文科立体几何线面角二面角专题_带答案及解析

文科立体几何线面角二面角专题_带答案及解析
文科立体几何线面角二面角专题_带答案及解析

文科立体几何线面角二面角专题

学校:___________姓名:___________班级:___________考号:___________

一、解答题

1.如图,在三棱锥中,,,为的中点.(1)证明:平面;

(2)若点在棱上,且二面角为,求与平面所成角的正弦值.

2.如图,在三棱锥中,,,为的中点.(1)证明:平面;

(2)若点在棱上,且,求点到平面的距离.

3.(2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.

(Ⅰ)证明:AB1⊥平面A1B1C1;

(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.

4.如图,在三棱柱中,点P,G分别是,的中点,已知⊥平面

ABC,==3,==2.

(I)求异面直线与AB所成角的余弦值;

(II)求证:⊥平面;

(III)求直线与平面所成角的正弦值.

5.如图,四棱锥,底面是正方形,,,,分别是,的中点.

(1)求证;

(2)求二面角的余弦值.

6.如图,三棱柱中,侧棱底面,且各棱长均相等.,,分别为棱,,的中点.

(1)证明:平面;

(2)证明:平面平面;

(3)求直线与直线所成角的正弦值.

7.如图,在四边形ABCD中,AB//CD,∠AB D=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.

(Ⅰ)求证:平面ADE⊥平面BDEF;

(Ⅱ)若二面角C BF D的大小为60°,求CF与平面ABCD所成角的正弦值.

8.如图,在四棱锥中,平面,,,

,点是与的交点,点在线段上,且.

(1)证明:平面;

(2)求直线与平面所成角的正弦值.

9.在多面体中,底面是梯形,四边形是正方形,,,,,

(1)求证:平面平面;

(2)设为线段上一点,,求二面角的平面角的余弦值.

10.如图,在多面体中,四边形为等腰梯形,,已知,,,四边形为直角梯形,,.

(1)证明:平面,平面平面;

(2)求三棱锥的体积.

参考答案

1.(1)见解析(2)

【解析】分析:(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果.

详解:(1)因为,为的中点,所以,且.

连结.因为,所以为等腰直角三角形,

且,.

由知.

由知平面.

(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.

由已知得取平面的法向量

.

设,则.

设平面的法向量为.

由得,可取,

所以.由已知得.

所以.解得(舍去),.

所以.又,所以.

所以与平面所成角的正弦值为.

点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.

2.解:

(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.

连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.

由OP⊥OB,OP⊥AC知PO⊥平面ABC.

(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.

故CH的长为点C到平面POM的距离.

由题设可知OC==2,CM==,∠ACB=45°.

所以OM=,CH==.

所以点C到平面POM的距离为.

【解析】分析:(1)连接,欲证平面,只需证明即可;(2)过点作,垂足为,只需论证的长即为所求,再利用平面几何知识求解即可.

详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.

连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.

由OP⊥OB,OP⊥AC知PO⊥平面ABC.

(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.

故CH的长为点C到平面POM的距离.

由题设可知OC==2,CM==,∠ACB=45°.

所以OM=,CH==.

所以点C到平面POM的距离为.

点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.

3.(Ⅰ)见解析;(Ⅱ).

【解析】分析:方法一:(Ⅰ)通过计算,根据勾股定理得,再根据线面垂直的判定定理得结论,(Ⅱ)找出直线AC1与平面ABB1所成的角,再在直角三角形中求解.方法二:(Ⅰ)根据条件建立空间直角坐标系,写出各点的坐标,根据向量之积为0得出

,再根据线面垂直的判定定理得结论,(Ⅱ)根据方程组解出平面的一个法向量,然后利用与平面法向量的夹角的余弦公式及线面角与向量夹角的互余关系求解.

详解:方法一:

(Ⅰ)由得,

所以.

故.

由,得,

由得,

由,得,所以,故.

因此平面.

(Ⅱ)如图,过点作,交直线于点,连结.

由平面得平面平面,

由得平面,

所以是与平面所成的角.学科.网

由得,

所以,故.

因此,直线与平面所成的角的正弦值是.

方法二:

(Ⅰ)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.

由题意知各点坐标如下:

因此

由得.

由得.

所以平面.

(Ⅱ)设直线与平面所成的角为.

由(Ⅰ)可知

设平面的法向量.

由即可取.

所以.

因此,直线与平面所成的角的正弦值是.

点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.

4.(Ⅰ)(Ⅱ)见解析(Ⅲ)

【解析】分析:(Ⅰ)由题意得∥AB,故∠G是异面直线与AB所成的角,解三角形可得所求余弦值.(Ⅱ)在三棱柱中,由⊥平面ABC可得⊥A1G,于是⊥A1G,又A1G⊥,根据线面垂直的判定定理可得结论成立.(Ⅲ)取的中点H,连接AH,HG;取HG的中点O,连接OP,.由PO//A1G可得平面,故得∠PC1O是PC1与平面所成的角,然后解三角形可得所求.

详解:

(I)∵∥AB,

∴∠G是异面直线与AB所成的角.

∵==2,G为BC的中点,

∴A1G⊥B1C1,

在中,,

∴,

即异面直线AG与AB所成角的余炫值为.

(II)在三棱柱中,

∵⊥平面ABC,平面ABC,

∴⊥A1G,

∴⊥A1G,

又A1G⊥,,

∴平面.

(III)解:取的中点H,连接AH,HG;取HG的中点O,连接OP,.∵PO//A1G,

∴平面,

∴∠PC1O是PC1与平面所成的角.

由已知得,, ∴ ∴直线与平面所成角的正弦值为.

点睛:用几何法求求空间角的步骤:

①作:利用定义作出所求的角,将其转化为平面角;②证:证明作出的角为所求角;③求:把这个平面角置于一个三角形中,通过解三角形求空间角;④作出结论,将问题转化为几何问题.

5.(1)见解析;(2).

【解析】试题分析:(1)由题意,可取中点,连接,则易知平面∥平面,由条件易证平面,则平面,又平面,根据线面垂直的定义,从而

问题可得证;(2)由题意,采用坐标法进行求解,可取中点为坐标原点,过点作平行于的直线为轴,为轴,为轴,建立空间直角坐标系,分别算出平面和平面的法向量,结合图形,二面角为锐角,从而问题可得解.

试题解析:(1)取中点,连结,,∵是正方形,∴, 又∵,,∴,∴面,∴, 又∵,,都是中点,∴,,∴面, ∴;

(2)建立如图空间直角坐标系,由题意得,,,,则,,,

设平面的法向量为,则,即,

令,则,,得,

同理得平面的法向量为,

∴,所以他的余弦值是.

点睛:此题主要考查立体几何中异面直线垂直的证明,二面角的三角函数值的求解,以及坐标法在解决立体几何问题中的应用等有关方面的知识和技能,属于中档题型,也是常考题型.坐标法在解决立体几何中的一般步骤,一是根据图形特点,建立空间直角坐标系;二是将几何中的量转化为向量,通过向量的运算;三是将运算得到的结果翻译为几何结论.

6.(1)见解析(2)见解析(3)

【解析】分析:(1)先证明,再证明平面.(2)先证明面,再证

明平面平面.(3)利用异面直线所成的角的定义求直线与直线所成角的

正弦值为.

详解:(1)证明:连接,

∵、分别是、的中点,

∴,,

∵三棱柱中,∴,,

又为棱的中点,∴,,

∴四边形是平行四边形,∴,

又∵平面,平面,∴平面.

(2)证明:∵是的中点,∴,

又∵平面,平面,

∴,又∵,

∴面,又面,

∴平面平面;

(3)解:∵,,

∴为直线与直线所成的角.

设三棱柱的棱长为,则,

∴,∴.

即直线与直线所成角的正弦值为.

点睛:(1)本题主要考查空间位置关系的证明和异面直线所成角的计算,意在考查学生对这些基础知识的掌握能力和空间想象转化能力.(2)求空间的角,方法一是利用几何法,找作

证指求.方法二是利用向量法.

7.(1)见解析(2)

【解析】分析:(1)根据面面垂直的判定定理即可证明平面ADE⊥平面BDEF;

(2)建立空间直角坐标系,利用空间向量法即可求CF与平面ABCD所成角的正弦值;也可以应用常规法,作出线面角,放在三角形当中来求解.

详解:(Ⅰ)在△ABD中,∠ABD=30°,由AO2=AB2+BD2-2AB·BD cos30°,

解得BD=,所以AB2+BD2=AB2,根据勾股定理得∠ADB=90°∴AD⊥BD.

又因为DE⊥平面ABCD,AD平面ABCD,∴AD⊥DE.

又因为BD DE=D,所以AD⊥平面BDEF,又AD平面ABCD,

∴平面ADE⊥平面BDEF,

(Ⅱ)方法一:

如图,由已知可得,,则

,则三角形BCD为锐角为30°的等腰三角形.

则.

过点C做,交DB、AB于点G,H,则点G为点F在面ABCD上的投影.连接FG,则

,DE⊥平面ABCD,则平面.

过G做于点I,则BF平面,即角为

二面角C BF D的平面角,则60°.

则,,则.

在直角梯形BDEF中,G为BD中点,,,,

设,则,,则.

,则,即CF与平面ABCD所成角的正弦值为.

(Ⅱ)方法二:

可知DA、DB、DE两两垂直,以D为原点,建立如图所示的空间直角坐标系D-xyz.

设DE=h,则D(0,0,0),B(0,,0),C(-,-,h).

,.

设平面BCF的法向量为m=(x,y,z),

则所以取x=,所以m=(,-1,-),

取平面BDEF的法向量为n=(1,0,0),

由,解得,则,

又,则,设CF与平面ABCD所成角为,

则sin=.

故直线CF与平面ABCD所成角的正弦值为

点睛:该题考查的是立体几何的有关问题,涉及到的知识点有面面垂直的判定,线面角的正弦值,在求解的过程中,需要把握面面垂直的判定定理的内容,要明白垂直关系直角的转化,在求线面角的有关量的时候,有两种方法,可以应用常规法,也可以应用向量法.

8.(1)见解析;(2)

【解析】分析:(1)由题意得是等边三角形,故得,于是,从而得

,所以,然后根据线面平行的判定定理可得结论成立.(2)由平面

可得,于是平面.又,所以直线与平面所成角即直线与平面所成角,从而得到即为所求角,然后根据解三角形可得所求.

详解:(1)因为,

所以垂直平分线段.

又,

所以.

在中,由余弦定理得

所以.

又,

所以是等边三角形,

所以,

所以,

又因为,

所以,

所以.

又平面平面,

所以平面.

(2)因为平面,平面,

所以,

又,

所以平面.

由(1)知,

所以直线与平面所成角即直线与平面所成角,

故即为所求的角.

在中,,

所以,

所以直线与平面所成角的正弦值为.

点睛:(1)证明空间中的位置关系时要注意解题的规范性和严密性,运用定理证明时要体现出定理中的关键性词语.

(2)用几何法求空间角时可分为三步,即“一找、二证、三计算”,即首先根据所求角的定义作出所求的角,并给出证明,最后利用解三角形的方法得到所求的角(或其三角函数值).

9.(1)见解析;(2).

【解析】分析:(1)由勾股定理的逆定理可得,;又由条件可得到,于是平面,可得,从而得到平面,根据面面垂直的判定定理得平面平面.(2)由题意得可得,,两两垂直,故可建立空间直角坐标系,结

线线角,线面角,二面角的一些题目

B 1 D 1 A D C 1 B C A 1线线角与线面角习题 一、复习目标 1.理解异面直线所成角的概念,并掌握求异面直线所成角的常用方法. 2.理解直线与平面所成角的概念,并掌握求线面角常用方法. 3.掌握求角的计算题步骤是“一作、二证、三计算”,思想方法是将空间图形转化为平面图形即“降维”的思想方法. 二、课前预习 1.在空间四边形ABCD 中,AD=BC=2, E 、F 分别为AB 、CD 的中点且EF=3,AD 、BC 所成的角为 . 2.如图,在长方体ABCD-A 1B 1C 1D 1中 ,B 1C 和C 1D 与底面所成的角分别为60ο 和45ο,则异面直线B 1C 和C 1D 所成角的余弦值为 ( ) (A). 46 (B).36 (C).6 2 (D).63 3.平面α与直线a 所成的角为3 π ,则直线a 与平面α内所有直线所成的角的取值范围是 . 4.如图,ABCD 是正方形,PD ⊥平面ABCD,PD=AD,则PA 与BD 所成的角的度数为 (A).30ο (B).45ο (C).60ο (D).90ο 5.有一个三角尺ABC,∠A=30ο, ∠C=90ο,BC 是贴于桌面上, 当三角尺与桌面成45ο 角时,AB 边与桌面所成角的正弦值 是 . 三、典型例题 例1.(96·全国) 如图,正方形ABCD 所在平面与正方形 ABEF 所在平面成60ο角,求异面直线AD 与BF 所成角的余弦值. 备课说明:1.求异面直线所成的角常作出所成角的平面图形.作法有: ①平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线 或利用中位线.②补形法:把空间图形补成熟悉的几何体,其目的在于容 易发现两条异面直线的关系.2.解立几计算题要先作出所求的角,并 要 有严格的推理论证过程,还要有合理的步骤. A C B D B P C D A C B F E

高中数学-立体几何-线面角知识点

WORD文档 立体几何知识点整理 一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 3. 线在面内 l l A l α α α 二.平行关系: 1. 线线平行: 方法一:用线面平行实现。 l l // l l // m m m 方法二:用面面平行实现。 // l l l // m β m γ m α 方法三:用线面垂直实现。 若l ,m ,则l // m 。 方法四:用向量方法: 若向量l 和向量m 共线且l、m 不重合,则l // m 。 2. 线面平行: 方法一:用线线平行实现。 l // m m l // l

l β// l // α l 方法三:用平面法向量实现。n l 若n为平面的一个法向量,n l 且l,则l // 。 α 2.面面平行: 方法一:用线线平行实现。 l // // , m ', m l l 且相交 且相交 // α l βm l' m' 方法二:用线面平行实现。l // // m // β l m l ,m 且相交 α三.垂直关系: 3.线面垂直:

l AC l l AC AC, A l A α C B 方法二:用面面垂直实现。 β l m l m l m,l α

3.面面垂直: 方法一:用线面垂直实现。 l βl C θ l α A B 方法二:计算所成二面角为直角。 4.线线垂直: 方法一:用线面垂直实现。 l l m l m α m 方法二:三垂线定理及其逆定理。 P PO l OA l PA l A O l α 方法三:用向量方法: 若向量l 和向量m 的数量积为0,则l m 。 三.夹角问题。 (一)异面直线所成的角: (1)范围:(0 ,90 ] (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: a c cos 2 a 2 b 2ab 2 c θ b (计算结果可能是其补角)

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

线面角及二面角的求法

第9节线面角及二面角的求法 【基础知识】 求线面角、二面角的常用方法: (1)线面角的求法,找出斜线在平面上的射影,关键就是作垂线,找垂足,要把线面角转化到一个三角形中求解. (2)二面角的大小求法,二面角的大小用它的平面角来度量. 【规律技巧】 平面角的作法常见的有①定义法;②垂面法.注意利用等腰、等边三角形的性质. 【典例讲解】 【例1】如图,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A =AB=BC,E就是PC的中点. (1)求PB与平面P AD所成的角的大小; (2)证明:AE⊥平面PCD; (3)求二面角A-PD-C的正弦值. (1)解在四棱锥P-ABCD中, 因P A⊥底面ABCD,AB?平面ABCD, 故P A⊥AB、又AB⊥AD,P A∩AD=A, 从而AB⊥平面P AD, 故PB在平面P AD内的射影为P A, 从而∠APB为PB与平面P AD所成的角. 在Rt△P AB中,AB=P A,故∠APB=45°、 所以PB与平面P AD所成的角的大小为45°、 (2)证明在四棱锥P-ABCD中,

因P A⊥底面ABCD,CD?平面ABCD, 故CD⊥P A、由条件CD⊥AC,P A∩AC=A, ∴CD⊥平面P AC、 又AE?平面P AC,∴AE⊥CD、 由P A=AB=BC,∠ABC=60°,可得AC=P A、 ∵E就是PC的中点,∴AE⊥PC、 又PC∩CD=C,综上得AE⊥平面PCD、 【变式探究】如图所示,在四棱锥P-ABCD中,底面ABCD就是正方形,侧棱PD⊥底面ABCD,PD=DC、E就是PC的中点,作EF⊥PB交PB于点F、 (1)证明P A∥平面EDB; (2)证明PB⊥平面EFD; (3)求二面角C-PB-D的大小. (1)证明如图所示,连接AC,AC交BD于O,连接EO、 ∵底面ABCD就是正方形, ∴点O就是AC的中点. 在△P AC中,EO就是中位线, ∴P A∥EO、 而EO?平面EDB且P A?平面EDB, ∴P A∥平面EDB、 【针对训练】 1.如图,四棱锥P-ABCD中,底面ABCD为菱形,P A⊥底面ABCD,AC=22,P A=2,E就是PC上的一点,PE=2EC、

新课标高考立体几何线面角的计算归类分析知识分享

新课标高考立体几何——线面角的计算归类分析 深圳市第二实验学校 李平 作者简介 李平,男,1970年12月生,硕士研究生,高级教师,现任深圳市第二实验学校总务处副主任。深圳市“技术创新能手”称号、深圳市高考先进个人。在教材教法、高考研究、教材编写等方面成效显著。主持和参与省、市级课题多项,主编和参编教育类书籍多部,发表教研论文多篇,辅导学生参加各类竞赛有多人次获奖。 摘 要 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解,这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分地展示了平移法、射影法、补形法这些立体几何特有方法的威力. 关键词 线面角 空间角 平移法 等体积法 空间向量方法 线面角——直线和平面所成的角 1.定义: 平面的一条斜线和它在平面上的射影所成的锐角, 叫做这条斜线和这个平面所成的角. 若直线l ⊥平面α, 则l 与α所成角为90?; 若直线l //平面α或直线l ?平面α, 则l 与α所成角为0?. 2.线面角的范围: [0]2 π ,. 3.线面角的求法: (1)定义法(垂线法). (2)虚拟法(等体积法). (3)平移法. (4)向量法. 线面角是立体几何中的一个重要概念, 它是空间图形的一个突出的量化指标, 是空间位置关系的具体体现, 是培养学生逻辑推理能力, 树立空间观念的重要途径, 故线面角一直以高频率的姿态出现在历年高考试题中. 求解线面角问题一般遵循(找)、证、算三个步骤, 并多以棱锥与棱柱作为考查的载体. 求解线面角的方法主要有两种: 一是利用传统几何方法; 二是利用空间向量方法. 总之, 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解, 这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分

立体几何中二面角和线面角

立体几何中的角度问题 一、 异面直线所成的角 1、如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积; (2)异面直线BC 与AE 所成的角的大小。 2、如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F、G分别是棱111,C D AA 的中点.设点11,E G 分别是点E,G在平面11DCC D 内的正投影. (1)求以E为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积; (2)证明:直线11FG FEE ⊥平面; (3)求异面直线11E G EA 与所成角的正弦值

二、直线与平面所成夹角 1、如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC , 90BAD ∠=,PA ⊥ 底面ABCD ,且2P A A D A B B C ===,M N 、分别为PC 、PB 的中点。 求CD 与平面ADMN 所成的角的正弦值。 2、长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角的正弦值。 三、二面角与二面角的平面角问题 1、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,PA PD == E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值.

2、如图5,?AEC 是半径为a 的半圆,AC 为直径,点E 为?AC 的中点,点B 和点C 为线 段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =。 (1)证明:EB FD ⊥; (2已知点,Q R 为线段,FE FB 上的点,23FQ FE =,2 3 FR FB =,求平面BED 与平面RQD 所成二面角的正弦值。

线线角、线面角、二面角知识点及练习

线线角、线面角、面面角专题 一、异面直线所成的角 1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角。 2.角的取值范围:090θ<≤?; 垂直时,异面直线当b a ,900=θ。 例1.如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB 的中点异面直线1AC 与1B C 所成角的余弦值 二、直线与平面所成的角 1. 定义:平面的一条斜线和它在平面上的射影所成的锐角, 叫这条斜线和这个平面所成的角 2.角的取值范围:? ? ≤≤900θ。 _1 _A

例2. 如图、四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中 点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角的正切值。 一、 二面角: 1. 从一条直线出发的两个半平面所组成的图形叫做二 面角。这条直线叫做二面角的棱,这两个半平面叫做二面角的面。 2. 二面角的取值范围:? ? ≤≤1800θ 两个平面垂直:直二面角。 B M H S C A

3.作二面角的平面角的常用方法有六种: 1.定义法 :在棱上取一点O ,然后在两个平面内分别作过棱上O 点的垂线。 2.三垂线定理法:先找到一个平面的垂线,再过垂足作棱的垂线,连结两个垂足即得二面角的平面角。 3.向量法:分别作出两个半平面的法向量,由向量夹角公式求得。二面角就是该夹角或其补角。 二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。 例3.如图,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求 (1)二面角111D C A D --所成的角的余弦值 (2)平面AB 1E 和底面C C BB 11所成锐角的正切值. A 1 D 1 B 1 C 1 E D B C A

立体几何线面平行垂直,线面角二面角的证明方法

A P B C E D 一:线面平行的证明方法: 1、用“近似平行法”先找到面上与已知直线平行的直线(一般为表示面的三角形的边界直线,或三角形某边上的中线) 看找到的这条线与已知线的长度关系,1)若相等应该构造平行四边形;2)若不相等一般利用三角形中位线的性质(将这两个不相等的线段的端点连结并延长即会出现关键三角形)。 2、若既不能构造平行四边形也不能性用中位线性质,则应再构造一个此直线所在的平面,证明此平面与已知平面平行(先证面面平行,推出线面平行) 例一:如图,已知菱形ABCD ,其边长为2, 60BAD ∠= ,ABD ?绕着BD 顺时针旋转120 得到PBD ?,M 是PC 的中点. (1)求证://PA 平面MBD ; (2)求直线AD 与平面PBD 所成角的正弦值. 例二:已知四棱锥P-ABCD ,底面ABCD 是 60=∠A 、 边 长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是 棱AD 、PC 的中点. (1)证明:DN//平面PMB ; (2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离. 例三:如图,已知点P 是平行四边形ABCD 所在平面外的一点, 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC . 二:线面垂直的证明方法: 通过线线垂直,证明线面垂直 1) 利用勾股定理逆定理及三角形中两个角和为90°; 2) 利用等边、等腰三角形(中线即高线),正方形、矩形邻边垂直,正方形菱形对角线垂 直等; 3) 通过线面垂直,反推线线垂直; 4) 利用面面垂直的性质,证明垂直于交线即垂直于另一个平面。 例四:如图,四边形ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD , AB=4a ,BC= CF=2a,P 为AB 的中点. (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. C

高三立体几何大题线面角专题

高三立体几何专题 1.如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,, (Ⅰ)设分别为的中点,求证:平面; (Ⅱ)求证:平面; (Ⅲ)求直线与平面所成角的正弦值. 1.解析 (Ⅰ)连接,易知,.又由, 故,又因为平面,平面,所以平面. (Ⅱ)取棱的中点,连接.依题意,得,又因为平面平面,平面平面,所以平面,又平面,故. 又已知,,所以平面. (Ⅲ)连接,由(Ⅱ)中平面,可知为直线与平面所成的角, 因为为等边三角形,且为的中点,所以 又, 故在中,. 所以,直线与平面所成角的正弦值为 . 2.如图 ,已知三棱柱,平面平面,, 分别是AC ,A 1 B 1的中点. (1)证明:; (2)求直线EF 与平面A 1BC 所成角的余弦值. P ABCD -ABCD PCD PAC ⊥PCD PA CD ⊥2CD =3AD =G H ,PB AC ,GH ∥PAD PA ⊥PCD AD PAC BD AC BD H =BH DH =BG PG =GH PD ∥GH ?PAD PD ?PAD GH ∥PAD PC N DN DN PC ⊥PAC ⊥PCD PAC PCD PC =DN ⊥PAC PA ?PAC DN PA ⊥PA CD ⊥CD DN D =PA ⊥PCD AN DN ⊥PAC DAN ∠AD PAC PCD △2CD =N PC DN =DN AN ⊥Rt AND △sin 3 DN DAN AD ∠= =AD PAC 3 111ABC A B C -11A ACC ⊥ABC 90ABC ∠=?11 30,,,BAC A A AC AC E F ∠=?==EF BC ⊥

线面角与二面角的向量解法

线面角与二面角的向量解法 广州市第65中学 朱星如 510450 几何中的距离和角是初等几何学的核心问题,是新旧教材的教学重点,也是高考常考点。近几年来,各种数学杂志发表了不少用向量解几何题的文章,笔者觉得有些方法在实际解题中,操作起来并不方便,在教学中效果不佳。如线面角论及得较少;而用法向量求二面角的平面角时,两法向量的夹角与二面角的平面角是相等或互补,但不易确定取哪种关系。本文就这两个问题的解答方法作一介绍,但愿对同行的教学有所裨益。 先推导一个线面角公式。设PQ 是平面a 的一条斜线段,P 、Q 均 不为斜足,线段PQ 所在直线与平面α交于点Q ',直线PQ 与平 面α所成的角为q ,见图1。P '为直线PQ 上的一点,作P 'Q a ^ 于H ,连H Q ',则P Q H q ⅱ?。设平面a 的法向量为n r ,则有: 90HP Q q ⅱ+?o ,,HP Q n PQ ⅱ ?uuu r r 或,n PQ p -uuu r r , sin cos cos ,HP Q n PQ q ⅱ=?=uuu r r PQ n PQ n ×uuu r r g uuu r r ,从而 arcsin (1)PQ n PQ n q =×uuu r r g L uuu r r 。 注:当Q 点为斜足或点P 、Q 在平面α的异侧时本公式也适用。 我们改编一个91年全国的高考题例说公式(1)的应用。 例1:已知正方形ABCD 的边长为4,PA ⊥平面ABCD ,PA =2,E 、F 分别为BC 、 CD 的中点。求直线EB 、FB 分别与平面PEF 所成的角(见图2)。 解:以A 为原点,AD 所在的直线为x 轴,AB 所在的直线为y 轴,AP 所在的 直线为z 轴,建立空间右手直角坐标系。则有 B (0,4,0),C (4,4,0),D (4,0,0),P (0,0,2)。用中点坐标公式 可得E (2,4,0),F (4,2,0)。(2,2,0),(2,4,2)E F E P =-=--u u u r u u u r ,(2,0,0)EB =-u u u r , (4,2,0)FB =-u u u r 。设平面PEF 的法向量为(),,n x y z =r ,则有 0,0n EF n EP ==u u u r u u u r r r g g ,由此得:220,2420x y x y z -=--+=,可解出: ,3y x z x ==,取1x =得()1,1,3n =r , 记直线BE 、BF 与平面PEF 所成的角分别为1θ、2θ,则由公式(1)得 1sin n EB n EB q == =uuu r r g uuu r r ,1arcsin q = 22sin arcsin n FB n FB q q == ==uu u r r g uu u r r 。 处理线面角问题用公式(1),可回避找斜线在平面内的射影之苦,从而提高学生的学习效率,真正为学生减负。 () A O B D 图 2 P ' Q ' θ 图1

立体几何线面角专题

立体几何线面角专题(五十八) 1.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱B 1C 1,C 1D 1 的中点.试求: (1)AD 1与EF 所成角的大小; (2)AF 与平面BEB 1所成角的余弦值; (3)二面角C 1-DB -B 1的正切值. 答案 (1)60° (2)223 (3)22 思路 解析 建立如图所示的空间直角坐标系,则B 1(0,0,0),A(1,0, 1),B(0,0,1),D 1(1,1,0),E(0,12,0),F(12 ,1,0),D(1,1,1). (1)因为AD 1→=(0,1,-1),EF →=(12,12,0), 所以cos AD 1→,EF →=(0,1,-1)·(12,12,0)2×22=12, 即AD 1与EF 所成的角为60°. (2)FA →=(12,-1,1),由图可得,BA →=(1,0,0)为平面BEB 1的一个法向量,设AF 与平面BEB 1所成的角为θ, 则sin θ=|cos BA →,FA →|=|(1,0,0)·(12,-1,1)1×(12)2+(-1)2+12|=13,所以cos θ=223. (3)设平面DBB 1的法向量为n 1=(x ,y ,z),

DB →=(-1,-1,0),B 1B →=(0,0,1), 由?????n 1⊥DB →,n 1⊥B 1B →,得?????n 1·DB →=-x -y =0, n 1·B 1B →=z =0, 令y =1,则n 1=(-1,1,0). 同理,可得平面C 1DB 的一个法向量为n 2=(-1,1,1). 则cos n 1,n 2=(-1,1,0)·(-1,1,1)2×3=63. 所以tan n 1,n 2=22. 2.如图所示,在三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC. (1)求证:BC ⊥平面PAC ; (2)当D 为PB 的中点时,求AD 与平面PAC 所成的角的余弦值; (3)是否存在点E 使得二面角A -DE -P 为直二面角?并说明理由. 答案 (1)略 (2)144 (3)存在点E 解析 方法一:(1)∵PA ⊥底面ABC , ∴PA ⊥BC.又∠BCA =90°, ∴AC ⊥BC ,∴BC ⊥平面PAC. (2)∵D 为PB 的中点,DE ∥BC , ∴DE =12 BC. 又由(1)知,BC ⊥平面PAC , ∴DE ⊥平面PAC ,垂足为点E. ∴∠DAE 是AD 与平面PAC 所成的角. ∵PA ⊥底面ABC ,∴PA ⊥AB. 又PA =AB ,∴△ABP 为等腰直角三角形. ∴AD =12 AB. 在Rt △ABC 中,∠ABC =60°.∴BC =12 AB.

线线角、线面角,二面角(高考立体几何法宝)

1 A 1 B 1 C 1 D A B C D E F G 线线角、线面角、二面角的求法 1.空间向量的直角坐标运算律: ⑴两个非零向量与垂直的充要条件是 1122330a b a b a b a b ⊥?++= ⑵两个非零向量与平行的充要条件是 a 2 b =±|a ||b | 2.向量的数量积公式 若a 与b 的夹角为θ(0≤θ≤π),且123(,,)a a a a =,123(,,)b b b b =,则 (1)点乘公式: a 2b =|a ||b | cos θ (2)模长公式:则2 12||a a a a a =?=++,2 ||b b b b =?=+(3)夹角公式:2 cos ||||a b a b a b a ??==?+ (4)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则 2 | |(AB AB x ==,A B d = ①两条异面直线a 、b 间夹角0,2πα?? ∈ ??? 在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>= 例1 (福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( ) A .5 15arccos B . 4 π C .5 10 arccos D .2π (向量法,传统法)

P B C A 例 2 (2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=?且 PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____. 解:(1)向量法 (2)割补法:将此多面体补成正方体'''DBCA D B C P -,PB 与AC 所成的角的大小即此正方体主对角线PB 与棱BD 所成角的大小,在Rt △PDB 中 ,即 t a n 2PD DBA DB ∠ = =. 点评:本题是将三棱柱补成正方体'''DBCA D B C P - ②直线a 与平面α所成的角0,2πθ?? ∈ ??? (重点讲述平行与垂直的证明) 可转化成用向量→ a 与平面α的法向量→ n 的夹角ω表示,由向量平移得:若 ππ(图);若ππ 平面α的法向量→ n 是向量的一个重要内容,是求直线与平面所成角、求点到平面距离的必备工具.求平面法向量的一般步骤: (1)找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c == (2)设出平面的一个法向量为(,,)n x y z = (3)根据法向量的定义建立关于x,y,z 的方程组(0a << (4)解方程组,取其中的一组解,即得法向量。 图1- 图1- 图1- 1 D 1 B 1 C P D B C A

文科立体几何线面角二面角专题_带答案

文科立体几何线面角二面角专题 学校: ___________ 姓名:____________ 班级:____________ 考号: ___________ 一、解答题 1 .如图,在三棱锥,「中,肚一二/,举一厂:- H-钗-化为的中点. (1)证明:卜「"-L平面; (2)若点鮎在棱吃上,且二面角材-PA弋为剜,求PC与平面P3所成角的正弦值. 2 ?如图,在三棱锥|P"BC中,嗣訂0 2辽,"",卩<:"04,0为蚯的中点. (1)证明:P°丄平面 (2 )若点皿在棱比上,且MC = 2^B,求点匕到平面P°何的距离. 3 . (2018 年浙江卷)如图,已知多面体ABCAiBiCi , AiA , BiB , CiC均垂直于平 面ABC,/ ABC=120 ° , AiA=4 , CiC=1 , AB=BC=B iB=2 . (I)证明:ABi丄平面A1B1C1 ; (H)求直线ACi与平面ABB i所成的角的正弦值. 4 .如图,在三棱柱ABC_A i B i C i中,点p, G分别是& 叽的中点,已知吗丄平面 AAJ B#] A.B, A#」 ABC , = =3 , = =2. (I)求异面直线与AB所成角的余弦值;

(II)求证:丄平面吆匚』i; (III )求直线吒丄与平面BCG%所成角的正弦值

5 ?如图,四棱锥P-AB8,底面ABCO是正方形,PA = PD"E = 1 , PAPO型,E ,卜分 别是阳,8的中点? (1)求证; (2)求二面角匚的余弦值. 6 ?如图,三棱柱ABC-A i B i C i中,侧棱吗丄底面ABC ,且各棱长均相等D , E , F分别为 棱’?,, 的中点? (1)证明:?平面’ ; (2)证明:平面珀8」平面气曾; (3)求直线I町I与直线所成角的正弦值? 7 .如图,在四边形ABCD 中,AB//CD ,/ AB D=30 ° , AB = 2CD = 2AD = 2 , DE 丄平面ABCD , EF// BD,且BD = 2EF . (I)求证:平面ADE丄平面BDEF ; (H)若二面角C BF D的大小为60。,求CF与平面ABCD所成角的正弦值. P-A0CD 中PA 丄平面A9CD PA = AB = BC = AD = CD = 1 8 .如图,在四棱锥

高三数学立体几何专题

立体几何专题 【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究. 【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等. 【例题解析】 题型1 空间几何体的三视图以及面积和体积计算 例1(2008高考海南宁夏卷)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 A . 22 B . 32 C . 4 D . 52 分析:想像投影方式,将问题归结到一个具体的空间几何体中解决. 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的高宽高分别为,,m n k , =1n ?=, a = b =,所以22(1)(1)6a b -+-= 228a b ?+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4a b ?+≤当且仅当2a b ==时取等号.

线面角与二面角

二面角及其度量 平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面。从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。 棱为l ,两个面分别为,αβ的二面角,记作l αβ--。A α∈,B β∈,二面角也可以记作A l B --。 在二面角l αβ--的棱上任取一点O ,在两半平面内分别做射线OA l ⊥,OB l ⊥,则AOB ∠叫做二面角l αβ--的平面角。显然,这个平面角与点O 在l 上的位置无关。 二面角的大小可以用它的平面角来度量。二面角的平面角是几度,就说这个二面角是几度。我国发射的第一颗人造卫星的倾角是68.5,这个倾角指的是人造卫星的轨道平面和地球赤道平面所成的角。 我们约定,二面角的范围是[0,]π。 平面角是直角的二面角叫做直二面角。互相垂直的平面也就是相交成直二面角的两个平面。 我们可以用向量的夹角来研究二面角的性质及其度量。 如图,分别在二面角l αβ--的面,αβ内,作向量1n l ⊥,2n l ⊥,则我们可以用向量1n 与2n 的夹角来度量这个二面角。 如图,设1m α⊥,2m β⊥,则角12,m m <>与该二面角大小相等或互补。 O O 1 A B A 1 B 1 l α β α 1m 2m β l 1n 2n

2 如图 四棱锥ABCD P -底面为直角梯形,平面⊥=⊥⊥PA AB CD AD CD AD AB ,2,, ABCD . ⑴BC 与平面PCD 成角. ⑵求二面角C BD P --的平面角. ⑶设Q 为侧棱PC 上一点,PC PQ λ=,试确定λ的值,使得二面角P BD Q --为.45?

立体几何大题线面角训练1

立体几何大题训练(1) 1、如图,三棱柱ABC-A1B1C1的底面是边长为2的等边三角形,AA1⊥底面ABC,点E,F分别是棱CC1,BB1上的点,且EC=B1F=2FB. (1)证明:平面AEF⊥平面ACC1A1; (2)若AA1=3,求直线AB与平面AEF所成角的正弦值.

2、如图,在四棱锥ABCD P -中,⊥AB 平面BCP ,//CD 平面ABP , 22=====CD BP CP BC AB . (1)证明:平面⊥BAP 平面DAP ; (2)点M 为线段AB (含端点)上一点,设直线MP 与平面DCP 所成角为α,求αsin 的取值围.

3、如图,四棱锥ABCD P -中,底面ABCD 为菱形,⊥PA 底面ABCD ,22=AC ,2=PA ,E 是PC 上的一点,EC PE 2=. (1)证明:⊥PC 平面BED ; (2)设二面角C PB A --为90?,求直线PD 与平面PBC 所成角的大小.

4、如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD ∠=?, 侧面PAB ⊥底面ABCD ,902BAP AB AC PA E F ∠=?===,,,分别为BC AD ,的中点,点M 在线段PD 上. (1)求证:EF ⊥平面PAC ; (2)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所成的角相等,求PM PD 的值.

5、在四边形ABCD 中,对角线,AC BD 垂直相交于点O ,且4OA OB OD ===,3OC =.将BCD △沿BD 折到BED △的位置,使得二面角E BD A --的大小为90?(如图).已知Q 为EO 的中点,点P 在线段AB 上,且2AP =. (1)证明:直线PQ ADE ∥平面; (2)求直线BD 与平面ADE 所成角θ的正弦值.

线线角_线面角_二面角的讲义

B 1D 1A D C 1 B C A 1 线线角与线面角 一、课前预习 1.在空间四边形ABCD 中,AD=BC=2, E 、F 分别为AB 、CD 的中点且EF=3,AD 、BC 所成的角为 . 2.如图,在长方体ABCD-A1B1C1D1中 ,B1C 和C1D 与底面所成的角分别为60ο和45ο,则异面直线B1C 和C1D 所成角的余弦值为 ( ) (A). 46 (B).36 (C).62 (D).63 3.平面α与直线a 所成的角为3π ,则直线a 与平面α所有直线所成的角的取值围是 . 4.如图,ABCD 是正方形,PD ⊥平面ABCD,PD=AD,则PA 与 BD 所成的角的度数为 (A).30ο (B).45ο (C).60ο (D).90ο 5.有一个三角尺ABC,∠A=30ο, ∠C=90ο,BC 是贴于桌面上, 当三角尺与桌面成45ο角时,AB 边与桌面所成角的正弦值 是 . 二、典型例题 例1.(96·全国) 如图,正方形ABCD 所在平面与正方形 ABEF 所在平面成60ο角,求异面直线AD 与BF 所成角的余弦值. 【备课说明:1.求异面直线所成的角常作出所成角的平A C B D B P C D A C B

面图形.作法有: ①平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线或利用中位线.②补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线的关系.2.解立几计算题要先作出所求的角,并要有严格的推理论证过程,还要有合理的步骤.】 例2.如图在正方体AC1中, (1) 求BC1与平面ACC1A1所成的角; (2) 求A1B1与平面A1C1B 所成的角. 备课说明:求直线与平面所成角的关键是找直线在 此平面上的射影,为此必须在这条直线上找一点作 平面的垂线. 作垂线的方法常采用:①利用平面垂直 的性质找平面的垂线.②点的射影在面的特殊位置. 例 3. 已知直三棱住ABC-A1B1C1,AB=AC, F 为棱BB1上一点,BF ∶FB1=2∶1, BF=BC=a 2. (1)若D 为BC 的中 点,E 为线段AD 上不同于A 、D 的任意一点,证明:EF ⊥FC1; (2)试问:若AB=a 2,在线段AD 上的E 点能否 使EF 与平面BB1C1C 成60ο角,为什么?证明你的结论. 备课说明:这是一道探索性命题,也是近年高考热点问题,解 决这类问题,常假设命题成立,再研究是否与已知条件矛盾, 从而判断命题是否成立. 一、知识与方法要点: 1.斜线与平面所成的角就是斜线与它在平面的射影的夹角。求斜线与平面所成的角关键是找到斜线在平面的射影,即确定过斜线上A D C 1D 1A 1B 1C B A 1C B A B 1D C 1E F

重点高中数学必修2立体几何专题线面角典型例题求法总结

重点高中数学必修2立体几何专题线面角典型例题求法总结

————————————————————————————————作者:————————————————————————————————日期:

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D

专题:空间线面角与二面角的求解问题

专题一:空间线面角与二面角的求解问题 1.(2015浙江)如图,底面ABC为正三角形,EA⊥平面ABC,DC⊥平面ABC,EA=AB=2DC= 2a,设F为EB的中点. (1)求证:DF//平面ABC; (2)求直线AD与平面AEB所成角的正弦值. 2.(2014湖北检测)如图所示,长方体ABCD?A1B1C1D1中,AD=AA1=1 ,AB=2,点E是AB 的中点. (1)证明:BD1//平面A1DE; (2)证明:D1E⊥A1D; (3)求二面角D1?EC?D的正切值.

3.(2014深圳调研)如图所示,平面ABCD⊥平面BCEF,且四边形ABCD为矩形,四边形BCEF 为直角梯形,BF//CE,BC⊥CE,DC=CE=4,BC=BF=2. (1)求证:AF//平面CDE; (2)球平面ADE与平面BCEF所成锐二面角的余弦值; (3)球直线EF与平面ADE所成角的余弦值. 4.(2014浙江名校联考)如图,在长方形ABCD中,AB=3,BC=1,E为DC的三等分点(靠近C处),F为线段EC上的一动点(包括端点),现将?AFD沿AF折起,使点D在平面内的射影恰好落在AB边上,则当F运动时,二面角D?AF?B的余弦值的取值范围是________.

5.如图,在直三棱柱ABC?A1B1C1中,平面A1BC⊥侧面A1ABB1,若直线AC与平面A1BC所成的角为θ,二面角A1?BC?A的大小为φ,试判断θ与φ的大小关系,并予以证明. 6.如图所示,四棱锥S?ABCD中,SD⊥平面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC= SD=2,E为棱SB上一点,平面EDC⊥平面SBC,求二面角A?DE?C的大小.

二面角与线面角

直线和平面所成的角与二面角 一、选择题(共45题,题分合计225分) 1.在直二面角α- l-β中,直线m ?α,直线n ?β,且m 、n 均不与l 垂直,则 A. m 与n 不可能垂直,但可能平行 B. m 与n 可能垂直,但不可能平行 C. m 与n 可能垂直,也可能平行 D. m 与n 不可能垂直,也不可能平行 2.设有不同的直线a 、b 和不同的平面α、β、γ,给出下列三个命题: (1)若a a //,a b //,则b a //.(2)若a a //,β//a ,则β//a . (3)若γ⊥a ,γβ⊥,则β//a . 其中正确的个数是 A.0 B.1 C.2 D.3 3.如图△ABD ≌△CBD ,且△ABD 为等腰三角形,∠BAD =∠BCD =90°,且面ABD ⊥面BCD ,则下列4个结论中,正确结论的序号是 ①AC ⊥BD ②△ACD 是等边三角形③AB 与面BCD 成60°角④AB 与CD 成60°角 A.①②③ B.①②④ C.①③④ D.②③④ 4.一直线与直二面角的两个面所成的角分别为α、β,则α+β的范围为: A.0<α+β<π/2 B.α+β>π/2 C.0≤α+β≤π/2 D.0<α+β≤π/2 5.在直二面角α-AB -β的棱AB 上取一点P ,过P 分别在α、β两个平面内作与棱成45°的斜线PC 、PD ,那么∠CPD 的大小为 A.45° B.60° C.120° D.60°或120° 6.二面角α-l -β的平面角为120°,A ,B ∈l , AC ?α, BD ?β, AC ⊥l , BD ⊥l ,若AB =AC =BD =1,则CD 等于 A.2 B.3 C.2 D.5 7.60°的二面角α- l-β,直线a ?α,直线b ?β,且a 、b 无公共点.设a 、b 所成的角是θ,则cos θ的取值范围是

相关文档
最新文档