石英坩埚表面涂层对铸造多晶硅生长中杂质传输的影响

石英坩埚表面涂层对铸造多晶硅生长中杂质传输的影响
石英坩埚表面涂层对铸造多晶硅生长中杂质传输的影响

半导体工业的发展概况(上)

半导体工业的发展概况(上) 1 半导体硅工业的发展 随着社会的发展,直到20世纪时,世人才发现硅具有半导体的性质。这些性质包括其电阻率随着温度的增加而递减、光电效应、热电效应、磁电效应、霍尔效应及其与金属接触的整流效应等。 继硅晶体管发明之后,虽然可利用乔赫拉斯基法来制备硅单晶体,但是由于直拉(CZ)法生长的硅单晶,因由于使用的石英坩埚会受到硅熔体的侵蚀而增加氧的沾污。为了获得高纯度的硅单晶体,1956年HenryTheurer发明了区熔法(FZ)[6]。区熔法因没有使用石英坩埚容器,故不存在氧污染的问题。之后,在1958年由于DashFI发明了一种五位错单晶生长法,才使得生长优质大直径硅单晶技术得到了不断发展。1958年,Kilby(基尔比)在美国德州仪器公司发明了集成电路[8],奠定了信息时代到来的基础。第一代IC(集成电路)问世后,半导体工业迅速得到了发展,晶片上的电子元器件的密度和复杂性,也就从小规模集成电路(SSI)向中规模集成电路(MSB、大规模集成电路(LSB、超大规模集成电路(VLSI)、甚大规模集成电路(ULSI)不断地发展。集成电路的应用范围相当广泛,按不同的用途集成电路的分类见图1所示”。

以硅材料为主的半导体专用材料已是电子信息产业最重要的基础、功能材料,在国民经济和军事工业中占有很重要的地位。全世界的半导体器件中有95%以上是用硅材料制成,其中85%的集成电路也是由硅材料制成。 2 国外半导体工业发展动态 随着IC工艺、技术的不断发展,硅单晶的直径尺寸越做越大,40多年来,小于中200mm的硅单晶片已经进入商业生产应用的水平,中300mm 的硅单晶抛光片也已在特征尺寸线宽小于0.13μm的IC器件工艺中得到了广泛应用,并已进入了研制、生产的阶段,中400mm的硅单晶也进入了开发、研究的阶段。纳米电子技术必将成为今后研究和发展的方向。 2.1 硅集成电路发展现状 制备集成电路用的硅单晶直径研制发展历史见表1所示。

各种坩埚简介

常用坩埚的使用和维护 (一)铂坩埚 1.铂是一种贵重金属,焙点约为1770度,质软,使用时不要用手捏,以防变形。也不能用玻璃棒捣刮铂坩埚内壁,以防损伤。也不要将红热的铂坩埚放人冷水中骤冷。 2.铂坩埚的加热和灼烧,均应在垫有石棉板或陶瓷板的电炉或电热板上进行,或在煤气灯的氧化焰上进行,不能与电炉丝、铁板及还原焰接触,因为在高温下铁易与铂形成合金,还原性气体能与铂形成碳化铂,使铂坩埚变脆。滤纸如在铂坩埚中灼烷,应在低温和空气充足的情况下,让炭化的滤纸完全燃烧后,才能提高温度. 3.Pb 、Bi、Sb、Sn、Ag、Hg的化合物、硫化物、磷和砷的化合物等,在高温时容易被滤纸的炭或火馅的还原气体还原为相应的金属和非金属元素,它们与铂形成合金或化合物,从而损坏铂坩埚。所以,上述金属和非金属及其化合物不能在铂坩埚内灼烧或熔触。 4.卤素和能析出卤素的物质如王水、HCI,以及某些氧化剂的混合物,对铂坩埚均有侵蚀作用。 5.碱金属氧化物、氢氧化物、硝酸盐、亚硝酸盐、氰化物、氧化钡等在高温熔融时能侵蚀铂坩埚。用碳酸钠和碳酸钾,对铂坩埚无侵蚀作用。 6.组分不明的试样不能使用铂坩埚加热或熔融。 7.铂坩埚内、外壁应经常保持清洁和光亮。使用过的铂坩埚可用1:1HCl溶液煮沸清洗。如清洗不净,可用K2S207低温熔融5—10分钟,假使用K2S207处理无效,可用Na2C0 3或硼砂熔融。如仍有污点,则可用沙布包100筛孔以上的海沙加水润湿后,轻轻擦拭铂坩埚以恢复其表面的光泽。 8.热的铂坩埚要用铂坩埚夹取。 9.铂坩埚变形时,可放在木板上,一边滚动,一边用牛角匙压坩埚内壁整形。 (二)镍坩埚 1.镍的熔点为1455度,镍的抗碱性和抗侵蚀能力较强,故常用镍坩埚熔融铁合金、矿渣、粘土,耐火材料等。 2.用镍坩埚熔样温度不宜超过700度,因在高温时,镍易被氧化。

黄金工艺介绍

黄金首饰的一般加工工艺流程:熔金→倒模→抛光→执模→压光→车花→QC(检测)→成品 入库黄金首饰主要生产工艺流程简介: (1)熔金:利用乙炔火焰烧石英坩埚(耐高温埚)内的(未锻造)黄金,使乙熔炼成适合加工饰品的单件配料件。 (2)倒模:利用高周波或中周波离心浇铸机将黄金配料熔化后再倒入石膏模中浇铸出铸件。(3)抛光:使用磁力抛光机或滚筒抛光机将铸件表面产生光泽的加工过程。 (4)执模:利用戒指铁、坑铁等辅助工具对铸件进行焊接、锉、锤,以修整铸件在铸造过程中的变形及表面粗糙。 (5)压光:用玛瑙笔接触金面并磨擦工件,使工件表面产生光亮。 (6)车花:使用装有钻石车花刀的车花机在制品表面作图案性的批花雕刻。 2、黄金首饰损耗原因及环节:熔金——倒模——抛光——执模——压光——车花损耗原因: ①熔金时产生损耗(温度高、时间长、黄金氧化挥发就多)。 ②烧铸过程 ③锉、修整外形等工序造成的损耗 ④车花时微碎粒流失损耗。 K(黄)金首饰加工工艺知识及工艺流程:进口黄金→啤蜡模→种树→灌粉印模→焗粉→配料→倒模→滚筒抛光→执模→炸金→研磨机抛光→车花→执边→打磨→电金→QC(检测)→成品 1、入库主要生产工艺流程简介: (1)啤蜡模:按客户所订款式规格要求,将出蜡机内的蜡灌到胶模(模具)内,啤成符合要求的蜡模。 (2)种树:将蜡模焊接到蜡杆(俗称到树杆)上。 (3)灌粉印模:将焊好的蜡模树放入钢筒内,灌入石膏粉(俗称注粉),并用抽真空机抽去粉内的空气气泡,以防止铸造出来的K金首饰出现沙眼(小孔)。 (4)焗粉:将已注好粉的蜡树连同钢筒一齐放到电炉内加热除蜡(高温挥发)使粉温达到K金倒模温度(约680℃左右),需时8小时左右。 (5)配料熔金:将足金原料与补口(用于K金首饰的一种合金原料)按比例混合熔在一起形成K金料,如进口的是K金原料就可直接熔炼成加工饰品的适合单件生产。 (6)倒模:将K(黄)金料按每盅工件所需的重量,放到真空吸索倒模机或离心倒模机,经过1100度高温熔成液体后,将粉盅(装已焗粉的盅)内的工件挟到倒模机内,利用倒模机使K金液体注入到粉盅的工件中,倒模成所需K金托。 (7)滚筒抛光:将已倒模好的金托经滚筒机抛光使其外表达到一定的光亮度。 (8)执模:将已滚筒抛光好的空金托,按要求进行锉、执、锤、省等工序对空金托出现的变形及表面粗糙进行修整,使之达到平滑、无沙眼(小孔)。 (9)炸金、研磨机抛光:利用一些化学原料(氰化钾等)的腐蚀作用使空金托表面的污秽物质除掉,并用磁力研磨机进行抛光。 (10)车花:使用装有钻石车花刀的车花机在制品表面作图案性的批花雕刻。 (11)执边:将已镶石的半成品的边、爪再修整,以便打磨。

普通岩石学概念总结

折射率:光从真空射入介质发生折射时,入射角i与折射角r的正弦之比n叫做介质的“绝对折射率” 折射定律:Vi/Vr =sin i/sin r=N 当两介质一定时,N为常数,称第二介质对第一介质的相对折射率。如果入射介质为真空(空气)时,称N为折射介质的绝对折射率(折射率)。 双折射:光进入各向异性介质(晶体)时,分解为两束光而沿不同方向折射的现象。 双折率:光波射入非均质体中,除特殊方向之外,都要发生双折射,分解成振动方向互相垂直、传播速度不同、相应折射率值不同的两种偏光,两种偏光折射率之差为双折率。 光率体:表示光波在晶体中传播时,光波的振动方向与相应折射率值之间的关系的光学立体图形 光轴角:二轴晶光率体中两个光轴之间的锐角。 光轴面:二轴晶光率体中包括两个光轴的面。 光性方位:光率体主轴与晶体结晶轴之间的关系。 多色性:由于光波在镜头中的振动方向不同而使矿片颜色发生改变的现象。 闪突起:在单偏光镜下,转动载物台,非均质体矿物的边缘,糙面及突起高低发生明显改变的现象。 平行消光:矿片在消光位时,矿片上解理缝或晶面迹线与目镜十字丝之一平行,即矿片上的光率体椭圆半径之一与解理缝或晶面迹线平行。 消光位:非均质体除垂直光轴以外的其他方向切面,在正交偏光镜间处于消光时的位置。 补色法则:两个非均质体除垂直光轴以外的任意切面,在正交偏光镜间45度位置重叠时,光波通过这两个矿片后,总光程差的增减法则。 高级白:各种单色光波都有不等量的出现,它们互相混杂的结果,形成一种与珍珠表面相似的亮白色,称为高级白。 消光角:光率体椭圆半径与解理缝或双晶缝或晶面迹线之间的夹角。 延性:长条状矿物切面的延长方向与光率体椭圆半径方向的关系。 岩浆:产生于地幔和地壳深处,以硅酸盐为主要成分的炽热、粘稠、富含挥发物质的粘稠体。 色率:颜色指数;暗色矿物在岩石中的百分含量。(色率越高,掩饰越基性) 浅色(硅铝)矿物:该类矿物SiO 2和Al 2 O 3 含量较高,其中包括石英、长石类及 似长石类矿物,很少或不含FeO,MgO,这些矿物的共同特征是颜色较浅。 暗色(铁镁)矿物:以富含FeO,MgO为特征,其中包括橄榄石类、辉石类、角闪石类及黑云母等,SiO 2 含量较低,共同特征是颜色较深。 鲍文反应系列:斜长石的连续反应系列和暗色矿物的不连续反应系列。 反应边结构:岩浆早期晶出的矿物与周围尚未完全凝固的熔浆发生反应,在其外围形成新的矿物。 暗化边结构:含挥发份的斑晶在上升过程中常发生分解,在晶体边缘形成铁质分解氧化物形成的磁铁矿等不透明矿物细粒集合体 海绵陨铁结构:不规则的它形金属矿物(如磁铁矿、钛铁矿等)颗粒充填在自行程度较高的橄榄石或辉石颗粒之间形成的结构。 条纹结构:钾长石和斜长石有规律的交生。 辉长结构:岩石中基性斜长石、辉石自形程度及含量大致相等,均呈半自形或它

铸造多晶硅中的金属杂质及其对硅片性能的影响aaa

铸造多晶硅中的金属杂质及其对硅片性能的影响 摘要: 关键词:多晶硅铸造多晶硅金属杂质 正文: 金属杂质特别是过渡金属杂质,在原生铸锭中的浓度般都低于1×10”cm 3,但是它们无论是以单个原子形式,或者以沉淀形式出现,都对太阳能电池的转换效率有重要的影响。近期由于硅料中所含金属杂质超标,导致多个晶锭出现电阻率严重异常而整锭报废,另外还出现较多晶棒切片后的硅片电阻率出现较大波动,对公司的经济效益带来严重的影响。下面对铸造多晶硅中金属杂质的性质及其对硅片性能的影响进行详细的分析,为多晶硅片的生产及异常硅片的处理提供一定的参考。 1.铸造多晶硅中金属杂质的来源 铸造多晶硅中的金属杂质主要有Fe,Al,Ga,Cu,Co,Ni等,铸造多晶硅中金属杂质的来源主要有以下几个方面: A.原生硅料中含有一定量的金属杂质,这也是金属杂质的一个主要来源。目前由于硅料异常紧缺,导致一些含杂质较多的硅料在市场上 流通,造成铸出的晶锭出现问题的事故时有发生。 B.在硅料的清洗,铸锭及切片的整个过程中由于使用各种金属器件接触,导致金属杂质的引入。这也是铸造多晶硅中金属杂质含量偏高 的一个主要原因。整个工艺流程中引入金属杂质的途径有很多,例 如硅料清洗过程中清洗液的残留,晶锭转运过程中使用的不锈钢转 运车,多晶硅棒破碎过程中所使用的铁锤等。 2.过渡族金属在硅片中的扩散和溶解 硅中金属杂质的引入可以在晶体生长过程中,或者在硅片的抛光、化学处理、离子注入、氧化或其他处理过程中首先在表面附着,随后后续的高温热处理过程中扩散进入硅基体。 A.金属杂质在硅锭中的分布 在高温(>800℃)下,过渡族金属一般都有很快的扩散速度而溶解度则相对较小。Cu、Ni为快速扩散杂质,在高温下,Cu、Ni的扩散速率甚至可以接近于

实验室常用坩埚简介

实验室常用坩埚简介 (一)铂坩埚 1.铂是一种贵重金属,焙点约为1770度,质软,使用时不要用手捏,以防变形。也不能用玻璃棒捣刮铂坩埚内壁,以防损伤。也不要将红热的铂坩埚放人冷水中骤冷。 2.铂坩埚的加热和灼烧,均应在垫有石棉板或陶瓷板的电炉或电热板上进行,或在煤气灯的氧化焰上进行,不能与电炉丝、铁板及还原焰接触,因为在高温下铁易与铂形成合金,还原性气体能与铂形成碳化铂,使铂坩埚变脆。滤纸如在铂坩埚中灼烷,应在低温和空气充足的情况下,让炭化的滤纸完全燃烧后,才能提高温度. 3.Pb、Bi、Sb、Sn、Ag、Hg的化合物、硫化物、磷和砷的化合物等,在高温时容易被滤纸的炭或火馅的还原气体还原为相应的金属和非金属元素,它们与铂形成合金或化合物,从而损坏铂坩埚。所以,上述金属和非金属及其化合物不能在铂坩埚内灼烧或熔触。 4.卤素和能析出卤素的物质如王水、HCI,以及某些氧化剂的混合物,对铂坩埚均有侵蚀作用。 5.碱金属氧化物、氢氧化物、硝酸盐、亚硝酸盐、氰化物、氧化钡等在高温熔融时能侵蚀铂坩埚。用碳酸钠和碳酸钾,对铂坩埚无侵蚀作用。 6.组分不明的试样不能使用铂坩埚加热或熔融。 7.铂坩埚内、外壁应经常保持清洁和光亮。使用过的铂坩埚可用1:1HCl溶液煮沸清洗。如清洗不净,可用K2S2O7低温熔融5—

10分钟,假使用K2S2O7处理无效,可用Na2CO3或硼砂熔融。如仍有污点,则可用沙布包100筛孔以上的海沙加水润湿后,轻轻擦拭铂坩埚以恢复其表面的光泽。 8.热的铂坩埚要用铂坩埚夹取。 9.铂坩埚变形时,可放在木板上,一边滚动,一边用牛角匙压坩埚内壁整形。 (二)镍坩埚 1.镍的熔点为1455度,镍的抗碱性和抗侵蚀能力较强,故常用镍坩埚熔融铁合金、矿渣、粘土,耐火材料等。 2.用镍坩埚熔样温度不宜超过700度,因在高温时,镍易被氧化。 3、镍坩埚不能用于沉淀的灼烧。 4、镍坩埚适用于NaOHNa2O2、Na2CO3NaHCO3以及含有有KNO3的碱性溶剂熔融样品,不适用于KHSO4或NaHS04、K2S2O7或Na2S2O7等酸性溶剂以及含硫的碱性硫化物熔剂熔融样品。 5.熔融状态的A1、Zn、Pb、Sn、Hg等金属盐,都能使镍坩埚变脆。硼砂也不能在镍坩埚中熔融。 6.镍坩埚中常含有微量铬,使用时应注意。 7、新的镍坩埚应先在马弗炉中灼烧成蓝紫色,除去表面的油污,然后用1:20HCl煮沸片刻,再用水冲洗干净。 (三)铁坩埚 1、铁的熔点1300度。 2.铁坩埚在使用前应先进行钝化处理。即先用稀HCl洗,后用

铸造多晶硅杂质和缺陷处理工艺研究进展

铸造多晶硅杂质和缺陷处理工艺研究进展 摘要:近年来,低成本和高效率的多晶硅已经成为最主要光伏材料之一。本文从太阳能电池制备工艺角度出发,综述了国内外近年来关于对铸造多晶硅杂质和缺陷处理方面的工艺研究进展。分析比较了各种处理工艺,包括磷吸杂、铝吸杂、磷铝共吸杂和多孔硅吸杂对杂质吸除效果、少子寿命的影响。也分析了钝化和热处理工艺对多晶硅材料性能的影响。综合考虑成本要求和除杂效果,高温P-AI 联合吸杂以及多孔硅吸杂是较好的选择,它们可能在未来的铸造多晶硅除杂工艺领域中占据重要地位。 一、引言 随着国际原油的价格突破100美元/桶,能源问题变得愈来愈严峻。与此同时,环境问题也要求新能源能够替代化石能源。自1954年贝尔实验室研制出第一块太阳电池以来,光伏材料为基础所制得的太阳电池直接将太阳能转化为电能,这被公认为解决能源和环境问题最有效的途径之一。 在过去的五年中,光伏产业的年增长率超过了40%,成为目前发展最快的产业。2006年,全球太阳能电池产能达到了2520MWp,创造了一个价值120亿欧元的产业。据商业分析,2010年的太阳能产值将达到400亿欧元。 多晶硅作为太阳能电池的主要原料之一,以其相对低廉的成本,成为最重要的原材料,目前已经占据市场50%以上的份额,并且市场份额还有继续扩大的趋势。但是,由于太阳能用多晶硅原材料很多都来源于微电子工业的头尾料,从而导致太阳能用铸造多晶硅中存在大量的微缺陷和氧、氮、碳等非金属杂质,以及较多的铁、铜、镍、锰、钛等金属杂质。多晶硅中位错、晶界等这些扩展缺陷存在的悬挂键和金属杂质是少数载流子的复合中心,这些金属杂质和微缺陷在硅禁带中引人了深能级,成为光生少数载流子的复合中心,从而减少了少数载流子的寿命,严重影响了太阳电池的光电转换效率。如何消除这些因素对多晶硅电池的影响就成为当前研究的主要课题之一。 本文从太阳能电池制备工艺角度出发,综述了国内外近年来关于对铸造多晶硅杂质和缺陷的处理方法的报道,分析比较了各种处理工艺对杂质吸除效果、少子寿命的影响,并对未来的技术和工艺发展的趋势做出了展望。 二、吸杂工艺 吸杂可分为外吸杂和内吸杂,内吸杂是利用硅中氧沉积所产生的缺陷作为“陷阱”,以此捕获硅体内的杂质,从而在表面形成一层“洁净”区域用于制备器件,一般用于IC(Integrated Circuit)行业。外吸杂是采用外部吸收的方式, 使金属杂质从活跃区域移动到不产生负面效果的区域,一般是采用磷、铝的单独吸杂或两者的共同吸杂。太阳电池作为体器件,其吸杂只能使用外吸杂。

岩石学作业

岩石学作业 晶体光学 1. 掌握晶体的概念及晶体与非晶体的本质区别。 2. 掌握立方、四方、三方、六方、斜方、单斜、三斜格子的几何特点。 3. 掌握晶体的五个基本性质。 4. 了解晶体的形成方式。 5. 掌握科塞尔理论、布拉维法则、面角恒等定律的基本概念及意义。 6. 了解晶体对称与非晶体对称的区别。 7. 掌握对称要素的概念及操作,掌握对称型的概念、种类及在各晶系中分布的特点,并能对模型实际分析。 8. 三个晶族、七个晶系的划分依据。 9. 掌握单形和聚形的基本概念,掌握常见 26 种单形的几何特征(晶面数目、晶面形状、晶面间的位置关系、横切面形状、与对称要素间的位置关系、对称特点、所属晶系等)。 10. 掌握聚形分析的方法和步骤。 11. 七个晶系的晶体常数特点和定向原则。 12. 掌握米氏符号的概念、书写方法。掌握单位面的概念及晶面符号、单形符号的确定方法。 13. 掌握双晶的概念、类型、双晶要素及双晶律,了解双晶的基本特征。 14. 了解最紧密堆积的原理及方式。 15. 掌握配位数及配位多面体的概念。 16. 了解不同晶格晶体的特点。 17. 掌握类质同像的概念、分类、影响因素及研究意义。 18. 掌握同质多像的概念、转变类型及研究意义。 ※<晶体光学> 1. 掌握自然光与偏振光的区别。 2. 掌握双折射及双折射率。 3. 光性均质体、光性非均质体的概念及区别。 4. 什么叫光轴、一轴晶、二轴晶?一轴晶、二轴晶各包括哪些晶族晶系的矿物?掌握自然界物质的光性分类。 5. 什么叫光率体?光性均质体、一轴晶、二轴晶光率体的形象特征? 6. 一轴晶正光性光率体与负光性光率体的形象特征及本质区别。掌握一轴晶光率体的组成要素及三种主要切面。 7. 二轴晶光率体的组成要素及主要切面。 8. 光性方位的概念及一轴晶、二轴晶中各晶系的光性方位特点。 9. 偏光显微镜与生物显微镜有何本质区别?通过实验熟练掌握调节和使用。 10. 单偏光镜下、正交偏光镜下、锥光镜下各观察、研究透明矿物的哪些性质? 11. 在单偏光镜下能够熟练观察晶体的解理等级,掌握解理夹角的测定方法,了解影响解理清晰程度的因素。

铸造多晶硅小平面枝晶生长机制的研究

13)增刊(Ⅱ)-0192-06 铸造多晶硅小平面枝晶生长机制的研究? 罗大伟1,龙剑平1,李廷举2 (1.成都理工大学材料与化学化工学院,四川成都610059; 2.大连理工大学材料科学与工程学院,辽宁大连116024) 摘一要:一近些年来由于低成本二低耗能和少污染等特点,铸造多晶硅已成为主要的光伏材料之一,越来越受到人们的广泛关注三但通过定向凝固工艺获得的粗大的晶体中存在大量的孪晶,认为孪晶就有可能对晶体生长起着主导作用三采用自行设计的真空电磁感应熔炼炉及定向凝固炉对冶金级多晶硅进行了真空条件下的定向凝固实验,通过对定向凝固铸锭的观察和分析并结合国内外其它研究机构在此方面的研究,对铸造多晶硅中平行孪晶的生长机制和小平面枝晶的生长机制进行了详细的分析和讨论三 关键词:一铸造多晶硅;平行孪晶;定向凝固;生长机制中图分类号:一TM914.4文献标识码:A DOI:10.3969/j.issn.1001-9731.2013.增刊(Ⅱ).005 1一引一言 由于制备成本低廉及工艺简单等特点,自20世纪70年代以来铸造多晶硅制备技术在国内外得到迅速的发展三多晶硅目前已经成为最主要的光伏材料之一,但与单晶硅相比,由于用于制备多晶硅的原材料中含有较高的杂质元素,并且结晶条件和结晶组织也有差异,故多晶硅铸锭中存在较多的位错二孪晶等晶体缺陷,它们在光电转换器件中成为载流子的复合中心,从而严重影响太阳电池的光电转换效率三研究表明,铸造多晶硅的晶粒尺寸越大越好,这样可以减少晶界的表面积,并且最好使晶界方向与硅晶片表面相互垂直,这样可以明显降低晶界对多晶硅太阳电池转换效率的影响[1]三通过采用定向凝固技术可以获得沿生长方向整齐排列的粗大柱状晶组织,这些粗大的柱状晶尺寸减少了晶界数量同时也有利于提高太阳电池转换效率三因而研究铸造多晶硅中各类晶体缺陷的分布及其控制方法,对于多晶硅材料的进一步发展具有重要意义三孪晶是多晶硅中出现较多的另一类晶体缺陷三许多研究已经报道了关于小平面方式生长晶体(例如Si二Ge和Bi等)中的孪晶生长现象[2-5]三这些研究表明晶粒的生长方向与孪晶的表面是平行的,既然在这些晶体中存在大量的孪晶,那么孪晶就有可能对晶体生长起着主导作用三虽然孪晶的晶界并不捕获杂质,由于它们高度一致的晶界,因此在太阳电池器件中孪晶对于其光电转换效率的影响是微乎其微的三但是普通的晶界却能够引起杂质的诱捕,因此为了对杂质诱捕位置处的晶界进行评估,消除晶粒边界处的孪晶晶界是非常必要的三本文以经纯化处理的优级冶金级硅为原料,采用自行设计的真空电磁感应熔炼炉及定向凝固炉对冶金级多晶硅进行了真空条件下的定向凝固实验三采用光学金相显微镜对多晶硅铸锭中孪晶的分布规律进行观察和分析,同时对铸造多晶硅中平行孪晶的生长机制和小平面枝晶的生长机制进行了详细的分析和讨论三 2一实一验 自主设计的真空感应熔炼炉的结构示意图如图1所示三真空感应熔炼炉主要由两部分组成,即感应熔炼部分和定向凝固部分三其中感应熔炼炉的最大功率和频率分别为200kW和3000Hz三而定向凝固部分则由4段保温装置所构成,从而为定向凝固过程提供一个从上到下具有负温度梯度的温度场三实验所用的硅料为经过酸洗处理的粒度在0.3~0.5mm之间,质量为2.5k g三 图1一真空感应熔炼炉的结构示意图 Fi g1The structure dia g ram of vacuum induction meltin g furnace 实验具体过程如下:将经过酸洗的硅料放入石英 ?基金项目:四川省科技支撑资助项目(2010GZ0228) 收到初稿日期:2013-01-03收到修改稿日期:2013-07-03通讯作者:罗大伟作者简介:罗大伟一(1983-),男,内蒙古通辽人,副教授,主要从事新能源材料制备与研究三

定向凝固制备铸造多晶硅的原理及应用综述

定向凝固制备铸造多晶硅的原理及应用综述 摘要:阐述了介绍了定向凝固应用于硅材料的理论基础,论述了近年来定向凝固制备技术在杂质提纯和晶体生长的研究进展,提出了定向凝固制备铸造多晶硅研究现状和存在的问题。展望今后的发展前景,认为新型的定向凝固技术制备出的硅锭在杂质含量、晶体结构方面均优于传统凝固技术,应积极改善定向凝固技术,以制备高品质的太阳能硅材料。 关键词定向凝固;铸造多晶硅;杂质和缺陷;转化效率 晶体硅太阳能电池包括单晶电池和多晶电池2种,多晶电池的市场份额占到一半以上,商业化的多晶电池效率可以达到14%左右[1]。实验条件下,多晶电池的最高转化效率达到20.30左右,多晶电池的效率虽然略低于单晶电池1%~2%,但多晶电池制造成本低、环境污染小,仍有很高的性价比和市场[2]。近年来,由于技术改良、电池效率提高及生产成本下降等有利因素,因而大大促进了多晶电池应用技术的发展,也使业内专家学者给予了多晶电池制备技术更多研究和关注[3]。影响多晶电池转换效率主要有2个方面:一是多晶硅铸锭的纯度,即使材料中含有少量的杂质,对电池的光电性能就有很大的影响[4];二是尽量减少材料中各种缺陷,多晶硅铸锭中的晶界、位错与杂质聚集成载流子复合中心,大大的降低了多晶电池效率。由以上表述可知,要提高多晶电池的效率,必须围绕提高材料纯度和降低材料缺陷的技术进行研究,而定向凝固技术正是制备硅晶体材料的典型应用。定向凝固技术开始只用于传统的高温合金研制,经过几十年的发展,它已经是一种成熟的材料制备技术[5]。定向凝固技术在多晶硅铸造主要是控制晶体生长和杂质提纯2方面的应用。定向凝固技术可以很好地控制组织的晶面取向,消除横向晶界,获得大晶粒或单晶组织,提高材料的力学性能[6]。同时,定向凝固可生成按照一定晶面取向、排列整齐的晶体结构,由于分凝系数的不同,杂质凝聚于晶界和铸锭上方,对材料起到提纯作用。 1. 基本原理 多晶硅铸锭实际上就是由定向排列的柱状晶体组合形成,形成的理论基础就

锥光镜下二轴晶矿物干涉图观察试验指导基本要求试验内容

《锥光镜下二轴晶矿物干涉图观察》实验指导 实验类型:综合实验学时:2实验要求:必修 一、基本要求 1.认识二轴晶矿物垂直Bxa切面、垂直光轴切面及斜交切面干涉图的图像特征。 2.学会应用垂直Bxa和垂直光轴切面干涉图测定光性符号的方法。 3.学会利用垂直光轴切面干涉图估测光轴角的方法。 二、实验内容和方法 1.观察白云母垂直Bxa切面干涉图的特征,测定白云母光性符号,并估计2V大小提示:图像特点 (1)0o位置:光轴面与上、下偏光镜振动方向之一平行时,干涉图由一个黑十字和“∞”字形干涉色色圈组成。黑十字交点为Bxa出露点,组成黑十字的两条黑带粗细不等。沿光轴面迹线方向的黑带较细,在两个光轴出露点的位置更细。垂直光轴面方向,黑带较宽,越向外越宽。“∞”字形干涉色色圈以两个光轴为中心,越向外干涉色越高,干涉色色圈也越密。干涉色色圈的多少与矿物的双折率大小及薄片厚度成正比。 (2)45o位置:旋转载物台45o,使光轴面与上、下偏光镜振动方向成45o夹角,黑十字分裂为双曲线黑带,黑带弯曲顶点为光轴出露点,两光轴出露点的连线是光轴面迹线方向,垂直光轴面迹线的方向为Nm方向。 垂直Bxa切面干涉图处于45o位置时,根据两个光轴出露点之间距离大小,表示光轴角的相对大小。 若两个光轴的出露点在视域内,则2V<45o。 若两个光轴的出露点在视域外,则2V>45o。 光轴角越小,双曲线弯曲的顶点距离越近。 (3)90o位置时:干涉图与0o位置时相似,仅粗细黑带及干涉色色圈的位置同时转动了90o。 提示:确定二轴晶光性符号正负要领: (1)Ng>Nm>Np; (2)光轴面法线方向永远是Nm; (3)Bxa=Ng,为二轴晶正光性(+);Bxa=Np,为二轴晶负光性(—)。 2.观察重晶石垂直一个光轴切面干涉图的特征,测定光性符号正负,并估计2V大小提示:图像特点 二轴晶垂直一个光轴切面干涉图相当于垂直Bxa干涉图的一半,光轴出露点位于视域中心,围绕光轴出露点有卵形干涉色色圈。 提示:确定垂直一个光轴切面干涉图的光性符号正负,可把垂直光轴干涉图当成垂直Bxa干涉图的一半,在45o位置时,视域内弯曲黑带的凸方指向Bxa出露点,加入试板,根据补色法则确定光率体椭圆半径的分布,确定Bxa为Ng或Np,从而定出光性符号的正负。 估计光轴角2V的大小:

多晶硅中杂质含量_分布及其检测方法的探讨

2013年7月Jul.2013 化 学工业与工程CHEMICAL INDUSTRY AND ENGINEERING 第30卷Vol.30 第4期No.4 收稿日期:2012-04-25 作者简介:李闻笛(1987-),女,硕士研究生,研究方向为高纯三氯氢硅精馏提纯模拟。 联系人:丛山, E-mail :congshan_tju@yahoo.com.cn 櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓毄 毄 毄 毄 。应用技术 文章编号:1004-9533(2013)04-0073-06 多晶硅中杂质含量、分布及其检测方法的探讨 李闻笛1,廉景燕2 ,丛 山 3* (1.天津大学化工学院,天津300072;2.天津理工大学化学化工学院,天津300384; 3.精馏技术国家工程研究中心,天津300072) 摘要:多晶硅中杂质的组成及含量是衡量多晶硅产品质量的重要指标之一,由于其杂质组成复杂、 含量低于常规检测方法检出限,这就使对多晶硅中杂质含量、分布及检测方法的研究具有重要意义。概述了目前用于检测分析多晶硅中杂质含量、分布的方法及其优缺点;总结了近年来国内外在多晶硅杂质检测方法研究中的进展以及多晶硅中杂质的含量和分布数据,为多晶硅的检测提供了参考。 关键词:多晶硅;杂质;含量;分布;检测方法中图分类号:O657.3 文献标志码:A Discussion of Concentration ,Distribution and Detection Methods of Impurities in Polysilicon LI Wen-di 1,LIAN Jing-yan 2,CONG Shan 3* (1.School of Chemical Engineering and Technology ,Tianjin University ,Tianjin 300072,China ;2.School of Chemistry and Chemical Engineering ,Tianjin University of Technology ,Tianjin 300384,China ; 3.National Engineering Research Center for Distillation Technology ,Tianjin 300072,China ) Abstract :Composition and concentration of impurities in polysilicon are important factors determining the quality of polysilicon production.Due to the complex composition and the trace concentration of impuri-ties which are below the limit of traditional detection methods ,it had great significance for the discussion of concentration and distribution of impurities in polysilicon.In this paper ,the advantages and disadvan-tages of different detection methods used for analysising and detecting the concentration and distribution of impurities were summarized.Progress in research of detection methods and data of concentration as well as distribution were also discussed ,which may provide a reference for the detection of polysilicon.Key words :polysilicon ;impurity ;concentration ;distribution ;detection method 多晶硅产业最大的特点之一就是其对产品质量分数的要求非常高,太阳能级和电子级多晶硅的质量分数分别要求达到至少6N (99.9999%)、8N (99.999999%),而杂质含量也是公认的衡量多晶 硅材料质量的重要参数之一。因此,如何尽可能的除去多晶硅产品中的微量杂质是众多学者研究的重点。要实现微量杂质的脱除,首先就有必要对其中所含的微量杂质进行分析, 确定杂质的组成和含DOI:10.13353/j.issn.1004.9533.2013.04.009

高中化学必修一知识点(第四章)

高中化学必修一知识点(第四章) 第四章非金属及其化合物 第一节无机非金属的主角—硅 一.硅元素的性质有哪些? 无机非金属材料中的主角,在地壳中含量26.3%,次于氧。是一种亲氧元素,以熔点很高的氧化物及硅酸盐形式存在于岩石、沙子和土壤中,占地壳质量90%以上。位于第3周期,第ⅣA族碳的下方。 Si 对比C 最外层有4个电子,主要形成四价的化合物。 二.二氧化硅(SiO2)的性质有哪些? (1)存在形式:天然存在的二氧化硅称为硅石,包括结晶形和无定形。石英是常见的结晶形二氧化硅,其中无色透明的就是水晶,具有彩色环带状或层状的是玛瑙。二氧化硅晶体为立体网状结构,基本单元是[SiO4],因此有良好的物理和化学性质被广泛应用。(玛瑙饰物,石英坩埚,光导纤维) (2)物理性质:熔点高、硬度大、不溶于水、洁净的SiO2无色透光性好。 (3)化学性质:化学稳定性好,除HF外一般不与其他酸反应,可以与强碱(NaOH)反应,属于酸性氧化物,在一定的条件下能与碱性氧化物反应。 ①常温与氢氟酸(HF)反应(SiO2很不活泼,HF是唯一能跟其反应的酸) SiO2+4HF == SiF4 ↑+2H2O

②酸性氧化物:不溶于水,也不与水反应。 与强碱反应:SiO2+2NaOH == Na2SiO3+H2O 与碱性氧化物反应:SiO2+CaO ===高温CaSiO3 所以不能用玻璃瓶装HF,装碱性溶液的试剂瓶应用木塞或胶塞。注: a、实验室盛装NaOH溶液的试剂瓶为什么用橡胶塞而不用玻璃塞? NaOH溶液能与玻璃中的SiO2反应生成Na2SiO3,Na2SiO3的水溶液俗称“水玻璃”,是一种黏合剂,使瓶塞部分粘结而无法打开。因此盛装NaOH溶液的试剂瓶不能用玻璃塞而要用橡胶塞或木塞。 b、实验室为什么不用玻璃瓶盛装氢氟酸? HF能腐蚀玻璃,因此,盛装氢氟酸不能用玻璃试剂瓶而要用塑料瓶。 c、某同学根据SiO2既可与碱反应,也能与氢氟酸反应,推断SiO2为两性氧化物,是否正确? 不正确。因为二氧化硅只跟氢氟酸反应,不跟其它酸反应,而是属于酸性氧化物。 ③在高温下与碳酸盐的反应 SiO2 + Na2CO3===高温CO2↑+ Na2SiO3 SiO2+ CaCO3===高温CO2↑+ CaSiO3 ④弱氧化性 SiO2+2C ===高温Si + 2CO↑ (4)用途 主要用作装饰、石英坩埚、光导纤维。

铸造多晶硅中杂质对少子寿命的影响

铸造多晶硅中杂质对少子寿命的影响 对于太阳电池材料,勺子寿命是衡量材料性能的一个重要参数。多晶硅锭中存在高密度的缺陷和高浓度的杂质(氧、碳以及过渡族金属铁等)。有研究表明,相比于晶界和位错,氧、铁等主要的杂质元素对硅锭中少子寿命的影响更大。 氧是铸造多晶硅材料中最主要的杂质元素之一,间隙氧通常不显电学活性,对少子寿命没有影响。但在晶体生长或热处理时,在不同温度氧会形成热施主、新施主、氧沉淀,氧沉淀会吸引铁等金属元素。另外铁也被认为铸造多晶硅中最常见的有害杂质之一。P型硅中,铁通常与硼结合成铁-硼对,铁一硼对在室温下能稳定存在,但在200℃下热处理或者强光照可以使铁一硼对分解而形成间隙铁离子和硼离子,由于间隙铁离子和铁一硼对少数载流子复合能力的不同,使得处理前后少子寿命值出现变化,从而可以建立起间隙铁浓度对应少子寿命值变化之间的关系。 杂质在铸造多晶硅硅锭中的分布,与该杂质在硅中的分凝系数K有关。在铸造多晶硅锭料由底部向顶部逐渐凝固时,如果杂质的分凝系数K<1,则凝固过程中,固相中的杂质不断地被带到熔体中,出现杂质向底部集中,越接近底部浓度越大,相反,如果分凝系数K>1,则杂质集中在顶部,越接近顶部浓度越大。 氧主要集中在硅锭头部,其浓度呈现从硅锭底部向顶部逐渐降低的趋势。可以认为分凝机制对于氧在熔体硅中的传递和分布起主要作用。间隙铁分布为:头部和尾部浓度较高,中间部分浓度较低,且分布较为均匀。这与仅由分凝机制决定的间隙铁浓度分布,特别是在底部处产生了较大偏离。硅锭底部处出现了较大的间隙铁浓度,由于铁在硅中具有较大的扩散系数,所以这可能是硅锭底部凝固完成后的冷却过程中,铁由坩埚或者氮化硅保护层向其进行固相扩散的结果。事实上硅锭的底部最先开始凝固,通常整个凝固过程将持续数十小时,硅锭底部将有较长时间处于高温状态,因而使得固相扩散的现象有可能发生。固相扩散的程度与凝固后硅锭的冷却速率以及各温度下的铁的扩散系数有关。 从少子寿命的分布图中,可以看出硅锭两端的低寿命区域,对应着过高的间隙铁、氧浓度,因而可以认为高浓度的间隙铁、氧原子形成了有效复合中心,从而导致了硅锭两端低少子寿命区域的出现。

宝玉石的基本概念

宝玉石的基本概念 1、珠宝玉石分为哪两类?这两类又分为什么宝石? 分为天然珠宝玉石和人工宝石。天然珠宝玉石包括天然宝石、天然玉石和天然有机宝石;人工宝石分为合成宝石、拼合宝石、人工宝石和再造宝石。 2、宝玉石一般以什么命名? 一般以宝石的颜色、特殊光学效应、产地、矿物岩石名称、传统名称、人名、译音、生产方法及生产工艺等。 3、天然宝石、人工宝石、优化宝石和处理宝石的命名原则是什么? (1)在天然宝石基本名称前无须加“天然”二字(如金绿宝石、红宝石)。具有星光效应的宝石直接加在宝玉石种属名称前后(如星光红宝、石英猫眼)。 (2)人工宝石命名时,应在宝石前后加上“合成”、“人造”、“再造”、“拼合石”等字样。(如合成红宝石、人再造琥珀、玻璃石榴子拼合石) (3)优化宝石命名时可直接使用珠宝玉石原名称,优化方法可不附注说明。 (4)经处理的宝石定名时要求在基本名称后括号标出“处理”二字。(如蓝宝石(处理)) 4、宝石和玉石的相同点和不同点。 相同点:都是大自然产出的,具有美观、耐久、稀少的特征和工艺价值。 不同点:宝石是矿物单晶体,玉石是单矿物或多矿物集合体。 晶体与非晶体 1、晶体与非晶体的特征是什么? 晶体是具有格子构造的固体,它的内部质点都是作规律排列的,这种规律排列表现为质点在三维空间作周期性的平移重复,构成一定的几何图形。(如刚玉、石英) 而非晶体相反,非晶体的内部质点不作规律排列,不具有格子构造。(如玻璃、琥珀) 2、晶体与非晶体的区别是什么? (1)晶体是具有格子构造的固体;非晶体则不具格子构造。 (2)晶体导热性好,手感凉;非晶体导热性差,手感暖。 (3)晶体有一定的几何外形,非晶体无几何外形。 (4)晶体具有异向性,非晶体不具有异向性。 (5)晶体有固定的熔点,非晶体无固定的熔点。 (6)晶体有对称性,非晶体无对称性。 3、晶体和非晶体通过什么方式可以转化? 晶体可以通过非晶化和玻化变成非晶体,非晶体可以通过晶质化和脱玻化变成晶体。 4、晶体的5个基本性质是什么? (1)自限性:自发形成多面体。

太阳电池用铸造多晶硅结构缺陷和杂质的研究

龙源期刊网 https://www.360docs.net/doc/d71892872.html, 太阳电池用铸造多晶硅结构缺陷和杂质的研究 作者:周秉林 来源:《城市建设理论研究》2013年第14期 摘要:铸造多晶硅作为太阳能电池中的主要光伏材料,受到人们的广泛重视。但多晶硅晶体在生长的过程中不可避免的存在各种缺陷,加之多晶硅中存在氧、碳等杂质,制约了多晶硅电池的效率。因此,研究不同铸锭区域多晶硅材料的性能及其影响因素,是太阳电池与硅材料研究的一个重要课题。 关键词:太阳电池铸造多晶硅结构缺陷杂质 中图分类号:TM911.1 文献标识码:A 文章编号: 1引言 在替代能源中,应用最广泛的是直接从太阳能得到电的太阳电池,而铸造多晶硅作为最主要的光伏材料也引起人们的关注。但在铸造多晶硅晶体的生长过程中,不可避免的会有坩埚的玷污、硅料中已有的各种杂质污染以及热应力导致的各种缺陷。铸造多晶硅中常见的杂质主要是氧、碳及一些过渡金属,如铁、铬、镍、铜等。含有的晶体缺陷主要有晶界和位错两种。这些杂质和缺陷会在禁带中引入缺陷能级,具有很强的复合活性。这就制约了多晶硅电池的效率,使得多晶硅电池与单晶硅电池相比,效率较低。因此,研究不同铸锭区域多晶硅材料的性能及其影响因素,是太阳电池与硅材料研究的一个重要课题。特别是关于铸锭边缘低少子寿命区域的研究,对促进铸造多晶硅晶体生长,提高铸造多晶硅材料有效利用率有着非常重要的作用。 2 铸造多晶硅中的杂质及影响因素 铸造多晶硅是通过对硅原料进行重熔铸锭而成。硅原料主要有两种:其一,半导体工业制备单晶硅剩下的头尾料、锅底料以及没制备成功而产生的废料;其二,原生多晶硅与半导体工业废料或高纯金属硅按一定比例混掺,这是由于光伏产业的高速发展导致半导体工业边角废料生产的多晶硅远远不能满足需求,于是,有的企业便采取这种方式来获得生产电池用的多晶硅。 2.1 硅片的少子寿命及其影响因素 在一定温度下,处于热平衡状态的半导体材料中的载流子浓度是一定的。这 种处于热平衡状态下的载流子则称为平衡载流子,其浓度,称为平衡载流子浓度。

晶体光学考试大纲

晶体光学考试大纲 一、考试性质与范围 《晶体光学》是地质学专业硕士研究生的入学专业基础考试课程。主要考查学生对《晶体光学》基本概念和基本原理的掌握,以及是否具备运用偏光显微镜,在单偏光系统、正交偏光系统和锥光(聚敛偏光)系统下观察和鉴定透明矿物晶体光学性质的基本能力。考试范围包括晶体光学基础、光率体和光性方位、偏光显微镜原理与调节,以及单偏光、正交偏光和锥光(聚敛偏光)系统下晶体的光学性质与测定方法。 二、考试基本要求 考试题目类型因年而异,包括名词解释、选择、填空、判断正误、公式推导、作图、简答和分析论述等不同形式。 考生需要携带铅笔、橡皮、直尺、圆规和量角器。 三、考试形式与分值 本课程由学校自行命题,全国统一考试。采用闭卷笔试形式,考试时间为180分钟,满分为150分。 四、考试内容 1. 晶体光学基础 (1)光的性质与传播;(2)自然光和偏光;(3)光的折射与全反射;(4)折射率与折射率仪;(5)光的双折射;(6)一轴晶和二轴晶 2. 光率体和光性方位 (1)光率体;(2)一轴晶光率体;(3)二轴晶光率体;(4)光率体的主要参数;(5)光性方位 3. 偏光显微镜原理与调节 (1)偏光显微镜的构造;(2)偏光显微镜的光学系统;(3)偏光显微镜的调节;(4)薄片的制作 4. 单偏光系统下晶体的光学性质 (1)形态;(2)解理;(3)颜色;(4)多色性;(5)吸收性;(6)边缘;(7)贝克线;(8)糙面;(9)突起

5. 正交偏光系统下晶体的光学性质 (1)消光现象;(2)消光类型与消光角;(3)干涉原理;(4)干涉色;(5)干涉色级序的确定;(6)补色原理与补色器;(7)延性;(8)双晶 6. 锥光(聚敛偏光)系统下晶体的光学性质 (1)锥光(聚敛偏光)系统;(2)一轴晶的干涉图;(3)二轴晶的干涉图;(4)光性 7. 晶体光学应用 (1)单偏光系统下的性质测定:包括晶形、颜色或多色性、突起与糙面、解理及解理夹角等; (2)正交偏光系统下的性质测定:包括最高干涉色、最大双折射率、消光类型及消光角、延性符号、多色性和吸收性公式、异常干涉色等; (3)锥光(聚敛偏光)系统下的性质测定:包括按干涉图类型确定矿物的轴性、测定光性符号、估计光轴角大小等

多晶硅中碳杂质的来源及控制方法探讨

多晶硅中碳杂质的来源及控制方法探讨 摘要:本文简述了多晶硅生产过程中碳杂质的主要来源:甲烷和甲基氯硅烷,对合成炉、冷氢化两种工艺生成甲基氯硅烷进行了对比,并提出了生产中控制碳杂质的方法。 关键词:多晶硅碳杂质甲烷甲基氯硅烷 一、前言 碳是半导体材料中的主要杂质之一,其严重影响产品的电学性能,使硅器件的击穿电压降低,对大功率可控硅器件危害很大。同时碳与氧共同作用,使杂质对材料和器件性能的影响复杂化,导致其使用寿命缩短;此外多晶硅中高浓度的碳会促进氧沉淀的形成[1],氧沉淀形成会会诱发位错、层错等二次缺陷,这些缺陷会使硅器件漏电流增加,降低了成品率。而多晶硅作为半导体的原材料,其碳含量如果超标,将在后续的加工过程中无法去除,所以,多晶硅生产中就应严格控制碳含量。 目前,多晶硅生产主要采用改良西门子法,其主要原料为三氯氢硅和氢气,其中氢气分为新生氢和回收氢。本文针对改良西门子法生产多晶硅的过程,探讨了还原过程中碳的沉积及生产中的控制方法。 二、多晶硅中碳的来源 1.石墨电极中碳的扩散及反应 碳在多晶硅中大多以替位式存在,其在硅基体中的扩散速度很慢,在还原炉实际反应温度(1100℃左右)替位式碳的扩散系数350℃); Si+HCl→SiH2Cl2(温度<280℃) 合成炉法三氯氢硅合成反应的压力一般在0.05-3MPa下进行。从二甲基二氯硅烷合成条件与三氯氢硅合成对比,可以看出,两者的反应反应温度和反应压力基本相近。 1.2冷氢化法合成三氯氢硅 Si+3HCl→SiHCl3+H2;3SiCl4+Si+2H2→4SiHCl3 冷氢化法合成三氯氢硅一般的操作压力在1.5-3.0MPa下进行,反应温度在500-550℃。 从上述反应条件的对比看,DH和MH的合成原料、催化剂以及反应温度和

相关文档
最新文档