第十一章反常积分

第十一章反常积分
第十一章反常积分

第十一章反常积分

(8学时 )

§ 1 反常积分概念

教学目的要求:深刻理解反常积分的概念。

教学重点难点:反常积分的含义与性质

学时安排: 2学时

教学方法: 讲授法.

教学过程:

一问题的提出: 例(P264).

二两类反常积分的定义

定义1. 设函数定义在无穷区间上,且在任何有限区间上可积,如果存在极限

(1)

则称此极限J为函数在上的无穷限反常积分(简称无穷积分),记作

,并称收敛.如果极限(1)不存在,为方便起见,亦称

发散.

定义2. 设函数定义在上,在点的任一右邻域内无界,但在任何内闭区

间上有界且可积,如果存在极

则称此极限为无界函数在上的反常积分,记作,并称反常积分

收敛,如果极限不存在,这时也说反常积分发散.

例1 ⑴讨论积分 , , 的敛散性 .

⑵ 计算积分

.

例 2 讨论以下积分的敛散性 :

; ⑵

.

例3 讨论积分

的敛散性 .

例4 判断积分

的敛散性 .

例5 讨论瑕积分

的敛散性 ,并讨论积分

的敛散性 .

三 瑕积分与无穷积分的关系: 设函数

连续 , 为瑕点. 有

, 把瑕积分化成了无穷积分;设

, 有

,把无穷积分化成了瑕积分.

可见 , 瑕积分与无穷积分可以互化. 因此 ,它们有平行的理论和结果 .

§2. 无穷积分的性质与收敛判定

教学目的: 深刻理解反常积分敛散性的含义。 教学重点难点:反常积分敛散性的判别。 学时安排: 3学时 教学方法: 讲授法. 教学过程:

一 无穷积分的性质

在区间

上可积 , — Const , 则函数

在区间

可积 , 且

.

在区间上可积 , 在区间

⑵和

上可积 , 且.

⑶无穷积分收敛的Cauchy准则:

定理11.1 积分收敛 .

⑷绝对收敛与条件收敛: 定义概念.

绝对收敛收敛, ( 证 )但反之不确.绝对型积分与非绝对型积分 .

二比较判别法

非负函数无穷积分判敛法: 对非负函数,有↗. 非负函数无穷

积分敛散性记法.

⑴比较判敛法: 设在区间上函数和非负且,

又对任何>, 和在区间上可

积 . 则 < , < ;, .

例1判断积分的敛散性.

推论1 (比较原则的极限形式) : 设在区间上函数,

. 则

ⅰ> < < , 与共敛散 :

ⅱ> , < 时, < ;

ⅲ> , 时, . ( 证 )

推论2 (Cauchy判敛法): (以为比较对象, 即取

.以下> 0 )设对任何>, , 且

且, .

, < ;若

Cauchy

判敛法的极限形式 : 设是在任何有限区间可积的正值函数. 且

. 则

ⅰ> < ;

ⅱ> . ( 证 )

例2讨论以下无穷积分的敛散性 :

ⅰ> ⅱ>

三狄利克雷判别法与阿贝尔判别法:

1.Abel判敛法: 若在区间上可积 , 单调有界 , 则积分

收敛.

2.Dirichlet判敛法: 设在区间上有界,在

上单调,且当时,.则积分收敛.

例3 讨论无穷积分与的敛散性.

例4 证明下列无穷积分收敛 , 且为条件收敛 :

, , .

例5 ( 乘积不可积的例 ) 设, 。由例6的结果, 积分

收敛 . 但积分却发散.

§3 瑕积分的性质与收敛判别

教学目的:熟练掌握无穷积分和瑕积分的性质与敛散性的判别。

教学重点难点:无穷积分和瑕积分敛散性的判别。

学时安排: 1学时

教学方法: 讲授法.

教学过程:

类似于无穷积分的柯西收敛准则以及其后的三个性质,瑕积分同样可由函数极限

的原意写出相应的命题.

定理11.2 ( 比较原则 ) P277 Th11.6.

系1 ( Cauchy判别法 ) P277 推论2.

系2 ( Cauchy判别法的极限形式 ) P277 推论3.

例1判别下列瑕积分的敛散性 :

⑴ ( 注意被积函数非正 ). ⑵.

例2讨论非正常积分的敛散性.

注记. C—R积分与R积分的差异:

1. R, 在上; 但在区间上可

积 , 在区间上有界 .

例如函数

2. R,||R,但反之不正确. R积分是绝对型积分. |

|在区间上可积 , 在区间上可积 , 但反之不正确. C—R积分是非绝对型积分.

3.,R, R; 但和在区间

上可积 , 在区间上可积. 可见,在区间

上可积 , 在区间上可积.

习题反常积分的收敛判别法

习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞ +a dx x )(?和 ? ∞ +a dx x f )(的敛散性可以产生各种不同的的情况. 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数.则 当?∞ +a dx x )(?收敛时? ∞+a dx x f )(也收敛; 当? ∞ +a dx x f )(发散时?∞ +a dx x )(?也发散. 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε ?< ?' )(. 于是 ≤ ?' A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(. 于是 ≥?'A A dx x )(?0)(1 ε≥?' A A dx x f K , 所以?∞ +a dx x )(?也发散. (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0) ()(lim =+∞→x x f x ?.则当?∞ +a dx x f )(发散 时,?∞ +a dx x )(?也发散;但当?∞ +a dx x f )(收敛时,?∞ +a dx x )(?可能收敛,也可能发散. 例如21)(x x f = ,)20(1 )(<<=p x x p ?,则0)()(lim =+∞→x x f x ?.显然有

《数学分析》第十一章反常积分复习自测题[1]

《数学分析》第十一章 反常积分复习自测题 [1] -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十一章 反常积分复习自测题 一、体会各类反常积分(无穷积分、瑕积分和混合反常积分)的特点,能准确地判定所给反常积分的类型;熟习并熟练掌握各类反常积分收敛和发散的含义,并用各类反常积分收敛和发散的含义解决下面的问题: 1、正确地判断下列反常积分的敛散性: (1)1d p a x x +∞?(0a >);(2)01d a p x x ?(0a >);(3)01 d p x x +∞?(0a >)。 2、正确地判断下列反常积分的敛散性: (1)1d (ln )p a x x x +∞? (1a >);(2)11 d (ln )a p x x x ?(1a >);(3)1 1 d (ln ) p x x x +∞? 。 3、探索下列反常积分的敛散性,若收敛,并求其值: (1) 2 1d 1x x +∞+? ;(2)2 1 d 1x x +∞-∞+?;(3)10x ?;(4)11 x -? 。 4、用定义据理说明下面的关系:(反常积分的牛顿—莱布尼茨公式、分部积分法、换元法、奇偶函数的积分特征) (1)若函数()f x 在[,)a +∞上连续,()F x 为()f x 在[,)a +∞上的原函数,记 ()lim ()x F f x →+∞ +∞=, 则无穷积分()d a f x x +∞? 收敛?()lim ()x F f x →+∞ +∞=存在,且 ()d () a f x x F x a +∞+∞=? 。 (2)若函数()f x 在(,)-∞+∞上连续,()F x 为()f x 在(,)-∞+∞上的原函数,记 ()lim ()x F f x →+∞ +∞=,()lim ()x F f x →-∞ -∞=, 则无穷积分()d f x x +∞-∞ ? 收敛?()lim ()x F f x →+∞ +∞=和()lim ()x F f x →-∞ -∞=都存在,且 ()d () a f x x F x a +∞+∞=? 。 (3)若函数()f x 和()g x 都在[,)a +∞上连续可微,且lim ()()x f x g x →+∞ 存在,则无穷积 分()()d a f x g x x +∞'? 收敛?()()d a f x g x x +∞'? 收敛,且

(答案)第11章章测题2(曲线积分与曲面积分的应用部分)

第11 章测验题(二)曲线积分与曲面积分的应用1.C 2.D 3.B 4.解:令 I = ()() 3,4 3,4 ∫?+?=∫+ (6xy2 y3 )dx (6x2 y 3xy2 )dy P(x, y)dx Q(x, y)dy ()() 1,2 1,2 ?P ?y = 12xy? 3y 2 = ?Q ?x 因此曲线积分I 与路径无关,那么采用A(1,2)→B(3,2)→C(3,4)的折线计算I ∫?+?+∫?+? I =(6xy2 y3 )dx (6x2 y 3xy2 )dy (6xy2 y3 )dx (6x2 y 3xy2 )dy AB BC 在积分区域AB 上,y = 2,x :1 → 3,若化为对x 的定积分,则dy = 0 3 3 I (6xy y )dx (6x y 3xy )dy (6x 4 8)dx (6x 2 3x 4) 0dx 1 =∫?+?=∫×?+∫×?×× 2 3 2 2 2 AB 1 1 3 =∫x dx x x (24 8) ? ?= 2 = [12 8 ]80 3 1 1 在积分区域BC 上,x = 3,y : 2 → 4 ,若化为对y 的定积分,则dx = 0 4 4 I (6xy y )dx (6x y 3xy )dy (6y 3 y ) 0dy (6y 9 3y2 3)dy 2 =∫?+?=∫×?×+∫×?× 2 3 2 2 2 3 BC 2 2

4 4 =∫y y dy y y (54 ? 9 ) =?= [27 3 ]156 2 2 3 2 2 因此I =I1 +I = 80 +156 = 236 2 5.解:令 I = ()() 2,3 2,3 ∫++?=∫+ (x y)dx (x y)dy P(x, y)dx Q(x, y)dy ()() 1,1 1,1 ?P ?y = 1 = ?Q ?x 因此曲线积分I 与路径无关,那么采用A(1,1)→B(2,1)→C(2,3)的折线计算I 1

§_5_定积分习题与答案

第五章 定积分 (A) 1.利用定积分定义计算由抛物线12 +=x y ,两直线)(,a b b x a x >==及横轴所 围成的图形的面积。 2.利用定积分的几何意义,证明下列等式: ? =1 12)1xdx 4 1) 21 2π = -? dx x ?- =π π0sin ) 3xdx ?? - =2 2 20 cos 2cos )4π ππ xdx xdx 3.估计下列各积分的值 ? 33 1arctan ) 1xdx x dx e x x ?-0 2 2)2 4.根据定积分的性质比较下列各对积分值的大小 ?2 1 ln )1xdx 与dx x ?2 1 2)(ln dx e x ?10)2与?+1 )1(dx x 5.计算下列各导数

dt t dx d x ?+20 2 1)1 ?+32 41)2x x t dt dx d ?x x dt t dx d cos sin 2)cos()3π 6.计算下列极限 x dt t x x ?→0 20 cos lim )1 x dt t x x cos 1)sin 1ln(lim )20 -+?→ 2 2 20 )1(lim )3x x t x xe dt e t ? +→ 7.当x 为何值时,函数? -=x t dt te x I 0 2 )(有极值? 8.计算下列各积分 dx x x )1 ()12 1 42? + dx x x )1()294+?

? --212 12) 1()3x dx ? +a x a dx 30 2 2) 4 ?---+2 11)5e x dx ?π20sin )6dx x dx x x ? -π 3sin sin )7 ? 2 )()8dx x f ,其中??? ??+=22 11)(x x x f 1 1>≤x x 9.设k ,l 为正整数,且l k ≠,试证下列各题: ?- =π π 0cos )1kxdx πππ =?-kxdx 2cos )2 ?- =?π π 0sin cos )3lxdx kx ?-=π π 0sin sin )4lxdx kx

第十一章曲线积分与曲面积分经典例题

第十一章 曲线积分与曲面积分 内容要点 一、引例 设有一曲线形构件所占的位置是xOy 面内的一段曲线L (图10-1-1),它的质量分布不均匀,其线密度为),(y x ρ,试求该构件的质量. 二、第一类曲线积分的定义与性质 性质1 设α,β为常数,则 ???+=+L L L ds y x g ds y x f ds y x g y x f ),(),()],(),([βαβα; 性质2设L 由1L 和2L 两段光滑曲线组成(记为=L 21L L +),则 .),(),(),(2 1 2 1 ???+=+L L L L ds y x f ds y x f ds y x f 注: 若曲线L 可分成有限段,而且每一段都是光滑的,我们就称L 是分段光滑的,在以后的讨论中总假定L 是光滑的或分段光滑的. 性质3 设在L 有),(),(y x g y x f ≤,则 ds y x g ds y x f L L ??≤),(),( 性质4(中值定理)设函数),(y x f 在光滑曲线L 上连续,则在L 上必存在一点),(ηξ,使 s f ds y x f L ?=?),(),(ηξ 其中s 是曲线L 的长度. 三、第一类曲线积分的计算:)(), (),(βα≤≤?? ?==t t y y t x x dt t y t x t y t x f ds y x f L )()(])(),([),(22'+'=??β α 如果曲线L 的方程为 b x a x y y ≤≤=),(,则 dx x y x y x f ds y x f b a L )(1])(,[),(2'+=?? 如果曲线L 的方程为 d y c y x x ≤≤=),(,则 dy y x y y x f ds y x f d c L )(1]),([),(2'+=?? 如果曲线L 的方程为 βθαθ≤≤=),(r r ,则 θθθθθβ α d r r r r f ds y x f L )()()sin ,cos (),(22'+=??

含参量积分汇总

第十九章含参量积分 一.填空题 1.若在矩形区域上_________,则 2.含参量反常积分 在____________上一致收敛. 3.设在上连续,若含参量反常积分 在上___________,则在上连续. 4. 5.在中如令, 则 6. 对于任何正实数函数与B函数之间的关系为 7. 在上不一致收敛是指______________. 8. 9. 设, 则 10. 利用函数定义, 二.证明题 1. 证明在上一致收敛. 2. 证明在上一致收敛. 3.证明若函数在连续, 则, 有

4.证明在上非一致收敛. 5.证明 6.证明在上一致收敛. 7. 证明在上不一致收敛. 8. 证明 9. 证明 10. 证明在R上连续. 计算题1. 求 2. 求 3.设. 求 4. 求 5.用函数与B函数求积分 6.用函数与B函数求积分 7.求积分 8.从等式出发, 计算积分 9.设. 求

10.求 填空题答案 1. 连续. 2. R 3. 一致收敛. 4. 5.. 6. . 7. , 有 8. 1 9. . 10. . 证明题答案: 1. 证明: , 有 , 而收敛, 则 在上一致收敛. 2. 证: , 有, 而, 则 在上一致收敛. 3证: 已知在连续, 使. 设, 有 于是,

4.证: , 有 . 即在上非一致收敛. 5.证: 设有 . 6.证: 由于反常积分收敛,函数对每个单调, 且对任何, 都有. 故由阿贝耳判别法可知 在上一致收敛. 7. 证: 因在处不连续, 而在 内连续, 由连续性定理知, 在上不一致收敛. 8. 证: 令, 则. 9. 证: 令则, . 10. 证:

高等数学第五版下册第十一章曲线积分与曲面积分复习知识点及例题

第11章 曲线积分与曲面积分 一.曲线积分 1.对弧长的曲线积分 (第一类) )()(')(')](,)([,f βαβ α <ψ+ΦψΦ=?? dt t t t t f ds y x L )( 典型例题: (1)圆周10{ cos x sin ≤≤==t t a t a y 12222 2220 2 22 2)s i n '(c o s '()s i n c o s ()(x +=++=+ ?? n n n L a dt t a t a t a t ds a y ππ ) (2)线段:把线段表示出来 ds y x ? +L ) ( L 是(1,0)到(0,1)的直线段 原式= 2 1)11 =+-+?dx x x x ( 直线为:y=1-x (3)圆弧的整个边界(分段) ds L y ?+2 2x e 2)4 2(11)sin'()cos'(12 20 40 2 2 a 2 2-+ =++++? ?? +a e dx e dt t a t a e dx e a a y x a x π π (4)参数方程 (公式) (5)利用折线围成的封闭图形 (坐标分段)ds yz ?Γ 2 x A(0,0,0) B(0,0,2) C(1,0,2) D(1,3,2) AB: 0=? AB BC:0=? BC CD:90102y 130 23 2==++=?? y dy CD 9=++=∴ ? ? ??Γ CD BC AB 2.对坐标的曲线积分 (第二类) dt t t t Q t t t P dy y x Q dx y x L )(')](),([)(')](),([{),(),(P ψψΦ+ΦψΦ=+?? β α 典型例题 (1)圆周 10{c o s x s i n ≤≤==t t a t a y dx xy ?L 圆周 )0(y x 222 >=+-a a a )(及x 轴在一 象限 逆时针{ {0 2acost a x asint y 1:,)10(x x y L L t ==+==≤≤: 320 2 1 2 0)'cos (sin )cos 1(a a dx dt t a a t a t a L L L π - =+++=+=??? ?

第十三讲 三重积分和线面积分

第十三讲 三重积分、曲线、曲面积分及场论初步(数一) 一、考试要求 1、理解三重积分的概念,了解三重积分的基本性质。 2、会计算三重积分(直角坐标、柱面坐标、球面坐标)。 3、理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关 系。 4、掌握计算两类曲线积分的方法。 5、掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。 6、了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,了解高斯公式、斯托克斯公式,掌握用高斯公式计算曲面积分,会用斯托克斯公式计算曲线积分。 7、了解散度与旋度的概念,并会计算。 8、 会用三重积分、曲线积分及曲面积分,求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。 9、理解方向导数与梯度的概念并掌握其计算方法。 二、内容提要 1、 三重积分的概念 ???Ω dV z y x f ),,( 2、两类曲线积分 1)、对弧长的曲线积分(第一类曲线积分) (1) 定义:f x y ds f s L i i i i n (,)lim (,)=→=?∑λξη0 1 ? (2) 性质:1) 与积分路径的方向无关,即f x y ds f x y ds BA AB (,)(,)=?? 2) 可加性 f x y ds f x y ds f x y ds L L L L (,)(,)(,)=+??? +2 1 12 2)、对坐标的曲线积分(第二类曲线积分) (1) 定义:P x y dx Q x y dy P x Q y L i i i i i i i n (,)(,)lim [(,)(,)]+=+→=?∑λξηξη0 1 ?? (2) 性质:1) 与积分路径的方向有关,即 P x y dx Q x y dy P x y dx Q x y dy L L (,)(,)(,)(,)+=-+?? - 2) 可加性 P x y dx Q x y dy P x y dx Q x y dy P x y dx Q x y dy L L L L (,)(,)(,)(,)(,)(,)+=+++?? ?+1 12 2 注:以上两种曲线积分可分别推广到空间中去。 3)、 两类曲线积分之间的联系

第十一章 反常积分

第十一章反常积分 教学要点 反常积分收敛和发散的概念及敛散性判别法。 教学时数 8学时 教学内容 §1 反常积分的概念(4学时) 反常积分的引入,两类反常积分的定义反常积分的计算。 §2 无穷积分的性质与收敛判别(4学时) 无穷积分的性质,非负函数反常积分的比较判别法,Cauchy判别法,反常积分的Dirichlet判别法 与Abel判别法。 §3 瑕积分的性质与收敛判别 瑕积分的性质,绝对收敛,条件收敛,比较法则。 考核要求 掌握反常积分敛散性的定义,奇点,掌握一些重要的反常积分收敛和发散的例子,理解并掌握绝对收敛 和条件收敛的概念,并能用反常积分的Cauchy收敛原理、非负函数反常积分的比较判别法、Cauchy判别 法,以及一般函数反常积分的Abel、Dirichlet判别法判别基本的反常积分。 §1 反常积分概念 一问题的提出

例1(第二宇宙速度问题)在地球表面初值发射火箭,要是火箭克服地球引力,无限远离地球,问初速度至少多大? 解设地球半径为,火箭质量为 地面重力加速度为,有万有引力定理,在距地心处火箭受到的引理为 于是火箭上升到距地心处需要做到功为 当时,其极限就是火箭无限远离地球需要作的功 在由能量守恒定律,可求得处速度至少应使 例2 从盛满水开始打开小孔,问需多长时间才能把桶里水全部放完?

解由物理学知识知道,(在不计摩擦情况下),桶里水位高度为时,水从小孔里流出的速度为 设在很短一段时间内,桶里水面降低的高度为,则有下面关系: 由此得 所以流完一桶水所需的时间应为 但是,被积函数在上是无界函数,,所一我们取 相对于以前学习的定积分(正常积分),我们把这里的积分叫做反常积分。 二反常积分的定义 1无穷限反常积分的定义, .

新1第十一章曲线积分与曲面积分习题答案

第十一章 曲线积分与曲面积分 第一节 对弧长的曲线积分 1. 选择题: (1) 对弧长的曲线积分的计算公式 ? L ds y x f ),(=?'+'β α φ?φ?dt t t t t f )()()](),([22中要 求 (C ) . (A ) α>β (B ) α=β (C ) α<β (2) 设光滑曲线L 的弧长为π,则? L ds 6= (B ) . (A ) π ( B ) π6 (C ) π12 2.计算下列对弧长的曲线积分: (1)? +L ds y x )(,其中L 为 I ) 以)1,1(),0,1()0,0(B A O ,为顶点的三角形的边界; II )上半圆周2 2 2 R y x =+; 解:I ) 111 ()()()()(1)13 222 L OA AB BO x y ds x y ds x y ds x y ds xdx y dy +=+++++=+++= ++=??????? II ) 22 ()(cos sin [sin cos ]2L x y ds R t R t R t t R π π+=+=-=?? (2)? L yds ,其中L 为x y 22 =上点)2,2(与点)2,1(-之间的一段弧; 解: 2 2 23/21 1 [(1)]3 3 L yds y ===+=?? ?

*(3) ? Γ +ds y x )(2 2,其中Γ为螺旋线bt z t a y t a x ===,sin ,cos ; )20(π≤≤t 解:1/2 222 222222 20 ()(sin cos )2x y ds a a t a t b dt a a π ππΓ +=++==??? *(4) ? +L ds y x 22,其中L 为y y x 222-=+; 解:L 的极坐标方程为2sin r θ=-,2πθπ≤≤,则 ds θ=。 222224sin 8 L rd d ππ π π π π π π θθ θθθ====-=???? 第二节 对坐标的曲线积分 1.填空题 (1) 对坐标的曲线积分的计算公式 ? +L dy y x Q dx y x P ),(),(=?'+'β α φφ??φ?dt t t t Q t t t P )}()](),([)()](),([{ 中,下限α对应于L 的 始 点,上限β对应于L 的 终 点; (2) 第二类曲线积分 ?+L dy y x Q dx y x P ),(),(化为第一类曲线积分是 [(,)cos (,)cos ]L P x y dx Q x y ds αβ+? ,其中βα,为有向光滑曲 线L 在点),(y x 处的 切向量 的方向角. 2.选择题: (1) 对坐标的曲线积分与曲线的方向 (B ) (A )无关, (B )有关; (2) 若),(y x P ,),(y x Q 在有向光滑曲线L 上连续,则 (A ) (A ) ? - +L dy y x Q dx y x P ),(),(=?+-L dy y x Q dx y x P ),(),(, (B ) ? - +L dy y x Q dx y x P ),(),(=?+L dy y x Q dx y x P ),(),(.

第十一章反常积分习题课教学总结

第十一章 反常积分习题课 一 概念叙述 1.叙述()dx x f a ? +∞ 收敛的定义. 答: ()dx x f a ? +∞ 收敛? ()()lim +∞ →+∞=? ? u a a u f x dx f x dx 存在. ?()lim 0+∞ →+∞=?u u f x dx . ?()()0,0,,εε+∞ ?>?>?>-?>?>?>当δ<<+a u a , 有()()ε-,存在0M >,只要12,u u M >, 便有 ()()()2 1 2 1 u u u a a u f x dx f x dx f x dx ε-= ,存在0δ>,只 要()12,,u u a a ∈+δ,总有 ()()()2 1 2 1 b b u u u u f x dx f x dx f x dx -=<ε??? . 二 疑难问题 1.试问 ? +∞ a dx x f )(收敛与0)(lim =+∞ →x f x 有无联系? 答:首先,0)(lim =+∞ →x f x 肯定不是 ? +∞ a dx x f )(收敛的充分条件,例如01 lim =+∞→x x ,但 ? +∞ 11 dx x 发散.那么0)(lim =+∞→x f x 是否是?+∞a dx x f )(收敛的必要条件呢?也不是!例如 ? +∞ 1 2 sin dx x ,?+∞ 1 2 cos dx x ,? +∞ 1 4sin dx x x 都收敛,因为前两个无穷积分经换元2t x =得

(完整版)常用公式--线面积分公式大全

(一)对弧长的曲线积分(第一类) (1)对光滑曲线弧() :,()() x t L t y t =?≤≤? =??αβψ (,)d [(),(L f x y s f t t t βα ?ψ=? ?; (2)对光滑曲线弧:()(),L y x a x b ?=≤≤ (,)d (,()) b L a f x y s f x x x ?=? ?; (3)对光滑曲线弧:()(),L r r θαθβ=≤≤ (二)对坐标的曲线积分(第二类) (1)对有向光滑弧() :() x t L y t φψ=??=?,:t αβ→, {}(,)d (,)d [(),()]'()[(),()]'()d L P x y x Q x y y P t t t Q t t t t βα φψφφψψ+=+? ? ; (2)对有向光滑弧:(),:L y x x a b ?=→, {}(,)d (,)d [,()][,()]'()d b L a P x y x Q x y y P x x Q x x x x ???+=+? ? ; (格林公式) d d L D Q P Pdx Qdy x y x y ?? ??+=- ???? ?????; (斯托克斯公式) R Q P R Q P Pdx Qdy Rdz dydz dzdx dxdy y z z x x y Γ∑????????????++=-+-+- ? ? ????????????????? L dydz dzdx dxdy Pdx Qdy Rdz x y z P Q R ∑ ? ??++=?????? ?

(一)对面积的曲面积分(第一型) 计算口诀:一投二代三换,曲积化为重积算. (1)对光滑曲面:(,),(,)x y z z x y x y D ∑=∈, (,,)d (,,(,d x y D f x y z S f x y z x y x y ∑ =?? ?? ; (2)对光滑曲面:(,),(,)y z x x y z y z D ∑=∈, (,,)d [(,),,yz D f x y z S f x y z y z ∑ =?? ??; (3)对光滑曲面:(,),(,)x z y y x z x z D ∑=∈, (,,)d [,(,),xz D f x y z S f x y x z z ∑ =?? ?? (二)对坐标的曲面积分(第二型) 计算口诀:一投二代三定,曲积化为重积算. 1、对光滑曲面:(,),(,)x y z z x y x y D ∑=∈,则 (,,)d d (,, (,))d d x y D R x y z x y R x y z x y x y ∑ =±???? (上侧正,下侧负) 2、对光滑曲面:(,),(,)y z x x y z y z D ∑=∈, (,,)d d ((,), ,)d d y z D P x y z y z P x y z y z y z ∑ =±???? ; (前侧正,后侧负) 3、对光滑曲面:(,),(,)x z y y x z x z D ∑=∈, (,,)d d (,(,),z )d d z x D Q x y z z x Q x y x z z x ∑ =±?? ?? (右侧正,左侧负) 合一投影公式:(,)z z x y = ()()xy D z z Pdydz Qdzdx Rdxdy P Q R dxdy x y ∑????++=?-+?-+????? ????? (高斯公式) ()d d d d d d d d d P Q R P y z Q z x R x y x y z x y z ∑ Ω ???++=++????? ??? ò; ()( )cos cos cos d =d d d P Q R P Q R S x y z x y z ∑Ω???α+β+γ++????????。

数学分析》第十一章反常积分复习自测题[1]

第十一章 反常积分复习自测题 一、体会各类反常积分(无穷积分、瑕积分和混合反常积分)的特点,能准确地判定所给反常积分的类型;熟习并熟练掌握各类反常积分收敛和发散的含义,并用各类反常积分收敛和发散的含义解决下面的问题: 1、正确地判断下列反常积分的敛散性: (1) 1 d p a x x +∞? (0a >);(2)01d a p x x ?(0a >);(3)01d p x x +∞?(0a >) 。 2、正确地判断下列反常积分的敛散性: (1) 1d (ln )p a x x x +∞? (1a >);(2)11d (ln )a p x x x ?(1a >);(3)11 d (ln )p x x x +∞?。 3、探索下列反常积分的敛散性,若收敛,并求其值: (1) 20 1d 1x x +∞+? ;(2)21d 1x x +∞-∞+?;(3)10x ?;(4)11 x -? 。 4、用定义据理说明下面的关系:(反常积分的牛顿—莱布尼茨公式、分部积分法、换元法、奇偶 函数的积分特征) (1)若函数()f x 在[,)a +∞上连续,()F x 为()f x 在[,)a +∞上的原函数,记 ()lim ()x F f x →+∞ +∞=, 则无穷积分 ()d a f x x +∞? 收敛?()lim ()x F f x →+∞ +∞=存在,且 ()d () a f x x F x a +∞+∞=? 。 (2)若函数()f x 在(,)-∞+∞上连续,()F x 为()f x 在(,)-∞+∞上的原函数,记 ()lim ()x F f x →+∞ +∞=,()lim ()x F f x →-∞ -∞=, 则无穷积分 ()d f x x +∞-∞ ? 收敛?()lim ()x F f x →+∞ +∞=和()lim ()x F f x →-∞ -∞=都存在,且 ()d () a f x x F x a +∞+∞=? 。 (3)若函数()f x 和()g x 都在[,)a +∞上连续可微,且lim ()()x f x g x →+∞ 存在,则无穷积分 ()()d a f x g x x +∞'? 收敛?()()d a f x g x x +∞'? 收敛,且 () ()()d ()()()()d a a f x g x x f x g x f x g x x a +∞+∞+∞''=-? ? , 其中()()lim ()()x f g f x g x →+∞ +∞+∞=。

高等数学 习题册解答_11.线面积分(青岛理工大学).

第十一章曲线积分与曲面积分 § 1 对弧长的曲线积分 1设 L 关于 x 轴对称, 1L 表示 L 在 x 轴上侧的部分,当 (y x f , 关于 y 是偶函数时, (=?L ds y x f , (?1 , L ds y x f C. (?-1 , 2L ds y x f D.ABC都不对 2、设 L 是以点 ((((1, 0, 0, 1, 1, 0, 0, 1--D C B A 为顶点的正方形边界 , 则 +L y x ds = 24 D. 22 3、有物质沿曲线 L :(103 , 2, 3 2≤≤===t t z t y t x 分布,其线密度为, 2y =μ,则它 =m

++1 42dt t t t B.?++1 422dt t t t C.?++1 42dt t t D.?++1 42dt t t 4.求 , ?L xds 其中 L 为由 2, x y x y ==所围区域的整个边界解:( 2 2 155121241 1 1 + -= + +?

? xdx dy y y 5. , ds y L ?其中 L 为双纽线 0(( (222222>-=+a y x a y x 解:原积分 =(( 22sin 4sin 4420 2 2' 21 -==+=? ??a d a d r r r ds y L χπ π θθθθθ 6. ?+L ds y x , 22 其中 L 为 (022>=+a ax y x 原积分 =222 2cos 2a adt t a ==?π 7. , 2?L

ds x 其中 L 为球面 2222a z y x =++与平面 0=-y x 的交线 解:将 y x =代入方程 2222a z y x =++得 2222a z x =+于是 L 的参数方程:t a z t a y t a x sin , sin 2 , cos 2 == = ,又 adt ds = 原积分 =? =π π20 3222 cos 2a adt t a 8、求均匀弧(0, sin , cos ≤<∞-===t e z t e y t e x t t t 的重心坐标3, 0 == =? ∞ -dt e M dt e ds t t , 52cos 10

数学分析(华东师大)第十一章反常积分

数学分析(华东师大)第十一章反常积分

r mg R ∫ ∫ 第 十 一 章 反 常 积 分 §1 反常积分概念 一 问题提出 在讨论定积分时有两个最基本的限 制 : 积分 区间 的有穷 性和 被积函 数的 有 界性 .但 在 很多实 际 问题中往 往 需 要突 破这 些限制 , 例 1 ( 第二宇宙速度问题 ) 在地球表面垂直发射火箭 ( 图 11 - 1 ) , 要使火 箭克服地球引力无限远离地球 , 试问初速度 v 0 至少要多大 ? 设地球半径为 R, 火箭质量为 m, 地面上的重力加速度为 g .按万有引力定律 , 在距地心 x( ≥ R ) 处火箭所受的引力为 mg R 2 F = . x 2 于是火箭从地面上升到距离地心为 r ( > R) 处需作的功为 2 ∫ d x = mg R 2 1 - 1 . R x 2 R r 当 r → + ∞ 时 , 其 极限 mg R 就是 火箭 无限 远 离地 球 需作 的 功 .我们很自然地会把这极限写作上限为 + ∞的“ 积分”: 图 11 - 1 + ∞ mg R 2 d x = lim r mgR 2 R x 2 r → + ∞ R d x = mg R . x 2 最后 , 由机械能守恒定律可求得初速度 v 0 至少应使 1 2 2 mv 0 = m g R . 用 g = 9 .81 ( m 6s /2 ) , R = 6 .371× 106 ( m ) 代入 , 便得 v 0 = 2 g R ≈ 11 .2( k m 6s /) . 例 2 圆 柱形桶 的内壁高 为 h , 内半 径为 R , 桶底有 一半径为 r 的小孔 ( 图 11 - 2) .试问从盛满水开始打开小孔直至流完桶中的水 , 共需多少时间 ?

含参量反常积分的一致收敛发判别法及推广汇总

含参量反常积分的一致收敛判别法及推广 作者:蒋碧希 指导老师:张海 摘要 本文主要介绍了含参量反常积分(含参量无穷限反常积分、含参量瑕积分)的基本概念、性 质.然后参照无穷限反常积分的方法建立了相应的含参量瑕积分的一致收敛性.最后结合例题说明其在解题中的应用. 关键词 含参量无穷限反常积分 含参量瑕积分 一致收敛 1 引言 对于含参量无穷限反常积分的基本概念、性质、一致收敛性判别法大部分教材都有详细论述.而忽视了含参量瑕积分的一致收敛性的判定,其实两者之间是同中有异的.本文主要参照无穷限反常积分的方法建立相应的含参量瑕积分的一致收敛判别法,并探究其在解题中的应用. 2 含参量无穷限反常积分的一致收敛判别法 2.1 含参量无穷限反常积分的定义 设函数(,)f x y 定义在无界区域{(,)|,}R x y a x b c y =≤≤≤≤+∞上,若对每一个固定的[,]x a b ∈,反常积分 (,)c f x y dy +∞ ? (1) 都收敛,则它的值是x 在[,]a b 上取值的函数,当这个函数为()I x 时,则有 ()(,),[,],c I x f x y dy x a b +∞ =∈? (2) 称(1)式为定义在[,]a b 上的含参量x 的无穷限反常积分,或简称含参量反常积分. 2.2 含参量反常积分的一致收敛概念 若含参量反常积分(1)与()I x 对任给的正数ε,总存在某一实数N c >,使得当M N >时,对一切[,]x a b ∈,都有 (,)()M c f x y dy I x ε-

(,)M f x y dy ε+∞ ,使得当M A A >21,时,对一切],[b a x ∈,都有 2 1 (,)A A f x y dy ε?ε,0>?M ,M A A >?21,时,使得],[b a x ∈?时,有 1 (,)2A f x y dy ε+∞ ?>?M ε,当M A A >21,时, 有 2 1 (,)A A f x y dy ε,总存在某一实数c M >,使得M A A >21,时,对一切 ],[b a x ∈,都有 2 1 (,)A A f x y dy ε

第11章反常积分答案

第十一章 反常积分 一、单选题(每题2分) 1、广义积分 dx x x ? ∞ +-1 2 1 1=( ) A 、0 B 、2π C 、4π D 、发散 2、广义积分 dx x x ? ∞+-+2 2 21 =( ) A 、4ln B 、0 C 、4ln 31 D 、发散 3、广义积分?+-2 02 34x x dx =( ) A 、3ln 1- B 、32ln 21 C 、3ln D 、发散 4、下列广义积分收敛的是( ) A 、 ? ∞ +e dx x x ln B 、?∞+e x x dx ln C 、 ?∞ +e x x dx 2 )(ln D 、?∞+e x x dx 21)(ln 5、下列广义积分发散的是( ) A 、 ?∞ -0 dx e x B 、 ? π 2cos x dx C 、?-20 2x dx D 、?∞+-0dx e x 6、下列积分中( )是收敛的 A 、?∞ +∞-xdx sin B 、?-2 22sin π πx dx C 、?∞+0dx e x D 、 ?-101x dx 7、下列广义积分发散的是( ) A 、?-1 1sin x dx B 、?--1121x dx C 、?∞+-02 dx xe x D 、?∞+22)(ln x x dx 8、?=-1 01 2 1dx e x x ( ) A 、e 1 B 、11-e C 、e 1 - D 、∞

9、已知 2sin 0 π =? ∞ +dx x x ,则=?∞+dx x x x 0cos sin ( ) A 、0 B 、4π C 、 2π D 、π 10、广义积分=+?∞ +∞-dx x 2 11 ( ) A 、0 B 、2π C 、2π - D 、π 11、下列积分中绝对收敛的是( ) A 、 dx x x ? ∞ +1 2sin B 、dx x x ?∞+1sin C 、dx x ?∞+12sin D 、dx x x ?∞+14sin 12、已知广义积分 dx x ?∞+∞ -sin ,则下列答案中正确的是( ) A 、因为()x f 在()+∞∞-,上是奇函数,所以0sin =?∞ +∞-dx x B 、 dx x ? ∞+∞-sin = () ()()[]0 cos cos cos =∞--∞+-=∞ -∞+-x C 、dx x ?∞+∞-sin =()0 cos cos lim sin lim =+-=? -+∞ →+∞ →b b xdx b b b b D 、 dx x ?∞+∞ -sin 发散 13、设广义积分 dx e kb ?∞ +-0 收敛,则k ( ) A 、0≥ B 、0> C 、0< D 、0= 答案:BCDCB DAABD ADB 二、判断题(每题2分) 1、当10<<λ时,无穷积分 dx x x ? ∞ +1 cos λ条件收敛; ( ) 2、当10<<λ时,无穷积分 dx x x ? ∞ +1 sin λ绝对收敛; ( )

数学分析(华东师大)第十一章反常积分

m g R 第 十 一 章 反 常 积 分 §1 反常积分概念 一 问题提出 在讨论定积分时有两个最基本的限 制 : 积分 区间 的有穷 性和 被积函 数的 有 界性 .但在很多实际问题中往往需要突 破这 些限制 , 考虑无 穷区 间上的“ 积分”, 或是无界函数的“积分”, 这便是本章的主题 . 例 1 ( 第二宇宙速度问题 ) 在地球表面垂直发射火箭 ( 图 11 - 1 ) , 要使火 箭克服地球引力无限远离地球 , 试问初速度 v 0 至少要多大 ? 设地球半径为 R, 火箭质量为 m, 地面上的重力加速度为 g .按万有引力定律 , 在距地心 x( ≥ R) 处火箭所受的引力为 mg R 2 F = . x 2 于是火箭从地面上升到距离地心为 r ( > R) 处需作的功为 2 ∫ d x = mg R 2 1 - 1 . R x 2 R r 当 r → + ∞ 时 , 其 极限 mg R 就是 火箭 无限 远 离地 球 需作 的 功 .我们很自然地会把这极限写作上限为 + ∞的“ 积分”: 图 11 - 1 + ∞ mg R 2 d x = lim r mgR 2 R x 2 r → + ∞ R d x = mg R . x 2 最后 , 由机械能守恒定律可求得初速度 v 0 至少应使 1 2 2 mv 0 = mg R . 用 g = 9 .81 ( m 6s /2 ) , R = 6 .371× 106 ( m ) 代入 , 便得 v 0 = 2 g R ≈ 11 .2( k m 6s /) . 例 2 圆 柱形桶 的内壁高 为 h , 内半 径为 R , 桶底有 一半径为 r 的小孔 ( 图

相关文档
最新文档