弧度/秒,开始 的时候我老是验算不过去这个式子,总是差一个40左右的系数,就是没有注意它的单位制,原来(2*3.14159)^2就约等于40),而详细的说明见ANSYS文档式17-120~17-126。总而言之,模态系数描述的是某个模态对的结构总的响应的贡献。顺便指出,模态参与系数是某个模态对结构发生给定单位方向位移的贡献,这个东东可查阅的资料比较多,这里就不多说了。 4)模态扩展。关于它的意思,在2)中已说过了,其实这一步也可以放在2)中执行,效果是一样的。 5)模态组合。其实如果在2)中进行了模态扩展,可以把每一个模态看作一个“荷载工况”,那么就可以看到每一个“荷载工况”下的“应力/内力/反力”了。那么现在,我们又知道了每一个“荷载工况”的“工况组合系数”——模态系数,我们就可以将它们“组合”起来了。这里的“组合”当然不是简单的线组合了,而是基于概念理论的srss、cqc等组合。那么在这一步里面,程序其实也就做了一件事,那就是生成了一个以mcom为后缀的命令流文件,这个文件完全可以用记事本儿打开看看,里面全是工况运算,其实,就是进行工况的组合罢了。文件里面可以清楚的看到每一种“工况”的组合系数,这个组合系数就是3)中算出的模态系数。

ABAQUS响应谱分析各阶模态效应组合方式

ABAQUS响应谱分析各阶模态效应组合方式一般情况,结构在外界激励作用下各阶模态响应峰值不可能同步出现。因此有必要选择一种合理的模态效应组合方式,以准确估计结构在外界激励作用下的总体响应峰值。 多数情况下,采用各阶模态效应绝对值相加的方法得到响应结果过于保守。所以针对不同激励和结构频率特征,研究人员找到了一系列更有效的模态效应组合方法。ABAQUS程序提供了7种组合方式,其中常用的模态效应组合方法有:ABS法、SRSS法、NRL法、CQC法、TEMP法。 1、ABS方法: ABS方法在所有模态组合方法中最保守,它直接将各阶模态响应绝对值相加,这就意味着在外激励作用中,各阶模态峰值响应将同时发生。对应多数情况,这样的估计是偏于保守的。 ABS方法组合过程如公式(1)所示: (1)式中为在k方向上第i(响应变量)类各阶模态峰值响应组合。 2、SRSS方法: 对于结构各阶固有频率ω较分散的情况,建议采用SRSS法具有较高精度。SRSS法不像ABS法那么保守,更偏于实际。 SRSS方法组合过程如公式(2)所示: (2)3、NRL方法 隶属于美国国家海军的研究机构考虑到ABS方法及SRSS方法的优点,将ABS方法及SRSS方法结合起来,建立了NRL方法。该方法将影响最大的第β阶模态单列出来,用ABS方法进行考虑,而其它各阶模态则按照SRSS方法进

行组合。 NRL方法组合过程如公式(3)所示: (3)4、TEMP方法 TEMP方法是源于美国原子能机构(1976年)的推荐。TEMP方法考虑到相近频率的耦合效应,对SRSS方法进行修正。TEMP方法认为,当第α阶固有频率与第β阶固有频率相差在10%以内时,应该考虑α、β阶模态的耦合效应。 TEMP方法组合过程如下式(4)所示: (4) 其中,并且,当模态固有频率分散较大时,耦合效应不明显,此时采用TEMP方法结果趋于用SRSS方法分析的结果。 5、CQC方法 CQC方法采用完全二次组合方法来考虑固有频率相近的模态之间的耦合效应,CQC方法的组合过程如下式(5)所示: (5)其中ραβ为第α阶和第β阶模态交叉耦合因子,取值由α、β阶固有频率及阻尼比确定,如下式(6)所示: (6)

Midas心得

MIDAS MIDAS是国内外专业技术人员和S/W专家的共同努力下,考虑设计人员的实际设计要求,用Visual C++在Windows环境下开发的。应用于国内外4000多个大型工程项目中,均证明了其高效性和准确性。 MIDAS的软件简介: MIDAS-Civil桥梁结构分析与设计软件,主要是针对土木结构,特别是分析像预应力箱型桥梁、悬索桥、斜拉桥等特殊的桥梁结构形式,同时可以做非线性边界分析、水化热分析、材料非线性分析、静力弹塑性分析、动力弹塑性分析。广泛地应用于钢筋混凝土桥梁、联合桥梁、预应力钢筋混凝土箱型桥梁、大跨度桥梁、大体积混凝土的水化热分析、地下结构、工业建筑、国家基础建设等领域。 MIDAS-GTS是楼板与筏式基础有限元分析与设计程序。可以做单双向密肋楼盖、无梁楼盖、一般楼板、独立基础、联合基础及筏式(包括桩筏)基础的精确分析与配筋设计,可以为用户提供冲切验算及配筋数据;尤其对于后半转换层楼板可以方便地进行有限元分析计算并输出设计所需的配筋结果;可以对楼板做振动效应分析,自动计算柱、墙、桩及地基弹性支撑刚度、自动进行布桩设计等。 MIDAS-FEmodeler是有限元分析前处理软件,程序使用独自开发的运算法则提供以基本形状为基础的参数式建模方式;自动进行复杂的几何处理:自动划分有限元网格;生成立体等网格操作。用户可以快速方便地建立各种复杂的模型,如模型内部的孔洞,分隔的线和点也同样可以包含在网格中,从而为有限元分析提供最佳的网格。 MIDAS-FEA是目前唯一全部中文化的土木专用非线性及细部分分析软件,它的几何建模和网格划分技术采用了在土木领域中已经被广泛应用的前后处理软件MIDAS FX+的核心技术,同时融入了MIDAS强大的线性,非线性分析内核,并与荷兰TNO DIANA公司进行了技术合作,是一款专门适用于土木领域的高端非线性分析和细部分析软件。MIDAS FEA的界面简洁直观,即使是初学者也可以在短期内迅速掌握。 在结构力学的定义中,连续梁被定义为有三个或三个以上支座的梁。此种结构在建筑、桥梁、航空以及管道线路等工程中会遇到,属于静不定结构,若按照传统结构力学的解法,则常使用力法、位移法或力矩分配法对结构内力进行求解。 MIDAS的模型窗口 下面对MIDAS进行部分介绍: 软件单元类型主要包括线性单元:桁架单元、只受拉单元、只受压单元、梁单元;平面单元:板单元、墙单元、平面应力单元、平面应变单元、平面轴对称单元;空间单元桁架单元属于单向受力的三维线性单元,只能承受和传递轴向的拉力和压力。根据其受力特点,桁架单元可以用于平面桁架、空间桁架和交叉支撑结构等结构模型的建立。

相关文档
最新文档