光纤激光器的应用及发展综述

光纤激光器的应用及发展综述
光纤激光器的应用及发展综述

万方数据

万方数据

光纤激光器的应用及发展综述

作者:胡人文

作者单位:电子科技大学 四川 成都610054

刊名:

科技信息

英文刊名:Science & Technology Information

年,卷(期):2012(33)

引用本文格式:胡人文光纤激光器的应用及发展综述[期刊论文]-科技信息 2012(33)

2010最新脉冲光纤激光器说明书(一体机)

脉冲光纤激光器使用说明书

安全信息 在使用该产品之前,请先阅读和了解这份用户手册并熟悉我们为您提供的信息。 这份用户手册提供了重要的产品操作,安全以及其他信息给您以及所有将来的用户作参考。为了确保操作安全和产品的最佳性能,请遵循以下注意和警告事项以及该手册的其他信息去操作。 ●锐科公司脉冲光纤激光器是IV级的激光产品。在打开24VDC电源前,要确保连 接是正确的24VDC的电源并确认正负极,错误连接电源,将会损坏激光器。 ●该激光器在1064nm波长范围内发出超过5W、10W、15W、20W、25W、30W(根 据不同激光器型号)的激光辐射。避免眼睛和皮肤接触到光输出端直接发出或散射出来的辐射。 ●不要打开机器,因为没有可供用户使用的产品零件或配件。所有保养或维修只能在 锐科公司内进行。 ●不要直接观看输出头,在操作该机器时要确保长期配戴激光安全眼镜。 安全标识及位置 上面二个安全标识符号表示有激光辐射,我们把这符号标在产品光纤盒体盖顶上。

目录 1.产品描述 (1) 1.1 产品描述 (1) 1.2实际配置清单 (1) 1.3使用环境要求及注意事项 (1) 1.4技术参数 (2) 2.安装 (3) 2.1 安装尺寸图 (3) 2.2 安装方法 (4) 3.控制接口 (5) 4.操作程序 (6) 4.1 前期检查工作 (6) 4.2 操作步骤 (6) 4.3打标过程中应注意的事项 (6) 5.质保及返修、退货流程 (7) 5.1一般保修 (7) 5.2保修的限定性 (7) 5.3服务和维修 (7)

1.产品描述 1.1 产品描述 锐科脉冲激光器是是为高速和高效的激光打标系统而专门发展的。为工业激光打标机和其它应用提供了一款理想的高功率激光能量源。 脉冲激光器相对于传统的激光器,能够对每瓦的泵浦光转换效率提高10倍以上,低能量消耗的自动设计,适合实验室或室外操作。精巧,可独立放置,可随时使用,能够直接嵌入用户的设备上。 激光器可发出1064nm波长的脉冲激光,通过工业激光器标准接口来控制,激光器需要使用24V直流供电。 1.2实际配置清单 请根据图表1参考所包括的清单。 表1 1.3使用环境要求及注意事项 脉冲激光器需使用24VDC±1V直流电。 1)注意:使用激光器时要将接地线可靠接地。 2)没有内置可供使用的零件,所有维修应由合格的锐科人员来进行,为了防止电击, 请不要损坏标签和揭开盖子,否则产品的任何损坏将不被保修。 3)激光器的输出头是与光缆相连接的,使用时请小心处理输出头,防止灰尘或其它污 染,清洁输出端透镜时请使用专用的镜头纸。激光器没有安装在系统设备上且不 出光的时候,请将光隔离器保护罩盖好以免灰尘污染。

光纤激光器原理

光纤激光器原理 光纤激光器主要由泵浦源,耦合器,掺稀土元素光纤,谐振腔等部件构成。泵浦源由一个或多个大功率激光二极管阵列构成,其发出的泵浦光经特殊的泵浦结构耦合入作为增益介质的掺稀土元素光纤,泵浦波长上的光子被掺杂光纤介质吸收,形成粒子数反转,受激发射的光波经谐振腔镜的反馈和振荡形成激光输出。 光纤激光器特点 光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好,无需庞大的制冷系统,具有高转换效率,低阈值, 光纤激光器原理图1: 峰值功率:脉冲激光器,顾名思义,它输出的激光是一个一个脉

冲,每单个脉冲有一个持续时间,比如说10 ns(纳秒),一般称作单个脉冲宽度,或单个脉冲持续时间,我们用t 表示。这种激光器可以发出一连串脉冲,比如,1 秒钟发出10 个脉冲,或者有的就发出一个脉冲。这时,我们就说脉冲重复(频)率前者为10,后者为1,那么,1 秒钟发出10 个脉冲,它的脉冲重复周期为0.1 秒,而1 秒钟发出1 个脉冲,那么,它的脉冲重复周期为1 秒,我们用T 表示这个脉冲重复周期。 如果单个脉冲的能量为E,那么E/T 称作脉冲激光器的平均功率,这是在一个周期内的平均值。例如, E = 50 mJ(毫焦),T = 0.1 秒,那么,平均功率P平均= 50 mJ/0.1 s = 500 mW。 如果用 E 除以t,即有激光输出的这段时间内的功率,一般称作峰值功率(peak power),例如,在前面的例子中E = 50 mJ, t = 10 ns, P峰值= 50 ×10^(-3)/[10×10^(-9)] = 5×10^6 W = 5 MW(兆瓦),由于脉冲宽度t 很小,它的峰值功率很大。 脉冲能量E=1mj 脉宽t=100ns 重复频率20-80K 脉冲持续时间T=1s/2k=?秒 平均功率P=E/T=0.001J/0.00005s=20W P峰值功率=E/t 激光的分类: 激光按波段分,可分为可见光、红外、紫外、X光、多波长可调谐,目前工业用红外及紫外激光。例如CO2激光器10.64um红外

光纤激光器文献综述

科技文献检索与应用 ——激光技术在生物医学上的应用 激光自从问世以来,已被广泛应用于生活中,尤其是在生物医学上面。它也给我们人类带来了更大的方面和利益,使更多的不可能成为了可能。下面我将从我搜索到的五篇科技文献中举例说明激光在医学上的重大作用。第一,激光热疗。以激光进行高温治疗的激光热疗法,已成为肿瘤热疗的一种新的有效手段。用于热疗的激光主要使用可见光及近红外激光,但由于该波段激光对组织的穿透有限,因此,激光热疗法具有一定的局限性。研究报道,利用光吸收染料能够选择性地增强肿瘤部位的热损伤,提高肿瘤治疗效果。最新研究表明,一种新颖的纳米材料——碳纳米管,在近红外区域对激光能量具有强烈吸收效应,并将光能量迅速转化为热能,产生的热效应导致了细胞的立刻崩溃。由于生物组织在近红外区的光吸收很弱,因此这种新颖的纳米材料因其独特的近红外光吸收性和光稳定性,能有效地代替光吸收染料在激光热疗中的应用。在研究单壁碳纳米管增强近红外区激光热疗效果的实验中,我们可以发现,单壁碳纳米管明显增强980 nm 激光的杀伤效应,并且此杀伤效应具有光剂量和单壁碳纳米管剂量依赖性。激光治疗组虽能抑制肿瘤生长,但激光穿透能力有限,不能有效地损伤深层肿瘤组织,所以易复发。而激光+ 单壁碳纳米管治疗组相对于激光治疗组,能更加有效地损伤肿瘤及深层肿瘤组织、抑制肿瘤生长。碳纳米管的应用显著地增强了激光热疗的效果。【1】第二,激光诱导击穿光谱。激光诱导击穿光谱在生物医学这一领域中正逐步吸引越来越多的科学家的兴趣,具有重要的应用价值和发展前景。基于激光与固体、液体、气体和气溶胶相互作用的介电击穿产生的等离子体发射称为激光诱导击穿光谱(laser induced breakdown spectroscopy,LIBS)技术。用光谱仪直接收集样品表面等离子体产生的发射谱线信号,从理论上可根据发射光谱的强度进行定量分析。在激光脉冲的作用下,LIBS 发射谱线的形成过程如图1 所示。【2】这是激光诱导击穿光谱的原理所在。 LIBS 在生物医学领域已经有了很广泛的应用。例如:分析人体或头发中的矿物元素、测量人体皮肤中Zn 的含量、分析钙化物质、识别和检测生物气溶胶、检测和识别细菌和识别恶性肿瘤组织等。总之,LIBS 技术是一种先进的元素分析技术,经过40 多年的发展,LIBS 技术已经获得了长足发展和广泛应用,目前LIBS 仪器在国外已实现商业化生产。第三,激光针灸。激光针灸就是以低强度激光束直接或聚焦或扩束照射穴位的穴区表面或深部,对穴位进行有效的刺激,起到疏通经络、调节脏腑、行气活血和平衡阴阳等作用,从而达到扶正祛邪、治病保健的目的。与传统针灸相比,激光针灸既除能达到针灸治疗的效果外,,还具有无痛、无菌、安全、易控、可调等特点,因此患者更易于接受。激光的灸疗主要是基于激光生物组织的热效应。【3】由于激光照射穴除

光纤激光器简介

目录 第一章、激光基础 第二章、激光器 第三章、光纤的特性 第四章、光纤激光器 第五章、实验室激光器型号及操作安全

第一章激光基础 1.1什么是激光? 激光在我国最初被称为“莱赛”,即英语“Laser”的译音,而“Laser”是“Light amplification by stimulated emission of radiation”的缩写。意为“辐射的受激发射光放大”,大约在1964年,根据钱学森院士的建议,改名为“激光”。激光是通过人工方式,用光或者放电等强能量激发特定的物质而产生的光。 激光的四大特性:高亮度、高单色性、高方向性、高相干性。具有高亮度的激光束经过透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其能够加工几乎所有材料。由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。 1.2激光产生的基本理论 1.2.1原子能级和辐射跃迁 按照玻尔的氢原子理论,绕原子核高速旋转的电子具有一系列不连续的轨道,这些轨道称为能级,如图1-1。 图1-1 原子能级图

当电子在不同的能级时,原子系统的能量是不相同的,能量最低的能级称为基态。当电子由于外界的作用从较低的能级跃迁到较高的能级时,原子的能量增 图1-2 电子跃迁图 加,从外界吸收能量。反之,电子从较高能级跃迁到较低能级时,向外界发出能量。在这个过程中,若原子吸收或发出的能量是光能(辐射能),则称此过程为辐射跃迁。发出或吸收的光的频率满足普朗克公式(hv=E2-E1)。 1.2.2受激吸收、自发辐射、和受激辐射 受激吸收:处于低能级上的原子,吸收外来能量后跃迁到高能级,则称之为受激吸收。 自发辐射:由于物质有趋于最低能量的本能,处于高能级上的原子总是要自发跃迁到低能级上去,如果跃迁中发出光子,则这个过程称为自发辐射。

大功率光纤激光器研究的最新进展

大功率光纤激光器研究的最新进展 敖经盛2012301020071 (武汉大学物理科学与技术学院,湖北省武汉市430072) 摘要:大功率光纤激光器具有光束质量好、寿命长、转换效率高的优点,其主 要性能已明显优于其他激光器。随着技术的进步,大功率光纤激光器还在不断取得发展突破。本文就大功率光纤激光器研究的一些关键技术的最新进展做了简要介绍。 关键词:光纤激光器;大功率;最新进展 引言: 光纤激光器具有众多令人瞩目的优点,如其波导结构与传输光纤相同,易于与传输光纤集成和耦合;基质材料具有很好的散热特性和热稳定性;与传统固体激光器相比,光纤激光器损耗小、阈值低、效率高,容易实现小巧、紧凑的结构设计,因此光纤激光器在光纤通信、传感、工业加工、国防和军事等领域被广泛应用。 近年来,光纤激光器输出功率快速增长,大功率光纤激光器几项关键技术的研究都取得了较大突破,增益光纤有了多种新型结构设计的掺杂光纤(如双包层光纤、光子晶体光纤等);泵浦耦合技术实现了端面、侧面泵浦等多种耦合方式。光纤激光器光束合成技术的研究也取得了较多成果。下文我们详细介绍这些技术的原理及最新进展。 1.光纤激光器的原理 光纤激光器主要由泵浦源,耦合光学系统,增益光纤,谐振腔,准直光学系统等部件构成。泵浦源由一个或多个大功率激光二极管阵列构成,其发出的泵浦光经特殊的泵浦结构耦合入作为增益介质的掺稀土元素光纤,泵浦波长上的光子被掺杂光纤介质吸收,形成粒子数反转,受激发射的光波经谐振腔镜的反馈和振荡形成激光输出。

图1 光纤激光器原理图(引自文献【1】) 2.高功率光纤激光器的关键技术 2.1 增益光纤制作技术 2.1.1稀土掺杂双包层石英光纤 稀土掺杂双包层石英光纤技术最早由美国宝丽来公司和英国南安普敦大学于20 世纪80 年代末期提出。【2】它有效解决了光纤激光器中泵浦光功率与增益光纤之间的耦合效率问题,显著提高光纤激光器输出功率。稀土掺杂双包层石英光纤的研制技术因此成为了高功率光纤激光器的关键技术之一。 双包层光纤由纤芯、内包层、外包层和保护层构成,如图2所示。它比普通单模光纤增加了1 个内包层作为多模泵浦光的传输波导,泵浦光在内包层中传输时不断穿越纤芯而被其中的稀土离子吸收,并产生单模激光由纤芯波导输出。 图2 双包层光纤的结构示意图 为了使内包层中传输的泵浦光更多次地穿越掺有稀土离子的纤芯,增加泵浦长度,提高泵浦效率,研究人员提出了不同形状的内包层结构。圆形结构由于不需要额外加工,制造工艺简单,容易实现与带尾纤的泵浦光源耦合,是最先研制和使用的内包层结构。但完美的圆形对称造成内包层中存在大量的螺旋光,这部分泵浦光不经过纤芯,不被稀土离子吸收,大大降低了泵浦光的利用率。【3】后来,又逐渐研制出不同形状的内包层,如偏芯圆形、矩形、正方形、D 形、梅花形、六边形、八角形等。 但是目前非圆形的双包层光纤还存在生产工艺复杂,稳定性和一致性差,其双折射特性没有圆形保偏双包层光纤好的问题。这些问题应该可以通过技术的改进,生产工艺的改善而很快得到解决。

新外观W连续光纤激光器说明书文件

C1500W-2200W 连续光纤激光器 说明书 武汉锐科光纤激光技术股份有限公司Wuhan Raycus Fiber Laser Technologies Co., Ltd.

目录 1安全信息 (3) 1.1安全标识 (3) 1.2激光安全等级 (3) 1.3光学安全 (4) 1.4电学安全 (4) 1.5其他安全注意事项 (4) 2 产品说明 (5) 2.1产品特性 (5) 2.2实际配置清单 (5) 2.3开箱及检查 (5) 2.4运行环境 (6) 2.5注意事项 (6) 2.6产品性能 (7) 3安装 (8) 3.1安装尺寸图 (8) 3.2安装注意事项 (9) 3.3冷却系统要求 (11) 4产品的使用 (13) 4.1前面板 (13) 4.2后面板 (14) 4.3电源连接 (16) 4.4控制接口定义 (17) 4.5激光器工作模式及控制模式 (20) 4.6控制模式的设置 (21) 4.7超级终端模式 (21)

4.8 RS-232模式 (27) 4.9 AD模式 (30) 4.10红光控制 (33) 5常见故障及处理措施 (33) 5.1故障记录及故障的发生 (33) 5.2故障处理 (34) 6质保及返修、退货流程 (35) 6.1一般保修 (35) 6.2保修的限定性 (35) 6.3技术支持及产品维修 (36)

感谢您选择锐科光纤激光器,本用户手册为您提供了重要的安全、操作、维护及其它方面的信息。故在使用该产品之前,请先仔细阅读本用户手册。为了确保操作安全和产品运行在最佳状态,请遵守以下注意和警告事项以及该手册中的其他信息。 1.1安全标识 警告 注意 1.2激光安全等级 根据欧洲标准EN 60825-1,条款9,该系列激光器属于4类激光仪器。该产品发出波长在1080nm或1080nm附近的激光辐射,且由输出头辐射出的平均光功率为1500W~2200W(取决于机器型号)。直接或间接的暴露于这样的光强度之下会对眼睛或皮肤造成伤害。尽管该辐射不可见,光束仍会对视网膜或眼角膜造成不可恢复的伤害。在激光器运行时必须全程佩戴合适且经过认证的激光防护眼镜。 警告 全防护眼镜是具有激光波长防护选择性。故请用户选择符合产品激 光输出波段的激光安全防护眼镜。即使佩戴了激光安全防护眼镜, 在激光器通电时

高功率光纤激光器发展概况

2009年第12 期 中文核心期刊 高功率光纤激光器发展概况 Survey of high-power fiber lasers ZHANG Jing-song (Electronic communications technology department, Shenzhen Institute of Information Technology,Shenzhen Guangdong 518029,China) Abstract :High-power fiber lasers have wide applications in the filed of optical communication,printing,marking,material processing,medicine etc.High-power fiber lasers may substitute conventional lasers large-ly,have new application of laser,broaden the scope of laser industry.The history and recent development of high-power fiber lasers home and aboard are surveyed.The prospect of high-power fiber lasers is discussed.Key words :high-power fiber laser,double-clad fiber,cladding pump 张劲松 (深圳信息职业技术学院电子通信技术系,广东深圳518029) 摘要:高功率光纤激光器以其优越的性能和超值的价格,在光通信、印刷、打标、材料加工、医疗等领域 有着广阔的应用,将会很大程度上替代传统激光器,并开辟一些新的激光应用领域,扩大激光产业的规模。概述国内外高功率光纤激光器的发展历史与现状。展望了高功率光纤激光器的发展前景。 关键词:大功率光纤激光器;双包层光纤;包层泵浦中图分类号:TN248 文献标识码:A 文章编号:1002-5561(2009)12-0008-03 0引言 从1960年第一台激光器(美国Maiman 等首先用红宝石晶体获得了激光输出)问世到现在近50年过去了,激光技术确如人们所期,渗入了各行各业:通信、生物技术、医学、印刷、制造、军事、娱乐业等。在某些领域,它已经成为不可替代的核心技术。但是激光产业规模还不够大,究其原因,不是人类不需要激光,而是传统激光器不好用:成本高、效率低、故障多。 光纤激光器的出现带来了扩大激光产业规模的希望。光纤激光器激光光束质量好,电-光转换效率高,输出功率大;所有的半导体器件及光纤组件都可以融接成一体,避免了元件的分立,可靠性得到极大提高。 1国外高功率光纤激光器发展概况 光纤激光器的最早有关研究可以追溯到20世纪 60年代初期,当时激光器刚刚出现不久,人们对激光 器的研究投入了极大热情,积极研制开发各种新型激光器。1961年,美国光学公司的E.Snitzer 等在光纤激 光器领域进行了开创性的工作,他们利用棒状掺钕(Nd 3+)玻璃波导获得了波长1.06μm 的激光。 20世纪70年代,光纤通信的研究开始起步,新兴 的光纤通信系统对新型光源的需求极大地刺激了激光器的研究工作。但由于人们的注意力集中到迅猛发展的半导体激光器技术上,以及光纤激光器自身的一些当时无法克服的困难,光纤激光器的研究逐渐沉寂下来。尽管如此,仍然取得了一些值得一提的成就。例如,1973年,J.Stone 等成功地研制出能够在室温下连续工作的掺钕光纤激光器,他们采用的半导体注入型激光器终端泵浦方式对以后实用型光纤激光器的研究具有重要的意义。 20世纪80年代,英国Southampton 大学的S.B.Poole 等用MCVD 法成功地制备了低损耗的掺钕和掺 铒光纤,因为掺铒光纤光纤激光器的激射波长恰好位于通信光纤的1.55μm 低损耗窗口,人们开始认识到光纤放大器和光纤激光器在提高传输速率和延长传输距离等方面无疑将给光纤通信带来一场革命。掺铒光纤放大器(EDFA )得到了迅速的发展并成为一项成熟的应用技术。但是,光纤通信用的光纤激光器输出功率一般都是毫瓦级,一直以来只局限于光通讯等领域;同时由于巨大的行业差距,几乎无人把它与激光 收稿日期:2009-08-31。 作者简介:张劲松(1969-),男,博士,高工,现主要从事光纤激光器、放大器等方面的研究。 ⑧

关于光纤激光器的研究综述

关于光纤激光器的研究综述 前言 光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,作为第三代激光技术的代表,具有其他激光器无可比拟的技术优越性。由于其具有绝对理想的光束质量、超高的转换效率、成本低、高稳定性以及体积小等优点,对传统的激光行业产生巨大而积极的影响。这导致了光纤激光器在近年来成为激光中的热门领域。 本文查找了以“锁模技术”“光纤激光器”“非线性偏振旋转”“超短脉冲”为主要关键字的有关的28篇文献,这些论文主要集中在激光,量子,光子等领域。锁模光纤激光器因其紧凑小巧,成本低和光束质量好等优点,近年来获得快速发展, 从发表论文的统计分析上来看,近三年年发表的文章数量占文章总数的大部分,并呈逐年增加趋势,由此可见近几年学者对光纤激光器的研究呈明显上升趋势。而在这其中大部分文章都涉及锁模光纤激光器与掺杂光纤激光器,尤其是 ++光纤激光器。它们在实用方面的优点对传统的被动锁模光纤激光器,掺33 , Yb Er 激光行业产生巨大而积极的影响,这导致了光纤激光器在近年来成为激光中的热门领域。 正文 1 锁模光纤激光器 锁模光纤激光器因其紧凑小巧、成本低和光束质量好等优点,近年来获得快速的发展。根据其锁模的原理,锁模光纤激光器可分为三类:主动锁模光纤激光器、被动锁模光纤激光器,主被动混合锁模光纤激光器。 主动锁模光纤激光器又可分为调制型锁模和注入型锁模两类。调制型主动锁模光纤激光器通常利用LiNbO3晶体作为调制器实现锁模,既可以进行振幅调制也可以进行相位调制,而注入型锁模光纤激光器主要有两种形式:一是利用行波半导体光放大器的非线性增益调制特性实现主动锁模;二是利用光纤的价差相位调制效应进行主动锁模。但主动锁模光纤激光器想走向实用化,稳定性问题是必须要解决的。 被动锁模光纤激光器通常利用半导体的可饱和吸收效应或光纤中的非线性效应作为锁模机制,它一般不需要外接施加的调制信号。半导体可饱和吸收锁模激光器的优点是容易实现激光器的自启动,而且脉冲的重复频率较稳定,脉宽小,但因为其不是全光纤的结构,故在实际应用中响应速度交大。基于光纤非线性的锁模激光器可实现全光纤的结构,克服了半导体可饱和吸收体被动锁模的缺点,响应时间小。 主被动混合锁模光纤激光器是以上两种的有机结合,因为主动锁模光纤激光器的弛豫震荡和超模噪声劣化了输出脉冲的质量,而被动锁模光纤激光器输出脉冲重复率受光纤长度的限制不可能提高,而且不容易调整和控制,所以利用主被动混合的技术,可以优化这些不足,获得最好的效果。这类激光器具有体积小、

激光器说明书

大功率激光器说明书 KEEN-EYES大功率激光器是我公司根据刑侦工作的需要开发研制的专用痕迹提取设备。采用国际最新大功率激光技术。先进的石英光纤传输,具有输出功率大,色谱纯正,操作简单,携带方便等特点。一;技术指标: 1电源电压交流220V。输入功率300瓦。 2可分离式电源盒,直流12V,35安时锂电池组。可连续使用1.5小时。3输出光功率8W;激光颜色,绿色.。 4光缆长度3米。 5可调焦镜头。 二;使用说明: 1钥匙开关拧到1位置,为交流供电。或将主机安装到电池盒上,钥匙开关拧到2位置,为直流供电。 2插上220V电源插头,将光缆拧紧到光缆座上,(光缆座带保护功能,不接光缆没有光输出)。将手柄上调光插头,插入面板上的调光插座。3打开钥匙开关,电源接通后,红色指示灯点亮。主机处于预热过程中。蓝色指示灯亮起表示预热结束。然后按动前面板上的启动按钮,绿色指示灯亮起,激光输出。 4激光器启动时为最大功率输出。旋转面板上,或镜头上的黑色调光旋钮,可以调节输出功率大小,顺时针增大,逆时针减小。数码屏显示为即时功率值。

5旋转镜头外套可以调节光斑大小。及光斑外缘清晰。 6按动电源盒前面按钮可显示电池容量。指示条只剩红色灯亮,表示电量不足应及时充电。 7电池充电应使用本机专配充电器,不可使用其他充电器。充电器接通220V交流电源红色电源指示灯常亮。充电时,充电指示灯红色。充电指示灯变为绿色表示电池已满,充电结束。 8本机配有伸缩式镜头支架,可以固定镜头及调节镜头高度和角度。三;注意事项: 1使用完毕应及时套上光缆及光缆座防护套,避免进入灰尘。 2光缆折弯半径大于15厘米。 3清洁光缆端面应使用无尘棉签,沾无水乙醇,沿一个方向擦拭。 切不可用手指或油渍接触光缆端面。否则会造成光缆报废。 4本激光器输出功率强大,切不可直视镜头或对准人眼,否则可造成永久失明。 四;基本配置: 1主机一台。 2带镜头光缆一根。 3电池盒一个。 4充电器一个。 5伸缩光缆支架一个。 6主机电源线一根。 7充电器电源线一根。

关于激光器研究(文献综述)

关于锁模光纤激光器的研究 前言 激光器,顾名思义,即是能发射激光的装置。1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年A.L.肖洛和C.H.汤斯把微波量子放大器原理推广应用到光频范围,1960年T.H.梅曼等人制成了第一台红宝石激光器。1961年A.贾文等人制成了氦氖激光器。1962年R.N.霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。近来还发展了自由电子激光器,大功率激光器通常都是脉冲式输出。2004 年,Idly 提出了一种自相似脉冲光纤激光器,同时为这种光纤激光器建立了一种数值模型。模型中采用非线性薛定谔方程(NLSE)描述脉冲在正色散光纤中的传输,引入了一个与脉冲强度相关的透过率函数将NPE 锁模机理等效成快速可饱和吸收体(SA)的作用0 模拟发现这种激光器输出的脉冲具有抛物线的形状和线性啁啾,能量可高达10nJ。随着自相似脉冲在实验上的实现,自相似锁模光纤激光器迅速成为超短光脉冲领域的研究热点。用Idly 模型对自相似锁模光纤激光器的研究不断取得新的进展。在此我将对激光和激光器的原理和基于原理而做出的进一步的相关研究(如被动锁模光纤激光器)做一个大致的探讨。

主题 激光器的原理 非线性偏振旋转被动锁模环形腔激光器的结构如图1所示, 激光器由偏振灵敏型光纤隔离器、波分复用器、偏振控制器、输出藕合器、掺yb3+光纤组成。其工作原理为从偏振灵敏型光纤隔离器输出的线偏振光,经过偏振控制器PCI(1/4 λ波片)后变为椭圆偏振光, 此椭圆偏振光可看成两个频率相同、但偏振方向互相垂直的线偏振光的合成, 它们在掺yb3+增益光纤中藕合传输时, 经过光纤中自相位调制和交叉相位调制的非线性作用, 产生的相移分别为 其中n1x 、n1y分别为yb3+光纤沿X、Y方向的线性折射率, n2、l分别为该光纤的非线性折射率系数和长度。 由于两线偏振光的相位差(ΔΦ=Φx-Φy), 与两偏振光的光强有关, 适当调整光纤偏振控制器PC2(1/4 λ波片 +1/2 λ波片), 使两偏振光中心

高功率IPG光纤激光器应用简介

高功率IPG光纤激光器应用简介 一、IPG光纤激光器简介 1.光纤激光器简介 光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。 2.光纤激光器的优势 首先是使用成本低,光纤激光器替代了不稳定或高维修成本的传统激光器。其次,光纤激光的柔性导光系统,非常容易与机器人或多维工作台集成。第三,光纤激光器体积小,重量轻,工作位置可移动。第四,光纤激光器可以达到前所未有的大功率(至五万瓦级)。第五,在工业应用上比传统激光器表现更优越。它有适用于金属加工的最佳波长和最佳的光束质量,而且光纤激光器在每米焊接和切割上的费用最低。第六,一器多机,即一个激光器通过光纤分光成多路多台工作。第七,免维护,使用寿命长。最后,由于其极高的稳定性,大大降低了运行中对激光质量监控的要求。简单来说就是高功率下的极好光束质量,高光束质量下的极好电光效率,高功率高光束质量下的极小体积、可移动性和柔性。 3.IPG简介 全球最大的光纤激光制造商IPG Photonics由Valentin Gapontsev博士于1991年创建,总部设在美国东部麻省。IPG在德国、美国、俄罗斯和意大利设有生产、研发基地,并在全球设有销售和服务网点,覆盖美国、英国、欧洲、印度、日本、韩国、新加坡和中国,并于2006年在美国纳斯达克上市。

十八年来,IPG致力于纵向合成,所有的核心配件均为IPG研发、生产和拥有,同时也是唯一一个能为客户提供高性价比的光纤和半导体激光器的厂家。 高功率是IPG的优势。全世界已有上千台IPG的高功率(>1KW)光纤激光器在汽车制造、船舶制造、海上平台和石油管道、航空航天和技术加工等工业领域中得以应用。在日本,我们向丰田、三菱、住友在内的客户售出了数百台IPG的大功率光纤激光器。这些激光器的成功应用,说明了IPG光纤激光已成熟,且成为制造业的技术工具之一。依近期国内各厂家、院校、集成商对IPG光纤激光器大量的订单来看,光纤激光在中国市场广泛应用的局面会很快到来,尤其是在金属加工(切割、焊接、熔覆、快速成型等)方面。 二、高功率光纤激光应用领域 1.激光焊接领域的应用 光纤激光器的光束质量好,连续功率大,适用于深熔焊和浅表热导焊。连续激光通过调制可提供激光脉冲,从而获得高峰值功率和低平均功率,适用于需要低热输入要求的焊接。由于高功率激光的调制频率高达1万赫兹,因而能够提高脉冲焊接的产能。光纤输送方式使激光能够灵活地集成在传统焊钳、振镜头、机器人和远程焊接系统内。无论采用何种光束输送方式,光纤激光器都具有无可比拟的性能。典型的点焊应用包括依靠振镜头传送光束,从而完成剃须刀片和硬盘挠曲的焊接,从而充分地利用光纤激光器的脉冲功能。光纤激光器的光斑小,焦距长,因而远距离激光焊接的能力大大提高。1-2米的工作间距与传统机器人相比使工作区域提高了数倍,配备光纤激光器的远程焊接工位包括车门焊接、多点焊接和整个车身框架的搭接焊接。光纤激光器焊接的其它例子包括传动部件全熔焊、船用厚钢板深熔焊、电池组密封焊接、高压密封等等。图1展示了光纤激光焊接的效果。

光纤激光器综述

摘要:光纤激光器技术是光学领域最为重要的技术之一,作为第三代激光技术的代表,其稳定性好、效率高、阈值低、线宽窄、可调谐、紧凑小巧和性价比高等优点,使得它在光纤传感、光纤通信、工业加工等领域都有着重要的应用。而掺镱双包层光纤激光器是国际上近年来发展的一种新型固体激光器。本文就介绍了这种高功率掺镱双包层光纤激光器,主要介绍了高功率掺镱双包层光纤激光器的概念、发展历史及发展现状、基本原理、优点、实现的关键技术、应用及其广阔的前景。同时总结出了未来光纤激光器的发展方向,并且可以预计光纤激光器最终将可能会替代掉全球大部分高功率CO2激光器和绝大部分Y AG激光器。 关键词:光纤激光器;掺镱双包层光纤激光器;光纤融合技术;激光加工。引言 光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,虽然光纤激光器得到了社会各方面的广泛重视,但是光纤激光器并不是新型光器件。1961年,美国光学公司的Snitzer和Koester等在一根芯径300um的掺Nd3+玻璃波导中进行试验观察到了激光现象,并与1963年和1964年发表了多组分玻璃光纤中的光放大结果,提出了光纤激光器和光纤放大器的思想。1975~1985年中有关这个领域的文章较少,不过在这期间许多发展光纤激光器的必须工艺技术已趋于成熟[1]。上个世纪80年代后期,美国Polaroid公司提出了包层抽运技术,之后双包层光纤激光器,特别是掺镱双包层光纤激光器发展非常迅速。1994年,PASK 等首先在掺Yb3+石英光纤中实现了包层抽运,得到了0.5W的最大激光输出。1998年,Lucent技术公司的KOSINKI和INNISS报道了一种内包层截面形状为星形的掺Yb3+双包层光纤激光器,得到了20W的激光输出。1999年,DOMINIC等用4个45W的半导体激光二极管阵列组成总功率为180W的抽运源,在1120nm 得到110W的激光输出。2002年,IPG公司公布了2000W的掺Yb3+双包层光纤激光器。目前,该公司已经推出了输出功率为17kW的掺Yb3+双包层光纤激光器,虽然因为采用的是多组激光合束的方式,致使激光器的光束质量下降很大,但仍然在对功率要求高、光束质量要求不是很高的场合有非常好的应用前景。但如何提高功率,同时又保证光束质量,是当前研究要解决的难题之一。 在国内,关于掺Yb3+双包层光纤激光器的研究起步较晚。从上个世纪年80

激光20W MOPA系列光纤激光器应用介绍2018.2.22

20W MOPA光纤激光器应用介绍 应用工程师:无锡创永激光刘工 微信:1039258953 2016年7月18日

20W MOPA参数表 长脉宽单脉冲能量高,热效应明显,窄脉宽单脉冲能量低,热效应弱;高频率,平均功率高,热效应明显,低频率(10KHz),平均功率低,热效应弱;低扫描速度,低填充密度,激光能量集中,热效应明显,高扫描速度,中等填充密度(0.02mm),激光能量分散,热效应弱。 (4ns400KHz),降功率频率到最大频率,功率趋于稳定。

固定脉宽,100%功率,频率由小增大,峰值功率增大,直至降功率频率 (4ns400KHz),降功率频率到最大频率,峰值功率呈反比例函数递减。 其他脉宽类似。 MOPA光纤激光器,脉宽可调,脉冲频率范围大,应用范围十分广泛,本文中介绍了20W MOPA光纤激光器部分常见应用,用于20W MOPA应用介绍和推广。其中不同材料参数设置有所差异,文中参数 可作为参考,如有不同之处,敬请谅解。

1.1 小米手机壳阳极氧化铝标刻黑色LOGO 1.2 小米充电宝阳极氧化铝标刻白色LOGO 1.3 阳极氧化铝上标刻0.8mmX0.8mm黑色二维码,显微镜下可扫描 2. 304不锈钢标刻 2.1 304不锈钢打彩色LOGO 2.2 304不锈钢名牌标刻黑色 2.3 304不锈钢深雕 3.部分高分子材料标刻 3.1 公牛插座、苹果手机数据线等某些白色高分子材料标刻深色3.2 PA66+、PE等某些黑色高分子材料标刻浅色 4. 电子器件标刻 4.1 电解电容标记黑色参数 4.2 PCB板标刻白色二维码和参数 4.3 电镀电子器件标刻 4.4 IC芯片等电子器件参数标刻 5. 漆剥除 5.1 汽车、电脑、手机等透光件漆剥除 5.2 亚克力瓶、橡胶按键表面漆剥除 5.3 电脑铝制外壳导通处漆剥除 6. 铜制器件标刻 6.1黄铜件标记白色尺寸参数 7. 微弧氧化铝合金标刻黑色名牌 8. 碳钢轴承标记黑色参数 9. 铝箔、锡箔、铜箔切割 10. 氧化锆陶瓷标刻黑色 11. 氧化钛银黑色参数标刻 12. 钛彩色标刻

光纤激光打标机说明书

SD-20A 光纤激光打标机 使用说明书安装、使用产品前请阅读使用说明

感谢您使用珊达科技公司光纤激光打标机! 请在使用光纤激光打标机前仔阅读此说明书! 第一章概述 1.1光纤激光打标机简介 激光打标机是利用激光束在各种物质表面打印上永久的标记。 激光打标机的效应主要是: 1、通过激光光能对目标物质表层的蒸发而露出物质深层; 2、通过激光光能导致表层物质的化学物理变化而"刻"出所需图案文字; 3、通过激光光能烧掉部分物质,从而显出所需刻蚀的图案、文字。 光纤激光打标机主要由:光纤激光器、振镜(打标头)、软件控制板卡、工控电脑、机箱机柜、放工件的水平台等组成。 1.2光纤激光打标机工作原理 是利用光纤激光器产生激光并用光纤导出激光然后配合光学高速扫描振镜进行工件标记的,其核心部件为光纤激光器。 光纤激光器采用掺稀土元素的光纤作为增益介质。由于光纤激光器中光纤纤芯很细,在泵浦光的作用下光纤极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”。因此,当适当加入正反馈回路构成谐振腔便可形成激光振荡。另外由于光纤基质具有很宽的荧光谱,因此,光纤激光器一般都做成可调谐的(既其波长在一定围可以调节),在打标时可以标记出几种颜色(对应材质)。 1.3特点如下: 1.SD-20A光纤激光打标机采用光纤激光器,寿命可达10万小时,性能优越世界排名靠前。 光束质量高,为基模(TEM00)输出,聚焦光斑直径不到20um。发散角是半导体泵浦激光器的1/4。单线条更细,特别适用于精细、精密打标。 2.体积小,耗电量小,整机耗电不到500W;置风冷冷却方式,抛弃了笨重的水冷机组,占地面积更小,安装更简便,真正做到了节能和便携。 3.电光转换效率高,简单易用,无须光学调整或维护,结构紧凑,系统集成度高,故障少。 4.无需进行任何维护,使用寿命长,适用于恶劣环境工作。 5.加工速度快,是传统打标机的2-3倍,光学扫描振镜,激光重复频率高,高速无畸变。

光纤激光器的原理及应用

光纤激光器的原理及应用 张洪英 哈尔滨工程大学理学院 摘要:由于在光通信、光数据存储、传感技术、医学等领域的广泛应用,近几年来光纤激光器发展十分迅速,且拥有体积小、重量轻、检测分辨率高、灵敏度高、测温范围宽、保密性好、抗电磁干扰能力强、抗腐蚀性强等明显优势。本文简要介绍了光纤激光器的基本结构、工作原理及特性,并对目前几种光纤激光器发展现状及特点做了分析,总结了光纤激光器的发展趋势。 关键词:光纤激光器原理种类特点发展趋势 1引言 对掺杂光纤作增益介质的光纤激光器的研究20世纪60年代,斯尼泽(Snitzer)于1963年报道了在玻璃基质中掺激活钕离子(Nd3+)所制成的光纤激光器。20世纪70年代以来,人们在光纤制备技术以及光纤激光器的泵浦与谐振腔结构的探索方面取得了较大进展。而在20世纪80年代中期英国南安普顿大学掺饵(EI3+)光纤的突破,使光纤激光器更具实用性,显示出十分诱人的应用前景[1]。 与传统的固体、气体激光器相比,光纤激光器具有许多独特的优越性,例如光束质量好,体积小,重量轻,免维护,风冷却,易于操作,运行成本低,可在工业化环境下长期使用;而且加工精度高,速度快,寿命长,省能源,尤其可以智能化,自动化,柔性好[2-3]。因此,它已经在许多领域取代了传统的Y AG、CO2激光器等。 光纤激光器的输出波长范围在400~3400nm之间,可应用于:光学数据存储、光学通信、传感技术、光谱和医学应用等多种领域。目前发展较为迅速的掺光纤激光器、光纤光栅激光器、窄线宽可调谐光纤激光器以及高功率的双包层光纤激光器。 2光纤激光器的基本结构与工作原理 2.1光纤激光器的基本结构 光纤激光器主要由三部分组成:由能产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和可使激光介质处于受激状态的泵浦源装置。光纤激光器的基本结构如图2.1所示。

光纤激光器工作原理及发展

光纤激光器的工作原理及其发展前景 1 引言 光纤激光器于1963年发明,到20世纪80年代末第一批商用光纤激光器面市,经历了20多年的发展历程。光纤激光器被人们视为一种超高速光通信用放大器。光纤激光器技术在高速率大容量波分复用光纤通信系统、高精度光纤传感技术和大功率激光等方面呈现出广阔的应用前景和巨大的技术优势。光纤激光器有很多独特优点,比如:激光阈值低、高增益、良好的散热、可调谐参数多、宽的吸收和辐射以及与其他光纤设备兼容、体积小等。近年来光纤激光器的输出功率得到迅速提高。已达到10—100 kW。作为工业用激光器,现已成为输出功率最高的激光器。光纤激光器的技术研究受到世界各国的普遍重视,已成为国际学术界的热门前沿研究课题。其应用领域也已从目前最为成熟的光纤通讯网络方面迅速地向其他更为广阔的激光应用领域扩展。本文简要介绍了光纤激光器的结构、工作原理、分类、特点及其研究进展,最后对光纤激光器的发展前景进行了展望。 2 光纤激光器的结构及工作原理 2.1光纤激光器的结构 和传统的固体、气体激光器一样。光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。泵浦源一般采用高功率半导体激光器(LD),增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射所产生的自发辐射光经受激放大和谐振腔的选模作用后.最终形成稳定激光输出。图1为典型的光纤激光器的基本构型。 增益介质为掺稀土离子的光纤芯,掺杂光纤夹在2个仔细选择的反射镜之间.从而构成F—P谐振器。泵浦光束从第1个反射镜入射到稀土掺杂光纤中.激射输出光从第2个反射镜输出来。 2.2 光纤激光器的工作原理 掺稀土元素的光纤放大器促进了光纤激光器的发展,因为光纤放大器可以通过适当的反馈机理形成光纤激光器。当泵浦光通过光纤中的稀土离子时.就会被稀土离子所吸收。这时吸收光子能量的稀土原子电子就会激励到较高激射能级,从而实现离子数反转,反转后的离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完成受激辐射。从激发态到基态的辐射方式有2种:自发辐射和受激辐射。其中,受激辐射是一种同频率、同相位的辐射,可

光纤激光器研究进展

收稿日期:2008-10-13. 动态综述 光纤激光器研究进展 申人升,张玉书,杜国同 (大连理工大学物理与光电工程学院,辽宁大连116023) 摘 要: 光纤激光器具有寿命长,模式好,体积小,免冷却等一系列其他激光器无法比拟的优点,近年来受到了来自电子信息、工业加工和国防科技等研究开发领域的高度关注。文章概述了光纤激光器典型的工作原理,阐述了其当前主要研究方向以及国内外研究现状,最后提出了光纤激光器产业化的趋势。 关键词: 光纤;光纤激光器;光子晶体光纤;超短脉冲 中图分类号:TN248 文献标识码:A 文章编号:1001-5868(2009)01-0001-05 Latest Development of Fiber Lasers SH EN Ren -sheng ,ZH ANG Yu -shu,DU Guo -tong (School of Physics and Optoelectronic Technology,Dalian University of Technology,Dalian 116024,C HN) Abstract: Fiber lasers ow n lots of advantages co mpared w ith other lasers,including lo ng life,goo d mode,compactness,etc.Recently,fiber lasers have received increasing ly intensive attention in the applications o f electro nic inform ation,industr y processing and national defense technolog y.T he ty pical principle o f fiber laser is explained and resear ch progr esses about fiber lasers are review ed.Furthermore,the future developm ental trends fo r laser fiber are discussed. Key words: fiber;fiber lasers;photonic crystal fiber;ultrashort pulse 0 引言 光纤激光器诞生于20世纪60年代初,它是伴随着光纤通信技术、光纤制造工艺以及与激光器生产技术的日趋成熟而迅猛发展起来的新型器件。由于其在高速率、密集波分复用(DWDM )通信系统、高精度传感技术和大功率激光加工等方面呈现出潜在的技术优势和广阔的应用前景,所以备受世界各国科研工作者的青睐,现已成为国际学术界的热门研究对象。 光纤激光器与其他类型激光器相比较,其优点为:(1)泵浦功率低、增益高、输出光束质量好;(2)与其他光纤器件兼容,可实现全光纤传输系统;(3)使用光纤作为基体,其结构具有较高的比表面积,因而散热好;(4)体积小,携带方便;(5)光纤激光器可以作为光孤子源,实现光孤子通信。 1 原理与分类 1.1 基本工作原理 图1 所示为典型光纤激光器的基本结构。 图1 光纤激光器基本结构 典型光纤激光器主要由三部分组成:产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和激发增益介质的泵浦源。其中,增益介质为掺杂稀土离子的纤芯。 当泵浦光从反射镜1(或光栅1)入射到掺杂光纤芯中时,会被所掺杂的稀土离子吸收。吸收了光子能量的稀土离子会发生能级跃迁,实现/粒子数反 # 1#

相关文档
最新文档