高频感应加热淬火方法及其应用

高频感应加热淬火方法及其应用
高频感应加热淬火方法及其应用

高频感应加热淬火方法及其应用

目前在生产上所应用的成熟方法及其一般应用范围如下。

(1)单液淬火法

它是最简单的淬火方法,常用于形状简单的碳钢和合金钢工件。

把已加热到淬火温度的工件淬入一种淬火介质,使其完全冷却。对碳

钢而言,直径大于3?5 mm 的工件应于水中淬火,更小的工件可在

油中淬火。对各种牌号的合金钢,则以油为常用淬火介质。

由过冷奥氏体转变(等温或连续冷却)动力学曲线看出,过冷奥

氏体在点附近的温度区是比较稳定的。为了减少工件与淬火介质之

间的温差,减小内应力,可以把欲淬火工件,在淬入淬火介质之前,

先空冷一段时间,这种方法称为“预冷淬火法”。

(2)中断淬火法(双淬火介质淬火法)

该种方法是把加热到淬火温度的工件,先在冷却能力强的淬火介

质中冷却至接近M 点,然后转入慢冷的淬火介质中冷却至室温,以

达到在不同淬火冷却温度区间,有比较理想的淬火冷却速度。这样既

保证了获得较高的硬度层和淬硬层深度又可减少内应力及防止发生

淬火开裂。一般用水作快冷淬火介质,用油或空气作慢冷淬火介质,

但较少采用空气。在水中停留时间为每5?6 mm 有效厚度约1 s 。

这种方法的缺点是:对于各种工件很难确定其应在快冷介质中停

留的时间,而对于同种工件,这时间也难控制。在水中冷却时间过长,

将使工件某些部分冷到马氏体点以下,发生马氏体转变,结果可能导

1A

致变形和开裂。反之,如果在水中停留的时间不够,工件尚未冷却到低于奥氏体最不稳定的温度,发生珠光体型转变,导致淬火硬度不足。

此外,还应考虑:当工件自水中取出后,由于心部温度总是高于表面温度,若取出过早,心部存的热量过多,将会阻止表面冷却,使表面温度回升,致使已粹成的马氏体回火,未转变的奥氏体发生珠光体或贝氏体转变。

由于迄今仍未找到兼有水、油优点的淬火介质,所以尽管这种方法在水中保持的时间较难确定和控制,但对只能在水中淬硬的碳素工具钢仍多采用此法。当然,这就要求淬火操作者有足够熟练的技术。中断淬火法也可以另种方式进行,即把工件从奥氏体化温度直接淬入水中,保持一定时间后,取出在空气中停留。由于心部热量的外传使表面又被加热回火,同时沿工件截面温差减小,然后再将工件淬入水中保持很短时间,再取出在空气中停留,如此往复数次,最后在油中或空气中冷却。显然这种方法不能得到很高的硬度,主要用于碳钢的大型工件,以减少在水中淬火时的内应力。

(3)喷射淬火法

这种方法就是向工件喷射水流的淬火方法,水流可大可小,视所要求的淬火深度而定。用这种方法淬火,不会在工件表面形成蒸气膜,这样就能够保证得到比普通水中淬火更深的淬硬层。为了消除因水流之间冷却能力不同所造成的冷却不均匀现象,水流应细密,最好同时工件上下运动或旋转。这种方法主要用于局部淬火。用于局部淬火时,因未经水冷的部分冷却较慢,为了避免已淬火部分受未淬火部分残留

热量的影响,工件一旦全黑,立即将整个工件淬人水中或油中。

(4)分级淬火法

把工件由奥氏体化温度萍人高于该种钢马氏体开始转变温度的

淬火介质中,在其中冷却直至工件各部分温度达到淬火介质的温度,然后缓冷至室温,发生马氏体转变。这种方法不仅减少了热应力,而且由于马氏体转变前,工件各部分温度已趋于均匀,因而马氏体转变的不同时现象也减少。

分级淬火只适用于尺寸较小的工件,对于较大的工件,由于冷却介质的温度较高,工件冷却较缓慢,因而很难达到其临界淬火速度。

某些临界淬火速度较小的合金钢没有不要采用此方法,因为在油中淬火也不至于造成很大内应力。反之,若采用分级淬火来代替油淬,其生产效率并不能显著提高。

淬火介质的温度(“分级”温度)可高于或略低于马氏体点,当低于马氏体点时,由于温度比较低,冷却较剧烈,故可用于较大改进的淬火。

各种碳素工具钢和合金钢(

M=200~250℃)淬火时,分级温度

s

选择在250℃附近,但更经常选用120~150℃,甚至100℃。

分级温度选在低于

M点,是否还谓之分级淬火,尚有待商榷。

s

因为一般分级淬火的概念是在分级温度等温后,取出缓冷时才发生马氏体转变,但在低于

M点以下的温度等温后已发生了大量马氏体转

s

变。

分级保持时间应短于在该分级温度下奥氏体等温分解孕育期,但

应尽量使工件内外温度均匀。分级后处于奥氏体状态的工件,具有较大的塑性(相变超塑性),因而创造了进行工件的矫直和矫正的条件。这对工具具有特别重要的意义。因而高于

M点分级温度的分级淬火,

s

广泛地应用于工具制造业。对碳钢来说,这种分级淬火适用于直径

8~10mm工具。

若分级淬火温度低于

M点,因工件自淬火剂中取出时,已有一

s

部分奥体氏转变成马氏体,上述奥体氏状态下的矫直就不能利用,但这种方法用于尺寸较大的工件(碳钢工具可达10~15mm直径)时,不引起应力及淬火裂缝,故仍被广泛利用。

(5)等温淬火法

工件淬火加热后,若长期保持在下贝氏体转变区的温度,使之完成奥体氏的等温转变,获得下贝氏体组织,这种淬火称为等温淬火等温淬火于分级淬火的区别在于前者获得下贝氏体组织。

进行等温淬火的目的是为了降低变形少,硬度较高并兼有良好韧性的工件。因为下贝氏体的硬度较高而韧性又好,在等温淬火时冷却又较慢,贝氏体的比体积也较小,热应力、组织应力均很小,故形状变形和体积变形也较小。

等温淬火用的淬火介质于分级淬火相同。

高频感应加热设备应用中的高效节能措施

高频感应加热设备应用中的高效节能措施 摘要:我国的高频感应加热设备是五十年代初期引进了前苏联的设备技术,六 十年代我国才有了自己制造的高频感应加热设备,到七十年代有了改进型的新结 构产品。高频感应加热设备耗能高,输出功率低。采用新型高效节能措施对阳极 供电主电路、栅极电路、震荡管及振荡槽路等进行改造,改造后设备运行稳定可靠,故障率大大降低,输出功率提高,产品质量提高,原辅材料利用率提高,维 修费用降低,企业的综合经济效益得了到明显提高。 关键词:高频感应加热设备:振荡管:槽路电容器:高压硅整流:节能措施。 一、现代高效节能型感应加热设备具备的特征 (一)要有适应多种工艺需求的机型,即要有多种功率档次和各种频率档次,要有多种线路形式供用户选用。 (二)要使用高效节能的工业用电子管。 (三)阳极供电主电路要用高压硅整流器和调压装置。 (四)槽路及隔直流电容器要用新型板式、筒式和高压云母电容器其耐压要 高于二十千伏。 有了上述条件设备就调试容易,操作方便,故障率低,耗能低等性能,现代 高效节能型加热设备的效率可达到百分之六十以上,比原来设备高出很多,从经 济效益上讲可提高一倍以上,但与发达国家先比仍存在一些差距,要赶上世界先 进水平还需广大应用界和理论界的同仁一起努力。 二、应用中的高效节能措施 高效节能是国家战略方针,是企业降低成本提高效益有效途径。高频感应加 热的应用,与其他加工手段相比用电容量大,其利用率只有25—45%,当前国家 对节能减排非常重视,电力部门把高频加热节能问题放到首要位置,提高效率对 高效节能是一个综合指标,是由许多方面因素构成的,按照各主要因素性质分别 对待,能达到这一综合指标是有意的。 三、设备的选用 高频感应加热设备对感应加热工作的成败,效率高低,能耗的大小,产品质 量的好坏起着重要作用。高频设备自身的技术指标有功率、频率、线路结构及外 围设施等区别,我们就要根据感应加热工作所需的功率、容量、频率档次、工艺 加工对线路结构的要求进行选择,有几种技术指标的选择进行探讨。 四、关于功率的选择 感应加热设备所需要的功率,要看其被加工件的大小,单个加工时间的长短 而定,也就是要按照工件所耗用高频电能的多少和加工速度来选择设备的功率档次。当前用于淬火、焊接、熔炼等设备从10KW—400KW等,设备标定功率是指 振荡功率,不是工件上吸收的功率,而工件上能够得到的功率只有标定功率的40—70%,选用设备时要加以考虑。对于工件所需功率可以用下式计算,即在一 秒钟的时间内使M公斤的材料温度升高T(℃)所需的功率:P′=4.186MCT (KW),式中的C是材料比热,金属的比热是随着温度的上升变化的特别铁磁 材料更为显著。 五、旧设备的节能改造 旧设备是指八十年代以前生产的部分设备,属于旧式设备的范畴,其共同特 点是:(1)阳极供电采用闸流管整流调压。(2)所使用的电子管为广播发射电 子管。(3)槽路和隔直电容器为罐式的,随着科学技术的发展,为了提高工作

感应加热设备原理及用途

电磁感应加热的是感应加热电源产生的交变电流通过感应器(即线圈)产生交变磁场,导磁性物体置于其中切割交变磁力线,从而在物体内部产生交变的电流(即涡流),涡流使物体内部的原子高速无规则运动,原子互相碰撞、摩擦而产生热能,从而起到加热物品的效果。即是通过把电能转化为磁能,使被加热钢体感应到磁能而发热的一种加热方式。这种方式它从根本上解决了电热片,电热圈等电阻式通过热传导方式加热的效率低下问题。 简单说,电磁感应加热的原理就是利用电、磁、热能间的转换达到使被加热物体自身发热的效果。电磁感应加热设备其本质就是利用电磁感应在柱体内产生涡流来给加热工件的电加热,它是把电能转换为电磁能,再由电磁能转换为电能,电能在金属内部转变为热能,达到加热金属的目的,从而杜绝了明火在加热过程中的危害和干扰,是一种环保,国家提倡的加热方案。 感应加热设备专业名词解释: 1、感应线圈又称为感应器 采用紫铜管线材绕成的线圈制作而成。 2、内孔感应器

加热空心内表面用的感应器。 3、感应线圈导磁体 按技术要求需要平面或其他异形工件感应加热的位置,用于改变磁场分布以满足加热要求或减轻感应器邻近物体发热。 4、可调匝比淬火变压器 为了能适应各种淬火工件和感应器的电感而制作的高频变压器。 5、感应淬火机床 用于卡装工件并能根据工艺要求使淬火工件位置能上下移动或旋转的机械装置。 感应加热设备的应用领域: 1、焊接:刃具、钻具、刀具、木工刀具、车刀、钎头、钎焊、铰刀、铣刀、钻头、锯片锯齿、眼镜行业的镜架、钢管、铜管的焊接、截齿焊接、同种异种金属的焊接、压缩机、压力表、继电器接触点、不锈钢锅底不同材料的复合焊接、变压器绕组铜线的焊接、贮藏(气灌嘴的焊接、不锈钢餐、厨具的焊接)。 2、热处理:齿轮、机床导轨、五金工具、气动工具、电动工具、液压件、球墨铸铁、汽摩配、内配等机械金属零件(表面、内孔、局部、整体)的淬火、退

高频淬火原理及工艺解析

高频淬火含义与原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、含义 高频淬火多数用于工业金属零件表面淬火,是使工件表面产生一定的感应电流,迅速加热零件表面,然后迅速淬火的一种金属热处理方法。感应加热设备,即对工件进行感应加热,以进行表面淬火的设备。感应加热的原理:工件放到感应器内,感应器一般是输入中频或高频交流电(1000-300000Hz或更高)的空心铜管。产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个集肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000℃,而心部温度升高很小。 二、原理 利用电流的集肤效应,在零件表面形成电流进而加热工件,实现心部和表面不同的热处理状态; 其中根据电流频率的不同分为工频、中频和高频。分别针对不同的淬硬深度和工件大小。高频(10KHZ以上)加热的深度为0.5-2.5mm, 一般用于中小型零件的加热,如小模数齿轮及中小轴类零件等。 高频淬火多数用于工业金属零件表面淬火,是使工件表面产生一定的感应电流,迅速加热

零件表面,然后迅速淬火的一种金属热处理方法。感应加热设备,即对工件进行感应加热,以进行表面淬火的设备。感应加热的原理:工件放到感应器内,感应器一般是输入中频或高频交流电(1000-300000Hz或更高)的空心铜管。 产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个趋肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000℃,而心部温度升高很小。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

高频感应加热淬火

材料:45钢 工艺情况:高频感应加热淬火 浸蚀方法:4%硝酸酒精溶液浸蚀 组织说明: 图1:表面淬硬层组织:粗大针状马氏体。 由于感应加热功率高,致使表面温度偏高,约900℃以上,因而使晶粒快速增大,在随后的急冷中得到极粗大的针状马氏体。按标准评定相当于1级,属过热组织。中碳钢的含碳在0.4%~0.5%之间,当感应加热奥氏体化后,淬火急冷中得到马氏体针呈瘦长排列的特征,它不同于高碳钢淬火后的马氏体来得肥大。 图2:表面基体呈较粗针状马氏体组织。按JB/T9204-1999《钢件感应淬火金相检验》标准评定相当于3级,属过热组织。 瘦长的针状马氏体比图1的略为短小,晶粒亦较细一些,但仍属加热偏高的组织,必须调整加热参数使工件表面奥氏体化温度下降,才能得到较细的马氏体组织。 图3:表面基体呈中等针状马氏体组织,按JB/T9204-1999《钢件感应淬火金相检验》标准评定相当于4级,属正常组织。 马氏体针状较短,说明表面奥氏体化瞬时加热温度适中,这样在淬火后才能得到正常的马氏体组织。 图4:呈较细针状马氏体,按JB/T9204-1999《钢件感应淬火金相检验》标准评定相当于5~6级/属合格的正常组织。硬度可达55.0HRC。马氏体较短,针状不甚明显,属加热温度恰到好处。估计其表面感应加热的温度近850~860℃,才能得到这样细的马氏体组织,这也是接近极限温度,若再低就会出现托氏体欠热组织。 图5:表面组织为马氏体及黑色托氏体和微量铁素体的混合组织,按 JB/T9204-1999《钢件感应淬火金相检验》标准评定相当于8~9级,属欠热组织。硬度为48.0HRC。 图中灰白色基体为马氏体组织,很细,故而针状不明显。黑色团状区为托氏体组织。这是由于奥氏体化温度不足,在冷却时低于临界冷却速度故而形成奥氏体的分解产物—托氏体组织。并在托氏体中有少量白色小颗粒,是未溶解的铁素体组织。托氏体和铁素体组织均为降低基体硬度的组织,属不完全淬火,对高频淬火来讲,属不合格组织。 图6:表面组织为马氏体及托氏体和较多的铁素体混合组织。按 JB/T9204-1999《钢件感应淬火金相检验》标准评定相当于9~10级,属欠热组织。硬度为45.0HRC。 图中灰白色为马氏体组织,很细,分不清针状,这是由于加热温度偏低的原因。黑色为托氏体,托氏体中间夹有白色条块状铁素体是属于未溶解的组织。这是由于表面加热温度偏低即低于相变温度,致使奥氏体化温度不够,故得到不均匀的混合组织。

表面淬火工艺

淬火.退火.正火工艺 ◆表面淬火 ? 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 ? 感应加热表面淬火 感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应加热表面淬火与普通淬火比具有如下优点: 1.热源在工件表层,加热速度快,热效率高 2.工件因不是整体加热,变形小 3.工件加热时间短,表面氧化脱碳量少 4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命 5.设备紧凑,使用方便,劳动条件好 6.便于机械化和自动化 7.不仅用在表面淬火还可用在穿透加热与化学热处理等。 ? 感应加热的基本原理 将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。 ? 感应表面淬火后的性能 1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3 个单位(HRC)。 2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。 3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。 ◆退火工艺 退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 ? 退火的目的 ①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 ②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。 ③消除钢中的内应力,以防止变形和开裂。 1

45钢高频淬火

45钢高频淬火性能研究 学号: 姓名:

45钢高频淬火性能研究 45钢经过调质处理后,有良好的综合性能,广泛应用于各种重要零件,如连杆,齿轮,轴类,不同的热处理工艺得到不同的工艺性能。 本文研究了感应加热表面淬火对于45钢组织性能的影响,采用感应加热表面淬火技术对45钢进行表面强化,对所获得试件的淬硬层进行显微硬度测试。利用金相显微镜对试件淬硬层的组织、厚度进行研究分析。同时与正火并调质件进行硬度、金相组织等方面的比较。结果表明经过高频感应加热淬火后45钢的表面性能明显改善,表面为淬火马氏体,而心部仍为正火组织,使得试件既耐磨又有很强的韧性,所得的工艺参数将被作为生产实践的参考依据。 关键词: 45钢高频感应淬火金相硬度

目录 第一章前言.............................................. 错误!未定义书签。(一)感应加热淬火工艺概述.. (1) (二)感应加热淬火技术特点 (2) (三)高频感应淬火技术的应用.......................... -错误!未定义书签。(四)感应加热淬火技术的发展............................ 错误!未定义书签。(五)感应淬火常见问题及原因............................ 错误!未定义书签。(六)45钢齿轮热处理................................... 错误!未定义书签。第2章工艺方案制定与实验过程............................ 错误!未定义书签。(一)工艺设定.......................................... 错误!未定义书签。(二)实验过程.......................................... 错误!未定义书签。 (1)实验目的......................................... 错误!未定义书签。 (2)实验材料......................................... 错误!未定义书签。 第3章实验结果及分析.................................... 错误!未定义书签。(一)硬度分析.. (12) (二)结论.............................................. 错误!未定义书签。 致谢 (12) 参考文献.................................................. 错误!未定义书签。

高频感应加热的原理【详解】

高频感应加热的原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 高频感应加热机的主要用途为:金属热处理、金属淬火、金属退火、金属回火、金属透热、金属的钎焊、银焊、铜焊、金属热型、金属熔炼、金属埋植塑料等。 高频感应加热机是目前对金属、非金属材料加热效率*、速度*快,低耗节能环保型的感应加 热设备。高频机全称“高频感应加热机”,又名高频加热机、高频感应加热设备、高频感应 加热装置、高频加热电源、高频电源、高频焊接机、高周波感应加热机、高周波感应加热器 (焊接器)等,另外还有中频感应加热设备、超高频感应加热设备等。应用范围十分广泛。 高频感应加热机的原理 感应加热是利用导体在高频磁场作用下产生的感应电流(涡流损耗)以及导体内磁场的作用 (磁滞损耗)引起导体自身发热而进行加热的。 当金属导体处在一个高频交变电场中,根据法拉第电磁感应定律,将在金属导体内产生感应 电动势,由于导体的电阻很小,从而产生强大的感应电流。由焦耳—楞次定律可知,交变 磁场将使导体中电流趋向导体表面流通,引起集肤效应,舜间电流的密度与频率成正比,频 率越高,感应电流密度集中于导体的表面,即集肤效应就越严重,有效的导电面积减少,电 阻增大,从而使导体迅速升温。 导体有电流通过时,在其周围就同时产生磁场,高频电流流向被绕制成环状或其它形状的电 感线圈(通常是用紫铜管制作)。由此在线圈内产生极性瞬间变化的强磁束,将被加热的金属 物质放置在感应线圈内,磁束就会贯通整个被加热物质,在被加热物质内部与加热电流相反 的方向产生很大的涡流,由于被加热金属物质的电阻产生焦耳热,使金属物质自身的温度迅

高频感应加热表面淬火实验报告

竭诚为您提供优质文档/双击可除高频感应加热表面淬火实验报告 篇一:高频感应加热表面淬火-验证 高频感应加热表面淬火 一、实验目的 1、了解感应加热的原理; 2、了解电流透入深度与材料电阻率及电流频率之间的关系; 3、了解淬硬层深度的测定方法; 4、掌握高频感应加热淬火的方法。 二、实验原理 1.电磁感应 当感应线圈通以交流电时,在感应线圈的内部和周围同时产生与电流频率相同的交变磁场,将工件置于高频感应线圈内,受电流交变磁场的作用,在工件内相应地产生感应电流,这种感应电流在金属工件内自行闭合,称为涡流。其感应电动势瞬时值为: d?e??K d?

式中,K-比例系数;ф-工件上感应电流回路包围面积上的总磁通;dф/dτ-磁通量变化率;负号表示感应电动势方向与磁通量变化率方向相反。 工件中感应出来的涡流方向,在每一瞬时和感应线圈中的电流方向相反。涡流强度If取决于感应电动势(e)及工件涡流回路的电抗(Z),而电抗Z由电阻R和感抗(xL)组成,则涡流强度: eeIf?? Z 2 R2?xL 2.表面效应 涡流强度If随高频电磁场强度由工件表面向内层逐渐减小而相应减小的规律称为表面效应或集肤效应。离表面x 处的涡流强度: x? Ix?I0?e 式中,I0-表面最大的涡流强度;x-到工件表面的距离;Δ-与工件材料物理性质有关的系数。 所以,当x=0时,Ix=I0 当x>0时,Ix<I0 1

?0.368(:高频感应加热表面淬火实验报告)I0e 工程规定,当涡流强度从表面向内层降低到表面最大涡流强度的36.8%(即1 I0?)时,由该处到表面的距离Δ称为电流透入深度。e 在感应加热实践中,钢中电流透入深度的计算常常使用下列简化公式: 20 在20℃时:?20?(mm) f500 在800℃时:?20?(mm) f ? 当x=Δ时,Ix?I0? 式中,f-感应线圈交流电频率。 3.淬硬层深度 工件经感应加热淬火后的金相组织与加热温度沿截面 分布有关,一般可分为淬硬层、过渡层及心部组织三部分。还与钢的化学成分、淬火规范、工件尺寸等因素有关;如果加热层较深,在淬硬层中存在马氏体+贝氏体或马氏体+贝氏体+屈氏体+少量铁素体混合组织。此外,奥氏体化不均匀,淬火后还可以观察到高碳马氏体和低碳马氏体混合组织。 工件经感应淬火后可以用金相法、硬度法或酸蚀发测定

高频感应加热设备的工作原理、特点、适应行业及主要用途

高频感应加热设备多用于小型工件的深层加热、红冲、煅压、退火、回火、调质,表面淬火,中等直径的管材加热和焊接、热装配,小齿轮淬火等。下面给大家详细的介绍一下这款设备: 工作原理 可以使金属物体瞬间被加热到所需的任何温度,包括其熔点;不需要象其它加热方式那样,先产生高温后再去加热被它加热的金属物体,可以在金属物中直接产生高温;不但可以使金属物体整体加热,也可以选择性地对每个部位进行局部加热;是一种加热方式的革命,同样是电能加热,它却可以比电炉、电烘箱等节电百分之四十。 特点 高频感应加热机采用IGBT功放,软开关谐振双调控及频率自动跟踪系统,MOSFET器件和独特的变频技术,高频运行稳定。高周波感应加热机具务恒定电流和功率控制功能,极大的优化了金属加热过程。 高频感应加热机,在同等条件下具有比传统的高周波电子管加热设备省电50%,无高周波辐射、无高周波干拢。减少了电力负荷和电力增容,具有100%的满负载设计,高频感应加热机可连续二十四小时不间断工作。 高周波感应加热机,具有自动加热、保温、冷却三段时间功能设定,有利于提高高频感应加热机的加热质量,简化人工操作。可根据功率和频率选择高频感

应加热机电源,高周波频率越高,加热深度越浅,高周波频率越低透热性越好。感应加热机1~20KHZ的高周波频率自动跟踪。 适应行业 高周波感应焊接、高周波感应热处理、高周波感应金属熔炼等。如:硬质合金锯片、金刚石刀具、钻具、车刀、刨刀、铣刀、铰刀等刃具的焊接;标准件、螺栓、电力工具、五金工具、手工工具的热处理; 钳子、扳手、旋具、锤子、斧头、汽车配件、曲轴、连杆、活塞销、曲柄销、链轮、凸轮轴、气门、各种摇臂、摇臂轴;变速箱内各种齿轮、花键轴、传支半轴、各种小轴、各种拨叉等高频淬火的处理。 高频感应加热机的主要用途为 金属热处理、金属淬火、金属退火、金属回火、金属透热、金属的钎焊、银焊、铜焊、金属热型、金属熔炼、金属埋植塑料等。 维护 在空气环境较差的场所使用时,应防止灰尘进入机器内部,绝不能有水溅入机内。要保持冷却水的清洁,定期更换。高温环境应保持空气流通。 以上就是为大家介绍的关于高频感应加热设备的工作原理、特点、适应行业及主要用途的相关内容,希望对大家有所帮助!

热处理--表面淬火技术

我所关注的表面工程领域——表面淬火技术 一、表面淬火技术的原理和分类 采用特定热源将钢铁材料表面快速加热到Ac3(对亚共析钢)或者Ac1(对过共析钢)之上,然后使其快速冷却并发生马氏体相变,形成表面强化层的工艺过程,就称为表面淬火技术。实际上,不仅仅是钢铁,凡是能通过整体强化的金属材料,原则上都可以进行表面淬火。需要注意的是,表面淬火只对工件的表面或部分表面进行热处理,所以只改变表层的组织,使其表面硬度、耐磨性和疲劳强度均高。而心部或其它部分的组织仍保留原来的低硬度、高塑性和高韧性的性能,这样工件截面上由于组织不同性能也就不同。表面淬火便于实现机械化、自动化,质量稳定,变形小,热处理周期短,费用少,成本低,还可用碳钢代替一些合金钢。 对于表面淬火的使用材料,原则上,碳的质量分数在0.35%--1.20%的中、高碳钢及基体相当于中碳钢的普通灰铸铁、球墨铸铁、可锻铸铁、合金铸铁均可以实现表面淬火,但中碳钢与球墨铸铁是最适宜于表面淬火的材料。 根据加热方法不同,表面淬火可分为感应加热(高频、中频、工频)表面淬火、火焰加热表面淬火、激光加热表面淬火、电子束表面淬火、接触电阻加热表面淬火、电解液加热表面淬火等。工业上应用最多的为感应加热、火焰加热、激光加热表面淬火。这里我主要介绍了感应加热、激光加热表面淬火技术,以及感应加热表面淬火国内外的发展现状及趋势。 二、感应加热表面淬火 感应加热表面淬火法是采用一定方法使工件表面产生一定频率的感应电流,将零件表面迅速加热,然后迅速淬火冷却的一种热处理操作方法。生产中把工件放入由空心铜管绕成的感应线圈中,当感应线圈通以交流电时,便会在工件内部感应产生频率相同、方向相反的感应电流。感应电流在工件内自成回路,故称为“涡流”。涡流在工件截面上的分布是不均匀的,表面电流密度最大,心部电流密度几乎为零,这种现象称为集肤效应。由于钢本身具有电阻,因而集中于工件表面的涡流,几秒种可使工件表面温度升至800~1000℃,而心部温度仍接近室温,在随即喷水(合金钢浸油)快速冷却后,就达到了表面淬火的目的。 根据输出加热电流频率的不同可将感应加热表面淬火分为高频感应加热淬

高频淬火和中频淬火的区别

高频淬火和中频淬火的区别 1、高频淬火淬硬层浅(1.5~2mm)、硬度高、工件不易氧化、变形小、淬火质量好、生产效率高,适用于摩擦条件下工作的零件,如一般较小的齿轮、轴类(所用材料为45号钢、40Cr); 2、中频淬火淬硬层较深(3~5mm),适用于承受扭曲、压力负荷的零件,如曲轴、大齿轮、磨床主轴等(所用材料为45号钢、40Cr、9Mn2V和球墨铸铁)。 感应加热表面淬火,是利用电磁感应、集肤效应、涡流和电阻热等电磁原理,使工件表层快速加热,并快速冷却的热处理工艺 感应加热表面淬火时,将工件放在铜管制成的感应器内,当一定频率的交流电通过感应器时,处于交变磁场中的工件产生感应电流,由于集肤效应和涡流的作用,工件表层的高密度交流电产生的电阻热,迅速加热工件表层,很快达到淬火温度,随即喷水冷却,工件表层被淬硬 感应加热时,工件截面上感应电流的分布状态与电流频率有关。电流频率愈高,集肤效应愈强,感应电流集中的表层就愈薄,这样加热层深度与淬硬层深度也就愈薄 因此,可通过调节电流频率来获得不同的淬硬层深度。常用感应加热种类及应用见表5-3 感应加热速度极快,只需几秒或十几秒。淬火层马氏体组织细小,机械性能好。工件表面不易氧化脱碳,变形也小,而且淬硬层深度易控

制,质量稳定,操作简单,特别适合大批量生产 常用于中碳钢或中碳低合金钢工件,例如45、40Cr、40MnB等。也可用于高碳工具钢或铸铁件,一般零件淬硬层深度约为半径的1/10时,即可得到强度、耐疲劳性和韧性的良好配合。感应加热表面淬火不宜用于形状复杂的工件,因感应器制作困难 表5-3 感应加热种类及应用范围 感应加热类型常用频率一般淬硬层深度/m m 应用范围 高频感应加热 200~1000kHz 0.5~2.5 中小模数齿轮及中小尺寸的轴类零件 中频感应加热 2500~8000Hz 2~10 较大尺寸的轴和大中模数齿轮 工频感应加热火 50Hz 10~20 较大直径零件穿透加热,大直径 零件如轧辊、火车车轮的表面淬超音频感应加热 30~36kHz 淬硬层能沿工件轮廓分中小模数齿轮 表面热处理是通过改变零件表层组织,以获得硬度很高的马氏体,而保留心部韧性和塑性(即表面淬火), 或同时改变表层的化学成分,以获得耐蚀、耐酸、耐碱性,及表面硬度比前者更高(即化学热处理)的方法。

高频淬火原理与应用

高频淬火原理及应用 线圈通以高频电流,产生高频磁场,在铁磁性材料中产生感生电流,由于趋肤效应,感生电流聚积于材料的表面产生热,达到相变温度。激冷达到淬火目的。 感应加热与其它加热炉传导、对流或辐射使工件到达加热温度相比,它具有完全不同的加热原理。其基本原理是:把加热材料(即工件)置于通有交流电流的线圈内,由于交变磁场的作用工件内部会产生感应电势,在感生电势的作用下工件内会产生涡流,依靠这些涡流的能量达到加热目的。 通过热高频淬火多数用于工业金属零件表面淬火,是使工件表面产生一定的感应电流,迅速加热零件表面,然后迅速淬火的一种金属热处理方法。感应加热设备,即对工件进行感应加热,以进行表面淬火的设备。感应加热的原理:工件放到感应器内,感应器一般是输入中频或高频交流电(1000-300000Hz或更高)的空心铜管。产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个集肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000ºC,而心部温度升高很小

词语解释 感应加热频率的选择:根据热处理及加热深度的要求选择频率,频率越高加热的深度越浅。 一、高频(10KHZ以上)加热的深度为0.5-2.5mm, 一般用于中小型零件的加热,如小模数齿轮及中小轴类零件等。 二、中频(1~10KHZ)加热深度为2-10mm,一般用于直径大的轴类和大中模数的齿轮加热。 三、工频(50HZ)加热淬硬层深度为10-20mm,一般用于较大尺寸零件的透热,大直径零件(直径300mm以上,如轧辊等)的表面淬火。 感应加热淬火表层淬硬层的深度,取决于交流电的频率,一般是频率高加热深度浅,淬硬层深度也就浅。频率f与加热深度δ的关系,有如下经验公式:δ=20/√f(20°C);δ=500/√f(800°C)。 式中:f为频率,单位为Hz;δ为加热深度,单位为毫米(mm)。 感应加热表面淬火具有表面质量好,脆性小,淬火表面不易氧化脱碳,变形小等优点,所以感应加热设备在金属表面热处理中得到了广泛应用。 感应加热设备是产生特定频率感应电流,进行感应加热及表面淬火处理的设备。

演示文档感应加热表面淬火基本原理.doc

感应加热表面淬火基本原理 感应加热表面淬火的应用及基本原理分析。 一、应用 承受扭转、弯曲等交变负荷作用的工件,要求表面层承受比心部更高的应力或耐磨性,需对工件表面提出强化要求,适于含碳量We=0.40~0.50%钢材。 二、工艺方法 快速加热与立即淬火冷却相结合。 通过快速加热使待加工钢件表面达到淬火温度,不等热量传到中心即迅速冷却,仅使表层淬硬为马氏体,中心仍为未淬火的原来塑性、韧性较好的退火(或正火及调质)组织。 三、主要方法 感应加热表面淬火(高频、中频、工频),火焰加热表面淬火,电接触加热表面淬火,电解液加热表面淬火,激光加热表面淬火,电子束加热表面淬火。 四、感应加热表面淬火 (一)基本原理: 将工件放在用空心铜管绕成的感应器内,通入中频或高频交流电后,在工件表面形成同频率的的感应电流,将零件表面迅速加热(几秒钟内即可升温800~1000度,心部仍接近室温)后立即喷水冷却(或浸油淬火),使工件表面层淬硬。(如下图所示) (二)加热频率的选用 室温时感应电流流入工件表层的深度δ(mm)与电流频率f(HZ)的关系为 频率升高,电流透入深度降低,淬透层降低。 常用的电流频率有: 1、高频加热:100~500KHZ,常用200~300KHZ,为电子管式高频加热,淬硬层深为0.5~2. 5mm,适于中小型零件。 2、中频加热:电流频率为500~10000HZ,常用2500~8000HZ,电源设备为机械式中频加热装置或可控硅中频发生器。淬硬层深度~10 mm。适于较大直径的轴类、中大齿轮等。 3、工频加热:电流频率为50HZ。采用机械式工频加热电源设备,淬硬层深可达10~20mm,适于大直径工件的表面淬火。

感应加热表面淬火常见缺陷分析及预防方法

感应加热表面淬火常见缺陷分析及预防方法 硬度不足火软点、软带 1.淬火件含碳量过低应预先化验材料化学成分,保证淬火件ωc>0.4% 2.表面氧化、脱碳严重淬火前要清理零件表面的油污、斑迹和氧化皮 3. 加热温度太低或加热时间太短正确调整电参数和感应器与工件件相对运动速度,以提高加热温度和延长保温时间。可以返淬,但淬前应进行感应加热退火。 4.零件旋转速度和零件(感应器)移动速度不协调而形成软带调整零件转速和零件(或感应器)移动速度。 5.感应圈高度不够火感应器中有氧化皮适当增加感应圈高度,经常清理感应器。 6.汇流条之间距离太大调整汇流条之间距离为1-3mm。 7.淬火介质中优杂质或乳化剂老化更滑淬火介质。 8.冷却水压力太低锅冷却不及时增加水压,加大冷却水流量,加热后及时喷水冷却。 9.零件在感应器中的位置偏心或零件弯曲严重调整零件和感应器的相对位置,使个边间隙相等;如是零件弯曲严重,淬火钱应进行校直处理。 淬硬层深不足 1.频率过高导致涡流透入深度过浅调整电参数,降低感应加热频率。 2.连续淬火加热时零件与感应器之间相对运动速度过快采用预热-加热淬火。 3.加热时间过短可以返淬,但返淬前应金属感应加热退火。 淬硬层剥落 产生的原因是表面淬硬层硬度梯度太大,或硬化层太浅,表面马氏体组织导致体积膨胀等。应对措施是正确调整电参数,采用预热-加热淬火,加深过渡层深度。

淬火开裂 1.钢中碳和锰的含量偏高可在试淬试调整工艺参数,也可调整淬火介质, 2.钢中夹杂物多、呈网状或成分有偏析或含有有害元素多检查非金属夹杂物含量和分布状况,毛坯需要反复锻造。 3.倾角处或键槽等尖角处加热时出现瞬时高温而淬裂中尖角倒圆,淬火前用石棉绳火金属棒料堵塞沟槽、空洞。 4.冷却速度过大而且不均匀降低水压,减少喷水量,缩短喷水时间。 5. 淬火介质选择不当更具工艺要求选择合适的淬火介质。 6.回火不及时或回火不足淬火后应及时回火,淬火与回火之间的停留时间,对于碳钢或铸件不应超过4h,合金钢不应超过0.5h。回火不足时应延长回火时间。 7.材料淬透性偏高可以选用冷却速度慢的淬火介质。 8.返修件未经退火火正火返修件必须经过退火、正火后,才能再次感应加热淬火。 齿轮淬火畸变 1.圆柱齿轮内孔一般缩小0.01-0.05mm,外径不变或缩小0.01-0.03mm。应对方法是:在满足淬硬层要求前提下,采用较大的比功率,缩短加热时间;端面加盖,防止内孔过早冷却;齿坯加盖后,先进行一次高频正火,然后加工内孔和铣齿。 2. 对于内外径之比小于1.5的薄壁齿轮,内孔和外径优胀大的趋势,双联齿轮呈喇叭口。只有合理设计,正确安排工艺路线。 频率和深度成反比。 影响因素有: 1.基体组织情况:越均匀的组织得到的深度越深。 2.保温时间:保温时间长对增加深度。但是不要太长,记住,感应淬火尽量不要采用传导加热。

感应淬火常见问题及解决措施

中频炉感应淬火件常见淬火缺陷,主要有硬度不够、软块、变形超差与淬火裂纹,还有局部烧熔等。 1、表面淬火后硬度不够: 表面淬火后硬度不够是罪常见的问题,其原因亦是多方面的。 1)材料因素 ①火花鉴别法:这是最简单的方法,检查工件在砂轮上磨出的火花,可大致知道工件的含碳量是否有变化,含碳量越高,火花越多。 ②直读光谱仪鉴别钢材的成分,现代化的直读光谱仪能在极短的时间内,将工件材料的各种元素及其含量进行检验并打印出来,可确定钢材是否符合图样要求。 ③排除工件表面贫碳或脱碳因素,较常见的冷拔钢材,材料表面有一层贫碳或脱碳层,此时表面硬度低,使用砂轮或锉刀去掉0.5mm后,再测定硬度,如果发现该处硬度比外面为高,并达到要求,这表面工件表面有贫碳或脱碳层。为进一步验证此问题,可用金相显微镜观察,表面贫碳层得组织与次层得显微组织明显不同,表面只有少量托氏体及大量铁素体,而次层则为马氏体,如果将此样品在保护气体下正火后在检验, 表层只有少量珠光体,而次层则有该钢号应有的珠光体面积,如45 钢,珠光体面积接近50%。 2)淬火加热温度不够或预冷时间长 淬火加热温度不够或预冷时间太长,致使淬火时温度太低。以中碳钢为例,前者淬火组织中含有大量未溶铁素体,后者其组织为托氏体或索氏体。 3)冷却不足 ①特别在扫描淬火时,由于喷液区域太短,工件淬火后,经过喷液区后,心部热量又使表面自回火(阶梯轴大台阶在上位时最易产生),此时表面自回火温度过高,常能从表面颜色及温度感测到。 ②一次加热法时,冷却时间太短,自回火温度过高,或由于喷液孔因水垢减少了喷液孔截面积,导致自回火温度过高(带喷液孔的齿轮淬火感应器,最易产生次弊病)。 ③淬火液温度过高,流量减少,浓度变化,淬火液中混有油污等。 ④喷液孔局部堵塞,其特点是局部硬度不足,软块区常与喷液孔堵塞位置相对应。 感应加热设备之表面热处理表面淬火常见缺陷及对策 信息编辑:郑州高氏发布时间:2012-06-21 用交流电流流向被卷曲成环状的导体(通常为铜管),由此产生磁束,将金属放置其中,磁束就会贯通金属体,在与磁束自缴的方向产生窝电流(旋转电流)这感应电流在窝电流的影响下产生发热用这样的加热方式就是感应加

使用感应加热设备对工件淬火的技术要求

使用感应加热设备对工件进行淬火的技 术要求 从工件(零件)加工的整体行业来讲,大部分厂家都会对工件进行淬火处理,主要目的是进一步提升工件的质量,从而确保工件能够有更长的使用周期。随着技术革新和发展,这一技术已经在我国被广泛应用。 下面我们就需要了解下使用比亚特自动化感应加热设备时需要注意的技术要求。 一、针对工件的表面硬度 不同种类、不同性能要求的零件其表面硬度推荐数据如下 硬度值HRC 适用的性能范围 58-63 高耐磨性的工件 52-63 较高耐磨性和较高强度的零件 48-58 适用于花键轴、齿轮和具有一定的耐磨性和强度的零件45-55 适用于着重提高强度并有一定耐磨性的零件 42-52 适用于耐冲击且具有一定强度和耐磨性的零件 渗碳淬火后的零件,要求局部(如螺纹)回火时,回火后的硬度一般要求小于45HRC 二、硬化区 一般是按照零件图纸要求

三、工件硬化深度 可根据如下数据:0.5-1.5mm、1.0-2.5 mm 、1.5-3.0 mm、2.0-4.0 mm、3.0-5.0 mm 及4.0-7.0 mm 四、金相组织 以部颁金相标准为准。硬度下限值得要求大于或等于55HRC时,其淬火组织3-7级合格。硬度下限值得要求低于55HRC时,当硬度符合要求的前提下,淬火组织3-9级合格。 通过长期的实验,我们都会了解到比亚特自动化感应加热表面淬火设备是利用电磁感应的原理,使零件在交变磁场中切割磁力线,在表面产生感应电流,又根据交流电的集肤效应,以涡流形式将零件表面快速加热,而后急冷的淬火方 法。它在热处理领域中占有重要地位。

虽然,感应加热淬火工艺是符合大部分工件加工厂家的需求。但是在实际应用过程中,还是有一定的缺陷,一方面是在操作方面,要有严格的淬火时间限制及温度把握,另一方面是比亚特感应加热设备的选择是否符合厂家的需求。例如:感应加热淬火裂纹、变形(内孔胀缩和齿形变化)、硬度不足或软垫硬度缺陷等等(1.工件局部过热,则会导致淬火开裂。2.对于轴类或者长条形工件加热厚度不均时,会容易产生变形。3.对于冷却时间以及操作把握不准的情况下,会产生硬度不足。这几点应值得大家注意),因此大家在选择感应加热设备时需要结合生产的工件的种类来决定感应加热淬火设备的种类(尤其是要结合厂家的需求来设计感应器)。

高频感应加热设备的安全操作

高频感应加热设备的安全操作 高频感应加热设备主要为电子(真空)管,产生高频电磁振荡,电功率为10~200kW,机内最高电压约为15kV。因此,要求设备内绝缘性能必须良好,机壳等有关部分必须可靠接地。操作工位应放置绝缘橡胶垫。设备旁应设有防护木栏杆,涂红白相间的油漆。挂高压电危险标志。高频间应光线明亮、通风良好,室内温度应控制在15~35℃。安装排风装置,以排除工件加热时所散发的油烟废气。由于高频设备的频率为30~500 KHz,会产生射频幅射。当人体吸收一定辐射量后,会发生生物学变化,生物学变化随波长减短(频率增高)而增加表现为神经衰弱症候群和植物神经系统功能紊乱。因此对设备的辐射场源(如高频变压器、馈电线、工作电容、耦合电容及感应器等),应采取屏蔽措施。为防止电磁波外漏而影响附近(约100m内)的电子设备和无线电通讯,还应将全室屏蔽,要保证工作环境的辐射强度在规定范围以内(电场强度E≤20V/m;磁场强度H≤5A/m。操作时应注意: (1) 必须有两人以上方可操作高频设备,并指定操作负责人。穿戴好绝缘鞋、绝缘手套和其它规定的防护用品。 (2) 操作者必须熟悉高频设备的操作规程,开机前应检查设备冷却系统是否正常,正常后方可送电,并严格按操作规程进行操作。 (3) 工作前应关好全部机门,机门应装电气联锁装置,保证机门未关前不能送电。高压合上后,不得随意到机后活动,严禁打开机门。(4) 工件应去除毛刺、铁屑和油污,否则在加热时容易与感应器产生打

弧现象。打弧现产生的电弧光既会损伤视力,也容易打坏感应器和损坏设备。 (5) 高频设备应保持清洁、干燥和无尘土,工作中发现异常现象,首先应切断高压电,再检查排除故障。 必须有专人检修高频设备,打开机门后,首先用电棒对阳极、栅极、电容器等放电,然后再开始检修,严禁带电抢修。 (6) 使用淬火机床,应遵守有关电气、机械和液压传动的安全规程。在移动淬火机床时,应防止倾倒。

恒进先进的感应淬火技术

1、电源 国外IGBT、MOSFET和SIT全固态晶体管电源技术逐步成熟,并已商品化、系列化,目前有1200kW、50kHz;50~100kHz、30~600kW;300kW、80kHz;低频段有取代晶闸管电源趋势;MOSFET多采用并联振荡电路,SIT多采用串联谐振电路,功率高达1000 kW、频率200kHz和400kW、400kHz。它们都是电子管式高频电源的理想替代产品。当输出功率与电子管电源相同时,节电35%~40%,节省安装面积50%,节约冷却水40%~50%。随着科技的进步,在高频感应淬火领域,MOSFET有望取代SIT。 2、淬火机床 感应淬火机床更加趋向自动化,CNC控制逐渐增多,自动分检零件与自动识别进机零件功能的机床增多。 (1)通用淬火机床 通用淬火机床朝柔性化方向发展,一台淬火机床可以对不同性能要求的不同零件感应加热淬火。德国研制的一种曲轴淬火机床,法兰件感应淬火柔性加工系统略加调整能处理不同尺寸的相似工件;对于轴类零件在一定直径范围内(如30mm)与长度300~800 mm范围内,对于相似淬火要求的轴类零件,淬火机能自动编制14种程序,自动识别进机零件;Robotron.Eiotherm最近推出了双主轴立式淬火机,在一个紧凑的工艺单元内进行工件的淬火与回火,能处理轮轴、三槽套及其他万向节件,转换工件只需2~5min,用计算机编程,根据工件号在2 min 内就可调出有关工艺数据;一汽引进的GH公司数控淬火设备通用性强、自动化程度,在复杂零件上可实现多段变功变速,编程容易、操作方便。图1是GH公司的数控淬火机床。 (2)专用淬火机床 专用淬火机床更加专用化,采用机械手上下零件,加热、淬火、回火、校直、检查完全自动进行。先进的计算机控制技术可以监控并屏幕显示淬火过程和工艺参数,跟踪全部操作过程,如发现故障或工艺参数偏离给定值,便自动修正或自动列出不合格零件,使控制系统暂停工作并报警,同时屏幕上显示故障性质和所要修正的动作。更先进的控制系统还适应材料化学成分的波动,并自动调整比功率或加热时间,以保证感应淬火零件的质量。例如日本高周波热炼株式会社川崎工厂的卧式半轴淬火机床,上尾厂可同时淬三根半轴,群马厂可同时淬两根半轴,机床实际上是感应热处理生产线,全过程除校直、荧光探伤检查需一名工人外,其余全部自动进行。 (3)机器人的应用 日本高周波热炼株式会社制造的一台立式通用淬火机床上配置一台机器人,机器人将一个二匝的感应器进行依次平面扫描,使一块塑料板变色,虽然使用电源功率只3 kW,但也可以看出机器人在感应热处理中的应用趋势。 (4)机电一体化 将电源、淬火机床、冷却系统组成成套装置,具有占地面积小、生产效率高、一次安装调试容易等优点。国外最近问世的曲轴固定加热淬火装置占地面积仅为组合式成套装置的1/4。 3、淬火工艺 (1)静止式曲轴感应淬火 采用静止式曲轴感应淬火新技术的最初的两台装置在福特公司V6和V8曲轴淬火和回火工艺中得以应用,表现出了良好的市场前景。其特点是:加热时间

感应表面淬火.

感应加热表面淬火 感应加热表面淬火是利用电磁感应加热原理,使零件在交变磁场中切割力线,在表面产生感应电流,又根据交流电集肤效应,以涡流形式将零件表面快速加热,而后急冷的淬火方法。它在热处理领域中占有重要地位,这一技术已经在我国被广泛应用。 感应加热表面淬火的使用频率不同,可以分为超高频(27MHz)、高频(200~250KHz)、中频(2500~8000HZ)和工频(50HZ)。由于电流频率不同,加热时感应电流透入深度不同。使用高频时,感应电流透入深度很小(约0.5mm),主要用于小模数齿轮和小轴类零件的表面淬火;使用中频时,感应电流透入深度(约5~10mm),主要用于中、小模数的齿轮、凸轮轴、曲轴的表面淬火;使用超高频时,感应电源透入深度极小,主要用于锯齿、刀刃、薄件的表面淬火;使用工频时,电流透入深度较大(超过10mm),主要用于冷轧辊表面淬火。 感应加热表面淬火是表淬火方法中比较好的一种,因此,受到普遍的重视和广泛应用。与传统热处理相比,它有以下的优点。 (1)感应加热属于内热源直接加热,热损失小,因此加热速度快,热效率高。 (2)加热过程中,由于加热时间短,零件表面氧化脱碳少,与其他的热处理相比,零件废品率根低。 (3)感应加热淬火后零件表面的硬度高,心部保持较好的塑性和韧性,呈现低的缺口敏感性,故冲击韧性、疲劳强度和耐磨性等有很大的提 高。 (4)感应加热设备紧凑,占地面积小,使用简便(即操作方便)。 (5)生产过程清洁,无高温,劳动条件好。 (6)能进行选择性加热。 (7)感应加热表面淬火的机械零件脆性小,同时还能提高零件的力学性能(如屈服点、抗拉强度、疲劳强度),同样经过感应加热表面淬火 的钢制零件的淬火硬度也高于普通加热炉的淬火硬度。

相关文档
最新文档