铂系与镍系苯加氢催化剂催化性能对比_吴永忠

铂系与镍系苯加氢催化剂催化性能对比_吴永忠
铂系与镍系苯加氢催化剂催化性能对比_吴永忠

镍催化加氢

2绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 催化加氢反应一般生成产物和水,不会生成其它副产物,具有很好的原子经济性。 加氢反应的应用很广泛。加氢过程在石油炼制工业中,除用于加氢裂化外,还广泛用于加氢精制。在煤化工中用于煤加氢液化制取液体燃料。在有机化工中则用于制备各种有机产品,例如一氧化碳加氢合成甲醇、苯加氢制环己烷、苯酚加氢制环己醇等。此外,加氢过程还作为化学工业的一种精制手段,用于除去有机原料或产品中所含少量有害而不易分离的杂质,例如乙烯精制时使其中杂质乙炔加氢而成乙烯;丙烯精制时使其中杂质丙炔和丙二烯加氢而成丙烯等。 3早在1902年,Normann 就实现了用镍催化剂使脂肪加氢来制取硬化油的工业化生产。近年来,镍系催化剂无论是在制备方法还是在应用领域,都取得了巨大的发展,镍应用于烯烃,炔烃,苯,硝基化合物,含羰基的化合物的催化加氢。 4按照催化剂的改性方法,将镍催化剂分为骨架镍催化剂、负载型催化剂以及其它类型镍催化剂。 5骨架镍,是应用最广泛的一类镍系加氢催化剂,也称雷尼镍。具有很多微孔,是以多孔金属形态出现的金属催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。具体的制备方法:将 Ni 和 Al ,Mg ,Si ,Zn 等易溶于碱的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。 6薛勇等[8]以邻硝基甲苯和草酸二乙酯为起始原料,合成邻硝基苯丙酮酸乙酯的乙醇碱性溶液,再用雷尼镍催化剂,在60~70℃、1.5MPa 压力下,用催化氢化法合成了吲哚-2-甲酸,总收率为70% (以邻硝基甲苯计算)用熔点、NMR 、GC - MS 谱图表征了该化合物。雷尼镍催化氢化方法合成吲哚-2-甲酸成本较低、后处理简单、无环境污染。其合成路线为: CH 3 NO 2 +(COOC 2H 5)2C H ONa CH 2C O COOCH 2CH 3NO 2 CH 2C O COOCH 2CH 3 NO 2+H 2Ni N H COOH 胡少伟等[10]采用骤冷法制备了改性骨架镍,将其应用于3, 4-二甲基硝基苯

非晶态合金催化剂的制备方法及应用

非晶态合金催化剂的制备方法及应用 摘要:综述了非晶态合金催化剂的制备方法,包括骤冷法、原子(离子)沉积法等,可以通过这些方法获得满足不同催化反应所需要的非晶态合金催化剂。简单介绍了非晶态合金催化剂在CO、CO2、烯烃、炔烃、苯或含氮化合物等的加氢反应中的应用。分析了非晶态合金催化剂制备和应用的特点,并展望其发展前景。关键词:非晶态合金催化剂制备方法应用 A general review of processing methods and applications of amorphous alloy catalysts Abstract: In this review article, processing methods of the amorphous alloy catalysts are introduced, including rapid quenching method, chemical reduction method and impregnation-chemical reduction method., thought which acquired various amorphous adjusting to different reactions. Made a brief introduction of the application in hydrogenation and dehydrogenation reaction and so on. Analyzed the characteristics of preparation and application of amorphous alloy catalysts and the application foreground are prognosticated. Key words: amorphous alloy, catalyst, processing method, applications 1.引言 非晶态合金,又称为“金属玻璃”,是一类具有长程无序、短程有序结构特点的材料[1-2]。非晶态合金以金属键作为其结构特征,虽然不是长程有序,但在几个晶格常数范围内保持短程有序。自从1934年用蒸发沉积法制备出非晶态合金以来,对于非晶态合金的合成与应用研究获得了飞速发展。由于它具有独特的电磁性能、机械性能和耐磨性能,在配电设备、电动机、电磁传感器等电力设备上得到了广泛的应用。此外,由于非晶态合金具有独特的结构,它在催化领域也表现出优异的性能。自从1980年Smith G V 发表第一篇关于非晶态合金催化剂的研究报告以来,得到了国内外许多催化剂研究者的广泛亲睐[3]。 非晶态合金引起催化工作者的兴趣是因为它具有以下特点[4]:第一,非晶态合金在很宽的范围内可以制成各种组成的样品,从而可以在较宽大范围内调变它们的电子性质;第二,催化活性中心可以以单一的形式均匀分布在化学均匀的环境中;第三,非晶态合金表面具有浓度较高的不饱和中心,且不饱和中心的配位数具有一定的范围,因而使其催化活性和选择性一般优于相应的晶态催化剂;第四,其表面的非多孔性是其摆脱了多项催化剂存在的反应物种的扩散影响表面反应的问题。非晶态合金催化剂是将来有望开发的一种高效、环境友好的新型催化

镍基CO加氢反应催化剂及其设备制作方法与应用与设计方案

本技术介绍了一种镍基CO加氢反应催化剂及其制备方法与应用,该镍基CO加氢反应催化剂的组成分成分包括氧化镍、氧化铝和助剂,并且所述氧化镍的含量占该镍基CO加氢反应催化剂总质量的55~90%,所述助剂的含量占该镍基CO加氢反应催化剂总质量的1~5%;所述氧化镍的粒度为3~17nm。该镍基CO加氢反应催化剂是采用共沉淀法进行制备的,并通过添加不同种类助剂、改进助剂的添加方式、改进干燥过程提高了催化剂的反应活性,从而能够极大的降低甲烷化反应的反应温度,而且在低温条件下能够保持很高的反应活性和稳定性,因此该镍基CO加氢反应催化剂可用于在低温条件下完全脱除富氢气体中的CO。 技术要求 1.一种镍基CO加氢反应催化剂,其特征在于,其组成分成分包括氧化镍、氧化铝和助剂,并且所述氧化镍的含量占该镍基CO加氢反应催化剂总质量的55~90%,所述助剂的含量占该镍基CO加氢反应催化剂总质量的1~5%; 其中,所述氧化镍的粒度为3~17nm;所述的助剂为氧化镧、氧化铈、氧化镁、氧化锰、氧化镨中的至少一种。 2.根据权利要求1所述的镍基CO加氢反应催化剂,其特征在于,所述镍基CO加氢反应催化剂的比表面积为220~271m2/g,孔容为0.90~ 1.08cm3/g,平均孔径为 3.一种镍基CO加氢反应催化剂的制备方法,其特征在于,包括以下步骤: 步骤A、配制镍盐和铝盐的混合水溶液,从而得到混合盐溶液; 步骤B、将第一部分碱溶液先加入到反应容器中,然后控制反应温度为75~85℃,在转速为5~20r/s的搅拌条件下,将第二部分碱溶液与所述混合盐溶液并流加入到所述反应容器中,同时控制反应容器内液体的pH值为8~10,从而得到胶状溶液; 步骤C、向所述胶状溶液中加入助剂盐溶液,并在搅拌30分钟后超声波处理30分钟,然后在75~85℃条件下陈化1小时,再采用去离子水进行洗涤和抽滤,直至得到pH值为7的中间体沉淀物;将所述中间体沉淀物与第一醇溶液混合,并超声波处理20~60分钟使所述中间体沉淀物分散均匀,然后在75~85℃的条件下搅拌蒸发水分,从而得到中间体粉末;再将所述中间体粉末置于120℃下干燥4小时,从而得到干燥的中间体粉末; 步骤D、对所述干燥的中间体粉末进行焙烧,焙烧后冷却降温,并使用压片机压片成型,从而制得上述权利要求1或2所述的镍基CO加氢反应催化剂; 其中,所述镍盐水溶液为硝酸镍、醋酸镍、硫酸镍中的至少一种;所述铝盐水溶液为硝酸铝和硫酸铝中的至少一种;所述第一部分碱溶液和第二部分碱溶液均为Na2CO3、NaHCO3、尿素中的至少一种;所述助剂盐溶液为镧、铈、镁、锰、镨中至少一种的盐溶液;所述第一醇溶液是由月桂醇硫酸脂钠、烷基酚聚氧乙烯醚、醇溶液按照0.1~1:0.1~1:0.1~1的体积比混合而成;所述烷基酚聚氧乙烯醚采用壬基酚聚氧乙烯醚和辛基酚聚氧乙烯醚中的至少一种。 4.根据权利要求3所述的镍基CO加氢反应催化剂的制备方法,其特征在于,所述镍盐水溶液的浓度为0.5~1.5mol/L。 5.根据权利要求4或5所述的镍基CO加氢反应催化剂的制备方法,其特征在于,所述的碱溶液采用浓度为2mol/L的Na2CO3。 6.根据权利要求4或5所述的镍基CO加氢反应催化剂的制备方法,其特征在于,在步骤D中,将所述干燥的中间体粉末放入马弗炉中进行焙烧,升温速率为1~2.5℃/分钟,直至达到焙烧温度为350~450℃后,以此温度焙烧4小时后再自然冷却降温。 7.一种镍基CO加氢反应催化剂的应用,其特征在于,将上述权利要求1至2中任一项所述的镍基CO加氢反应催化剂用于对CO浓度为4000~ 5500ppm的富氢气体进行CO脱除。 技术说明书 一种镍基CO加氢反应催化剂及其制备方法与应用 技术领域 本技术涉及CO加氢反应催化剂,尤其涉及一种镍基CO加氢反应催化剂及其制备方法与应用。 背景技术

含钼催化剂研究进展

含钼催化剂研究新进展 摘要含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开 发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献1前言 催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总 产值来自催化技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化 工生产,如合成气制造、基本有机合成和精细化工产品等的的生产。因此,长期以 来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注, 逐渐成为我国钼深加工领域的一个新的发展方向。现仅就我国近年来含钼催化剂的 一些新进展作简要介绍。 2烷烃的化学加工催化剂 2.1烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1 993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂 的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法 制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合 法、固相反应法和微波处理法制备的Mo/HZSM-5催化剂,比一般浸渍法能明显提高 芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面 ,这对甲烷芳构化反应有利,并明显减少积碳的生成。 王军威等用浸渍法、机械混合法和水热法制备了Mo/HZSM-5催化剂,并考察了 钼含量和反应时间对丙烷芳构化反应的影响,深入研究了Mo物种对HZSM-5分子筛结构和酸性的作用。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。 2.2烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究 与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问 题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复 合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。

钯催化剂的制备

金属钯最外层电子数为零,赋予了钯怎样的性质? 因为最外层电子数为零,其化学性质不活泼(但是不如铂稳定)。常温下在空气和潮湿环境中稳定,加热至800℃,钯表面形成一氧化钯薄膜。钯能耐氢氟酸、磷酸、高氯酸、盐酸和硫酸蒸气的侵蚀,但易溶于王水和热的浓硫酸及浓硝酸。熔融的氢氧化钠、碳酸钠、过氧化钠对钯有腐蚀作用。 因为电子价层是4d10(钯(Pd)的原子结构为[Kr]4d10,虽然钯原子中的电子只占据四个电子层,但因期第五能级组(5s4d5p)上由电子,故钯仍属于第五周期),钯的氧化态为+2、+3、+4。钯容易形成配位化合物,如K2[PdCl4]、K4[Pd(CN)4]等。 化学符号Pd ,原子序数46 ,原子量106.42 ,属周期系Ⅷ族,为铂系元素的成员。1803 年英国W.H.渥拉斯顿从粗铂中分离出一种新元素,为了纪念1802年发现的小行星武女星(Pallas),把它命名为palladium。钯在地壳中的含量为1×10-6%,常与其他铂系元素一起分散在冲积矿床和砂积矿床的多种矿物(如原铂矿、硫化镍铜矿、镍黄铁矿等)中。独立矿物有六方钯矿、钯铂矿、一铅四钯矿、锑钯矿、铋铅钯矿、锡钯矿等,还以游离状态形成自然钯。 钯是银白色金属,熔点1554 ℃,沸点2970 ℃,密度12.02克/厘米3(20℃)。较软,有良好的延展性和可塑性,能锻造、压延和拉丝。块状金属钯能吸收大量氢气,使体积显著胀大,变脆乃至破裂成碎片。海绵状或胶状钯吸氢能力更强,在常温下,1体积海绵钯可吸收900体积氢气,1体积胶体钯可吸收1200体积氢气。加热到40~50℃,吸收的氢气即大部释出。 将精选的砂铂矿或富铂矿用王水溶解,经一系列的化学处理,可得二氯二氨合钯,经灼烧后在高温下用氢气还原可得海绵状钯。钯在硝酸生产、蒽醌法制造过氧化氢以及氢化、脱氢、异构化和裂解反应中用作催化剂。钯银合金管用于生产高纯氢,钯铜合金可做大容量继电器的触头,钯钌合金用于补牙和制造首饰、厚膜电路上的电容和电阻。 元素符号:Pd 中文名称:钯 英文名称:Palladium 原子序数:46 原子量:106.4

钯加氢催化剂及其应用

钯催化剂在有机加氢中通常兼有良好的活性和选择性,正是这一特性,使钯催化剂在有机催化加氢中极具实用价值。通常钯催化剂分有载体和无载体两类。其中无载体的钯催化剂主要有钯黑、胶态钯、氧化钯和氢氧化钯等。基本上都用于各种有机催化加氢。钯催化剂的载体,本身具有助催化作用,还能调变催化加氢的选择性。相对于无载体钯催化剂,有载体的钯催化剂价格更实惠。 1.钯/碳酸钙催化剂 钯/碳酸钙催化剂特点是用稀醋酸铅来处理钯/碳酸钙。由于铅的毒性作用,使钯催化剂加氢活性减弱,加氢选择性加强。还可以加喹啉进一步提高其加氢选择性。它能控制反应固定在碳-碳三键加氢成碳-碳双键这一步上,也能使共轭二烯选择加氢成单烯。 1.1.钯/碳酸钙催化剂的实验室制备 将50ml 5%的氯化钯水溶液加入50g碳酸钙和400mL水的混合液中,室温下搅拌5 min,80℃下搅拌10min,然后通氢气。还原氯化钯为钯。过滤并水洗得钯/碳酸钙。将5g醋酸铅溶于100mL水中,然后浸渍钯/碳酸钙。20℃搅拌10min。沸水浴上加热并搅拌40min。滤出、水洗后40℃-50℃真空干燥得钯/碳酸钙催化剂。 1.2 钯/碳酸钙催化剂的应用 前苏联索科耳斯基等表明:在气相中,用被铅毒化的钯/碳酸钙催化剂可非常顺利地使乙炔加氢成乙烯。在40℃-60℃和C2H2∶H2=1:2 时,乙烯产率达98%-100% 。 另外,由于钯在常态下对羰基和芳环基催化加氢无活性,故钯/碳酸钙催化剂能实现选择性加氢。例如:用被铅毒化的钯/碳酸钙催化剂。催化加氢去氢沉香醇成为沉香醇,该反应炔基加氢停留在烯基这一步上,而醇基并不加氢。 开发钯/碳酸钙催化剂可参考钯、碳酸钙、醋酸铅的质量比例。工艺过程能重新设计。试验室制备中催化剂真空干燥主要考虑到单质钯加热易吸附氧,催化剂活性会下降。真空干燥工业生产不现实,可设计成在惰性气氛中干燥。沸水浴上加热搅拌可设计成在红外或微波中加热。载体也可设计成氧化铝或氧化铝球。也有用醋酸锌作毒物处理钯/ 碳酸钙催化剂的。现在工业中运用较多的是钯载于氧化铝上,用负载铅作毒物。用作催化乙炔选择加氢成乙烯,丙炔选择加氢成丙烯、丁二烯,丁炔选择加氢成丁烯等。 2. 钯/碳催化剂 该催化剂的特点是制备工艺流程较简洁,但使用技术要求很高。在某些反应中,钯/碳催化剂用95%乙醇洗净凉干,再用其它溶液洗后能套用3-4次。 2.1. 钯/碳催化剂的实验室制备 根据计算钯在催化剂中的百分含量,将固体氯化钯溶于浓盐酸和水,再用水稀释,浸渍炭,搅拌,蒸干。使用时用氢气还原。一般钯/碳催化剂含钯3%-5% 。 钯/碳催化剂用于腈加氢时,要用硼氢化钠还原附载在炭上的氯化钯,制成钯/碳催化剂。这是因为金属硼化物对腈加氢有良好的活性和选择性。 2.2. 钯/碳催化剂的应用 钯/碳催化剂可用于吡啶加氢制哌啶。将吡啶和醛或酮混合,用钯/碳催化剂加氢,可制得收率很好的N-烷基哌啶。钯/碳(5%钯)催化剂,在乙醇中对芳香族硝基化合物进行加氢时,添加烷基环己烯或脂肪族酮可获得良好效果。用钯/碳(5%钯)催化剂在腈加氢时,应

双氧水用钯催化剂的分类

双氧水用钯催化剂的分类 2016-04-18 12:20来源:内江洛伯尔材料科技有限公司作者:研发部 4万吨/年H2O2工业化示范装置 蒽醌法双氧水生产中所需氢化催化剂主要分为镍催化剂和钯催化剂两大类,其中钯催化剂是当前使用最多的催化剂。 1.钯系固定床催化剂 研究发现,在固定床内分段交叉装填催化剂和惰性颗粒物(如Al2O3等),可显著提高催化剂生产能力,减少降解物生成。如MGC公司采用(0.5%~2.0%) Pd/Al2O3催化剂,FMC公司采用颗粒催化剂0.3 % Pd/Al2O3。 为了提高活性组分的利用率,有人研制出钯载非均布蛋壳形催化剂,其载钯薄层厚度为微米级。通过该技术减薄催化剂活性层,既可避免滴流床反应器中因蒽醌在催化剂孔道中滞留时间过长导致深度加氢等问题,又可降低钯含量和催化剂生产成本。 固定床催化剂的形状有圆柱形整体催化剂和蜂窝催化剂两大类。将蜂窝催化剂和整体催化剂用于蒽醌氢化工艺则是近年来双氧水工业中的研究热点,因为这两类催化剂不仅可抑制蒽醌降解和降低钯含量,还可改善反应物料在床层内向催化剂表面的传质,从而提高滴流床内催化剂的总体效能。 2.钯系悬浮床催化剂 用于悬浮床氢化的钯系催化剂有以Al2O3 (粉状) 或SiO2 (粉状) 为载体的,亦可用钯黑无载体催化剂。杜邦公司采用活性Al2O3为载体,载体粒径在20~400目(以50~300目为佳) ,催化剂比表面25~400m2/g。而低表面的无定形SiO2 做载体,因具有良好的活性和选择性,减少了蒽醌的降解,并能克服γ- Al2O3对H2O 敏感、易于失活等缺点,从而可提高催化剂的使用寿命。 无载体的钯黑催化剂能消除载体的影响,较软的钯颗粒可以避免对设备的磨损。研究发现,制备钯黑催化剂时,如添加少量过渡金属(相当于钯量的0.01%~3.0%),如Fe 、Cr 和Ni等,可提高催化剂的活性和稳定性。

一种金属钯催化剂及其制备方法和应用

一种金属钯催化剂及其制备方法和应用 2016-07-18 14:17来源:内江洛伯尔材料科技有限公司作者:研发部 一种金属钯催化剂及其制备方法 钯能够催化卤代芳烃与有机苯硼酸以及其衍生物的Suzuki 反应,这在有机合成中的用途非常广泛,其反应条件比较温和,底物适用比较广泛、产物便于处理等特点,在碳- 碳偶联反应中具有很重要的地位,是合成联苯类化合物的有效方法。近年来,钯催化剂具有很高的催化性能、反应条件温和、易于回收等优点,这就决定了负载型的钯催化剂具有潜在的应用价值。目前,已经有很多文献报道过各种各样的催化剂,在研究Suzuki 反应的现有文献中,有很多含膦配体、含氮配体以及卡宾配体等,但是,在此反应中,常常存在一些的缺点,比如:大量的钯催化剂使用量、催化剂活性低、催化剂难回收使用等问题。膦配体对钯催化剂的催化效果影响很大,但是有些含膦钯催化剂在Suzuki 反应中,活性不高甚至活性很低。另外,在Suzuki 反应中常使用的有机溶剂( 例如甲苯、DMF 等) 通常是有毒、昂贵的。因此,制备出催化活性很高的钯催化剂,在Suzuki 反应中,使用毒性较低的有机溶剂在实际应用中非常重要。 由含氮和膦小分子在钯作用下,通过碳膦、碳氮偶联,生成包覆金属钯的大分子聚合物催化剂。钯盐先与DIPPF([1,1'- 双( 二异丙基膦) 二茂铁)的配位,然后再催化胺化合物与含膦化合物的之间的反应,最后加入一定量的钯盐、胺化合物、哌嗪和碱,其中碱的作用是消除在反应过程中生成的HBr,在甲苯有机溶剂中,惰性气体保护下,一定温度下反应生成的包覆金属钯的聚合物。该催化剂为含氮和膦的聚合物固载金属钯,其中金属钯占聚合物的质量负载量( 通过ICP 测得) 为0.2 ~ 2%;由含氮和膦小分子在钯作用下,通过碳膦、碳氮偶联,生成包覆金属钯的大分子聚合物催化剂。由于固载的含膦配体以及聚苯胺共同作用提高了钯催化剂活性和稳定性。该催化剂在醇和水的混合溶液中可以超高效的催化Suzuki 反应,可在极低的催化剂用量的条件下进行;该催化剂易于回收、便于应用,且该催化剂能够用于合成新型沙坦类高血压药的沙坦联苯(2- 氰基-4′ - 甲基联苯) 和4- 氯-2′ - 硝基联苯( 合成啶酰菌胺的药物中间体) 药物中间体的放大实验,这在工业上有很大的应用价值。

非晶态合金催化剂在催化中的应用

非晶态合金催化剂在催化中的应用 班级:化学本11 学号:2011111704 姓名:全青敏 摘要 : 非晶态合金是一种新型催化剂。重点介绍了非晶态合金用作催化剂材料在电催化反应、加氢反应和脱氢反应以及氨合成反应等中的应用及对非晶态合金用作催化剂材料的发展前景作了评述。 关键词 : 非晶态合金催化剂应用发展前景 非晶态合金是60年代初问世的,由于其在结构上不同于晶态金属,并且在热力学上处于不稳或亚稳状态,具有一般合金所不具备的特性,如高强度、耐腐蚀性、超导电性等优良的力学、电学及化学性质,已广泛用于国民经济各个方面,而且取得了令人瞩目的成就[1]。非晶态合金用作催化剂具有很多独特的性质。它可以在很大的范围内改变合金的组成(晶态合金无法做到这一点),从而连续控制其电子性质;催化活性中心可以以单一的形式均匀地分布于化学均匀的环境中;非晶态结构是非多孔性的,传统非均相催化剂存在的扩散阻力问题并不影响非晶态合金催化剂[2]。因此 ,从1980年国际上发表了第一篇有关非晶态合金催化性能的报告[3],展示了这种新型催化材料的美好前景以来,引起了各国材料和催化科学界的广泛重视及兴趣 ,日本、美国等国家的研究工作者相继采用多种成分的非晶态合金进行了深入的研究[4 ,5]。从80年代末开始,国内几所大学及研究机构开始了对非晶态合金催化剂进行深入和系统研究。非晶态合金催化剂的制备方法主要有液体急冷法、电化学法、化学还原法和电火花加工法等。非晶态合金最早的制备方法是液体急冷法,随后出现了电化学法、电火花加工法及化学还原法 ,目前研究较多的是化学还原法。许多文献[6- 9]已对非晶态合金催化剂的制备方法进行了大量的报道,在此不再重述,本论文重点放在非晶态合金在催化中的应用1非晶态合金的应用进展非晶态合金催化剂所催化的反应主要有电催化 反应、加氢反应及脱氢反应等[10 ,11]。 1. 1 电催化反应 1.1.1 水的电解 随着世界能源和环境问题的凸现,氢作为一种洁净能源,越来越受到人们的重视。电解水可生产氢,而适宜的电极则是电解的关键。因为非晶态合金具有高机械强度、卓越的抗腐蚀性和独特的晶态结构,因此是一种优良的电极材料。

钯的催化剂种类及其应用

钯的催化剂种类及其应用 钯的催化剂种类及其应用 2011年11月03日 钯催化剂在有机加氢中通常兼有良好的活性和选择性,正是这一特性,使钯催化剂在有机催化加氢中极具实用价值。通常钯催化剂分有载体和无载体两类。其中无载体的钯催化剂主要有钯黑、胶态钯、氧化钯和氢氧化钯等。基本上都用于各种有机催化加氢。钯催化剂的载体,本身具有助催化作用,还能调变催化加氢的选择性。相对于无载体钯催化剂,有载体的钯催化剂价格更实惠。 1. 钯/碳酸钙催化剂 钯/碳酸钙催化剂特点是用稀醋酸铅来处理钯/碳酸钙。由于铅的毒性作用,使钯催化剂加氢活性减弱,加氢选择性加强。还可以加喹啉进一步提高其加氢选择性。它能控制反应固定在碳-碳三键加氢成碳-碳双键这一步上,也能使共轭二烯选择加氢成单烯。 1.1. 钯/碳酸钙催化剂的实验室制备 将50ml 5%的氯化钯水溶液加入50g碳酸钙和400mL水的混合液中,室温下搅拌5 min,80?下搅拌10min,然后通氢气。还原氯化钯为钯。过滤并水洗得钯/碳酸钙。将5g醋酸铅溶于100mL水中,然后浸渍钯/碳酸钙。20?搅拌10min。沸水浴上加热并搅拌40min。滤出、水洗后40?-50?真空干燥得钯/碳酸钙催化剂。 1.2 钯/碳酸钙催化剂的应用 前苏联索科耳斯基等表明:在气相中,用被铅毒化的钯/碳酸钙催化剂可非常顺利地使乙炔加氢成乙烯。在40?-60?和C2H2?H2=1:2 时,乙烯产率达98%-100% 。

另外,由于钯在常态下对羰基和芳环基催化加氢无活性,故钯/碳酸钙催化剂能实现选择性加氢。例如:用被铅毒化的钯/碳酸钙催化剂。催化加氢去氢沉香醇成为沉香醇,该反应炔基加氢停留在烯基这一步上,而醇基并不加氢。 开发钯/碳酸钙催化剂可参考钯、碳酸钙、醋酸铅的质量比例。工艺过程能重新设计。试验室制备中催化剂真空干燥主要考虑到单质钯加热易吸附氧,催化剂活性会下降。真空干燥工业生产不现实,可设计成在惰性气氛中干燥。沸水浴上加热搅拌可设计成在红外或微波中加热。载体也可设计成氧化铝或氧化铝球。也有用醋酸锌作毒物处理钯/ 碳酸钙催化剂的。现在工业中运用较多的是钯载于氧化铝上,用负载铅作毒物。用作催化乙炔选择加氢成乙烯,丙炔选择加氢成丙烯、丁二烯,丁炔选择加氢成丁烯等。 2. 钯/碳催化剂 该催化剂的特点是制备工艺流程较简洁,但使用技术要求很高。在某 碳催化剂用95%乙醇洗净凉干,再用其它溶液洗后能套用3-4次。些反应中,钯/ 2.1. 钯/碳催化剂的实验室制备 根据计算钯在催化剂中的百分含量,将固体氯化钯溶于浓盐酸和水,再用水稀释,浸渍炭,搅拌,蒸干。使用时用氢气还原。一般钯/碳催化剂含钯3%-5% 。 钯/碳催化剂用于腈加氢时,要用硼氢化钠还原附载在炭上的氯化钯,制成钯/碳催化剂。这是因为金属硼化物对腈加氢有良好的活性和选择性。 2.2. 钯/碳催化剂的应用 钯/碳催化剂可用于吡啶加氢制哌啶。将吡啶和醛或酮混合,用钯/碳催化剂加氢,可制得收率很好的N-烷基哌啶。钯/碳(5%钯)催化剂,在乙醇中对芳香族硝基化合物进行加氢时,添加烷基环己烯或脂肪族酮可获得良好效果。用钯/碳(5%钯)

铂系与镍系苯加氢催化剂催化性能对比

生产技术 化工科技,2007,15(6):42~45 SCIEN CE &T ECHN O LO GY IN CH EM ICA L I NDU ST RY 收稿日期:2007-08-09作者简介:吴永忠(1966-),男,江苏兴化人,南京化工职业技术学院高级工程师,从事科研与教学工作。 铂系与镍系苯加氢催化剂催化性能对比 吴永忠1,张英辉2 (1.南京化工职业技术学院应化系,江苏南京210048;2.中国石油吉林吉化建修有限公司,吉林吉林132021) 摘 要:在实验室中对比了苯加氢N CG 系列镍催化剂和新型铂系苯加氢催化剂的性能,并在工业使用中进一步进行对比,最后给出工业应用的综合评价和提高环己烷质量的有效方法。 关键词:比较;性能;苯加氢催化剂;镍系;铂系 中图分类号:T Q 426.8 文献标识码:A 文章编号:1008-0511(2007)06-0042-04 生产己内酰胺的主要原料之一)))环己烷,除了从粗汽油中分馏和甲基环戊烷异构制备外, 迄今为止主要由苯加氢制备的已达90%左右。由于己内酰胺用途越来越广,其主要原料环己烷的生产日趋重要。苯加氢制环己烷是石油化工中重要的催化加氢过程,世界上环己烷产量已大于300万t/a,环己烷主要用于生产己内酰胺和树脂,也可用作溶剂和其它化工原料。国内主要采用装有催化剂的固定床苯加氢反应器,由于该催化剂具有优良活性和热稳定性及机械强度,在实际生产中取得了良好的效果。 研究发现Pt,Pd,Ni,Ru,Rh,Co 等少数几种金属,对苯加氢反应具有良好的催化活性。目前工业上广泛应用的苯加氢反应催化剂,主要分为镍系和铂系两大类 [1~3] 。镍系苯加氢催化剂主要 有Ni/Al 2O 3、Ni/SiO 2和骨架镍系等工业产品;其中N i/Al 2O 3和Ni/SiO 2苯加氢催化剂应用较为广泛。在生产实践中发现:镍系苯加氢催化剂苯加氢活性好,价格便宜,但该体系催化剂有一些缺点,如耐硫性能差,耐热性差,一般工业使用温度120~180e ,液苯空速低(0.1~ 1.0h -1,一般为0.2~0.8h -1),工业使用寿命短,一般为一年到两年,只能副产低压蒸汽。目前我国镍系苯加氢催化剂主要用于中小型生产装置;Pt 系苯加氢催化剂较Ni 系催化剂有许多优点:耐硫性能好,中毒后易再生,耐热性能好,工业操作温度可达 200~400e ,可副产中压蒸汽(1.0M Pa),液苯空速可达1.0~ 2.0h -1 ,工业使用寿命大于5年。Pt/Al 2O 3催化剂应用于大型己内酰胺厂苯加氢工艺具有较大优势,如南京东方化工有限公司引进荷兰DSM Stamicaro n 公司技术建成的50kt/a 己内酰胺生产装置中就采用Pt 系苯加氢工艺。镍系苯加氢与铂系苯加氢催化剂,国外市场各占约一半,国内目前仍以镍系为主。今后发展趋势仍为两个系列并存的格局,但从工业生产装置大型化,高产能、长寿命、抗毒性等角度考虑,使用铂系苯加氢催化剂具有比较明显的优势。 笔者在研制铂系苯加氢催化剂时,发现铂催化剂与镍催化剂的反应条件与催化性能均存在较大的差异。为了更好的使用好这两种催化剂,有必要对这2种催化剂进行详细的比较。 1 加氢催化反应及其催化剂 苯加氢制环己烷反应是一强放热反应,其主要化学反应式如下。 主反应: C 6H 6+3H 2C 6H 12+215.7kJ/mo l (1) 主要副反应:C 6H 6+3H 2C 5H 9CH 3+16.58kJ/mol (2) C 6H 6+3H 2 3C+3CH 4+315.9kJ/m ol (3) 反应式(1)为主反应,生成目的产物环己烷;反应式(2)为主要副反应,生成甲基环戊烷,影响目的产物环己烷的纯度;反应式(3)则会造成催化

镍催化剂

镍催化剂 论文题目:镍催化剂 班级:学号: 姓名:实验日期:2011.11.19.

一、镍的基本知识: 镍基催化剂一般是指雷尼镍又译兰尼镍,是一种由带有多孔结构的镍铝合金的细小晶粒组成的固态异相催化剂,它最早由美国工程师莫里·雷尼在植物油的氢化过程中,作为催化剂而使用。其制备过程是把镍铝合金用浓氢氧化钠溶液处理,在这一过程中,大部分的铝会和氢氧化钠反应而溶解掉,留下了很干燥的活化后的雷尼镍.多大小不一的微孔。这样雷尼镍表面上是细小的灰色粉末,但从微观角度上,粉末中的每个微小颗粒都是一个立体多孔结构,这种多孔结构使得它的表面积大大增加,极大的表面积带来的是很高的催化活性,这就使得雷尼镍作为一种异相催化剂被广泛用于有机合成和工业生产的氢化反应中。我们所说的骨架镍,原料是镍铝合金,用氢氧化钠处理该合金2Ni-Al+2NaOH+2H2O=2Ni+2NaAlO2+3H2雷尼镍主要用于不饱和化合物,如烯烃,炔烃,腈,二烯烃,芳香烃,含羰基的物质,乃至具有不饱和键的高分子的氢化反应。使用雷尼镍进行氢化有时甚至不需要特意加入氢化,仅凭活化后的雷尼镍中吸附的大量氢气即可完成反应。反应后得到的是顺位氢化产物。另外,雷尼镍也可以用于杂原子-杂原子键的还原。除了作为催化剂加氢,雷尼镍还将充当试剂参与有机含硫化合物如硫缩酮的脱硫生成烃类的反应。 镍催化剂呈现出很高的加氢活性,由于其催化活性好,机械强度高,对毒物不敏感,导热性好等优点,不仅应用于各种不饱和烃的加氢,而且也是脱氢、氧化脱卤、脱硫等某些转化过程中的良好催化剂,使用于石油、化工、制药、油脂、香料、双氧水、合成纤维,特别是在山梨醇、木糖醇、麦芽糖醇等工业上得到了广泛应用。 二、镍催化剂的发展现状 近几年年以来,LME镍价就在30000美元/吨以下波动,3月初受到停产消息刺激,镍价短暂回升到30000美元/吨以上,此后在关键点位连连失守,二季度末主要不锈钢企业开始减产压库,又给镍价回升蒙上了阴影,此后人们一直希望寄予下半年不锈钢市场能够恢复上,拖垮了整个商品期货价格,尽管各种类别的大综商品有不同的供求体系,但信贷市场的整体紧缩和实体经济运行的不确定性带来的悲观消费预期,导致投资者纷纷撤出商品市场。 由于镍价快速回落,多数近年准备投资的镍项目将会暂停,已经投资的项目将会推迟,从而减少镍供应,我国镍产量为22.9万吨,消费量为31.3万吨、为了应对全球金融危机可能对我国降级带来的影响,中国政府已经采取了一系列建议灵活的调控措施,建议下一步能够进一步调整有关政策,以帮助企业渡过难关。

钼催化剂

书山有路勤为径,学海无涯苦作舟 钼催化剂 1、磷钼酸磷钼酸是丙烯氨氧化制备丙烯睛的催化剂,它在合成纤维加工 中起着重要作用,它还是丝和皮革加重剂、有机颜料的原料、分析试剂。磷 钼酸分子式为H3PO4·12MoO3·30H2O,可溶于水、乙醇、乙醚。密度 2.53g/cm3,熔点78℃。为黄色到桔黄色结晶。主要原料:三氧化钼和磷酸。 反应式为:12MoO3+H3PO4+xH2O 煮沸H3PO4·12MoO3·xH2O→生产过程:按MoO3:水=1:10 的固液比搅拌均匀,加入浓度85%磷酸,加入量按MoO3:H3PO4=12:lmol 数计算。通入蒸汽使溶液煮沸3h,加温时应控制蒸 汽压力,使溶液平稳沸腾,不要暴沸。还要不断补充清水,保持最初的液面高 度。反应前,溶液呈MoO3 的乳白色,反应初变金黄色,后期变为绿色,反应 后期pH 为1.0。液固分离,弃去滤渣(可回收用)。滤液中先滴加30%双氧 水,溶液颜色由绿转黄。蒸发浓缩溶液(温度106℃),将溶液冷却、结晶获产 品流程见图1。图1 磷钼酸生产流程2、钴-钼催化剂在用天然气、油田气、 炼油气、焦炉气或轻油为原料,生产合成氨时,要求气、油中硫含量< 0.3ppm。在脱硫时,无机硫可用脱硫剂全部除净,而有机硫的脱除就很困难。 为此,要用以钼为主催化剂将有机硫加氢变成无机硫(H2S)后脱除。反应式 为: CS2+4H2→CH4+2H2SCOS+4H2→CH4+H2S+H2OC2H5SH+H2→C2H6+H2S加氢脱硫催化剂以钼为主,钴、镍、铁、钒为助催化剂,氧化铝作载体。应用最 早为钴-钼。现亦有用铁-钼或镍-钼。其成份变化,结构复杂,据Richardson 研 究后认为,催化剂活性物是被活性Cox 活化了的MoS2,以Cox/Mo=0.18 为 佳。催化剂组分的化合形态不管以何形式存在,在加氢脱硫前,都必须进行充 分预硫化处理。[next] 加氢脱硫的钴-钼或镍-钼催化剂生产工艺有三种:

金属有机化学中的钯催化的反应讲解

XXXX大学研究生学位课程论文(2012 ---- 2013 学年第一学期) 学院(中心、所):化学化工学院 专业名称:应用化学 课程名称:高等有机化学 论文题目:金属有机化学中的钯催化的反应 授课教师(职称)XXXX(教授) 研究生姓名:XXXX 年级:2012级 学号:XXXXXXXXX 成绩: 评阅日期: XXXX大学研究生学院 2012年12 月25 日

金属有机化学中的钯催化的反应 XXXXXX (XXXX大学化学化工学院,山西,太原,030006) 摘要:过渡金属钯在金属有机化学方面具有丰富的反应性,在各类有机化学反应中如氢化、氧化脱氢、偶联、环加成等反应中,钯是优良的催化剂,或是催化剂的重要组分之一。本文在查阅大量近几年文献资料的基础上,综述了钯催化的反应,同时综述了钯催化反应的机理以及钯催化反应的研究现状。 关键词:钯,催化剂,反应机理,研究进展 1钯催化的反应类型及反应机理 在现今炼油、石油化工等工业催化反应中,有很多的钯催化反应,尤其是氢化反应中的选择加氢,以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯,均广泛采用和开发钯催化剂。对石油重整反应,钯也是常选取的催化剂组分之一。 1.1氢化反应 钯催化剂具有很大的活性和极优良的选择性,部分氢化选择性高,常用作烯烃选择性氢化催化剂。 1.1.1反应式及反应机理 反应底物首先和氢气分子分别被吸附到催化剂上,然后和催化剂的活性中心形成配位键,最后完成氢的转移,氢和反应底物形成σ-键。 1.1.2反应方程式举例 1.2氧化反应 烯烃和炔烃是十分常见并且重要的有机化合物,选择性地氧化这类不饱和碳氢化合物一直是化学工业和学术界的重要研究目标之一。 1.2.1分子氧参与的钯催化烯烃的氧化反应 根据亲核试剂的不同,如氧、氮和碳等亲核试剂,把催化烯烃的氧化反应可以形成C-O、C-N和C-C键。 1.2.1.1反应机理 钯催化烯烃的氧化反应都经过三个过程:首先,把插入烯烃形成新的C-Pd键;接着,有机钯中间体进行β-H消除产生Pd(0);最后,Pd(0)被重新氧化为Pd(П)。 1.2.1.2形成C-C键 1.2.1.2.1烯-烯偶联

负载型镍催化剂的制备

负载型镍催化剂的制备文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

科技论文检索与写作作业 ——负载型镍催化剂的制备 一、制备的目的和意义 1.了解并掌握负载型金属催化剂的原理和制备方法。 2.制备一种以金属镍为主要活性组分的固体催化剂。 意义:催化剂在现代化学工业中占有重要地位。镍基催化剂是一种常用的经典催化剂,具有催化活性高、稳定性好和价格较低等优点,已被广泛应用于加氢、脱氢、氧化脱卤、脱硫等转化过程。 二、制备方法、 1.一种负载型镍催化剂的制备方法,其特征在于,具体包括如下步骤:(1)按钛酸丁酯与无水乙醇体积比为1:1.5~1:3的比例将钛酸丁酯与无水乙醇混合,强力搅拌后得到混合溶液,按无水乙醇与醋酸的体积比为10:1~30:1的比例在混合溶液中加入醋酸形成溶液A;(2)按去离子水与无水乙醇的体积比为1:5~1:10的比例将去离子水与无水乙醇混合得到混合溶液,在混合溶液中加入稀盐酸或稀硝酸调节混合溶液的pH为2~5得到溶液B;(3)按溶液B与溶液A的体积比为1:1~1:4的比例将B溶液加入到A溶液中,然后按钛酸丁酯和十六烷基三甲基溴化铵的摩尔比为1:0.05~1:0.3的比例加入十六烷基三甲基溴化铵形成钛溶胶;(4)按γ?Al2O3和钛酸丁酯的摩尔比为1:0.05~1:0.8的比例在步骤(3)中得到的钛溶胶中加入γ?Al2O3,然后按钛酸丁酯与去离子水的体积比为1:0.5~1:2的比例加入去离子水,静置1~5h后干燥、焙烧得到TiO2?Al2O3复合载体;(5)将 TiO2?Al2O3复合载体于浓度为0.05~1mol/L的硝酸镍水溶液中浸渍4~24h,充分搅拌后干燥、焙烧、通氢还原,得Ni/TiO2?Al2O3负载型镍催化剂。

石油加氢脱硫催化剂的应用进展

石油加氢脱硫催化剂的应用进展 一、前言 一直以来,化石燃料特别是石油一直是各国最重要的能源,尽管近年来世界各国不断加强对二次能源,如太阳能、风能等的研究和应用,但应用比例仍然较小。最受瞩目的从水制氢,甚至从海水制氢研究有所进展,但产业化仍面临一系列问题,如大规模生产催化剂和生产成本等难以绕过的问题。 在石油消耗增长的同时,为了防止汽车尾气对环境污染,使环境中的PM2.5 达到国际标准,石油的加氢脱硫产品——燃油如汽油和柴油的质量也要大幅度提升。2018 年我国使用的柴油含S 要达到≤10 mg /kg,现在除北京外其他地区使用的柴油、汽油含S≤50 mg /kg 或≤100 mg /kg. 降低燃油的含硫、含氮量任务十分艰巨,众所周知,石油加氢精致脱硫要用钼基催化剂如CoMo /Al2O3、NiMo /Al2O3进行轻质油和重质油加氢脱硫。 1 石油加氢脱硫催化剂应用概况 20 世纪末,由于当时防止环境污染的要求相对宽松,一些国家规定燃油含S≤50 ~100 mg /kg,Ni-Mo /Al2O3、CoMo /Al2O3加氢脱硫催化剂就已经满足要求。进入21 世纪后,对环境污染的法规和法律要求日趋苛刻,燃油含S 量至少要达到≤50 mg /kg,从而激励着化学家研究与应用更加有效的加氢脱硫催化剂,使得加氢脱硫催化剂有几项重大创新。

1.1 优化载体 尽管作为钼钴、钼镍催化剂的载体可为SiO2、TiO2、MgO,也可以是各种沸石和纳米含硅化合物等,但当今大多数钼钴催化剂厂家采用γ-Al2O3作催化剂载体,如美国的雪伏龙石油催化剂公司、日本的コヌモ石油株式会社、日本住友金属矿山公司、德国的BASF 化学公司和中国抚顺石油化工研究院等。 γ-Al2O3物理性能较20世纪末有了很大的改进,具有代表性的物理性质如下: 平均孔径7.5 nm,细孔径分布率为78%~88%,细孔容积035 ~ 0.50mL /g,比表面积200 ~ 272 m2 /g,个别厂家为318m2 /g,事实上,γ-Al2O3颗粒组成更加均匀,5~6nm≤10%,10 nm以上的粗粒级≤5%γ-Al2O3载体生产公司专业化,钼钴、钼镍催化剂的载体经多年详尽研究,目前已形成产业化生产,产品质量稳定并不断提升;含磷的钼钴、钼镍催化剂的加氢脱硫活性明显增长。 近10年来,许多化学家研究了磷对钼钴催化剂活性的影响[1],研究者向CoMo /Al2O3催化剂中添加不同数量的磷对噻吩等化合物进行了加氢脱硫影响试验。首先用浸渍法制取MoO3P /Al2O3催化剂,如将Al2O3载体浸渍在含H3PO4或NH4H2PO4与( NH4)6Mo7O24H2O 的浸渍液中,浸渍后过滤,烘干。然后在500 ℃下煅烧5 h,制出含P 分别为0%、0.2%、0.5%、1%、2%、3%和5% ( 质量分数,下同) ,将含13%Mo 的MoO3P / Al2O3催化剂,用10%H2S /H2气流在400 ℃下硫化1.5 h。制出MoS2P /Al2O3催化剂,再用化学气相沉积法将Co 引入催化剂中,制出CoMoS2P /Al2O3催化剂。用这种含磷的催化剂进行加氢

钯催化反应及其机理

钯催化反应及其机理研究 摘要:目前过渡金属催化的有机反应研究一直是一个比较热的话题,其中由于钯催化的反应活性和稳定性等原因,使其在有机反应中得到了广泛的使用,被全球广泛关注。本文主要列举了钯催化的交叉偶联反应的机理,及与偶联反应相关的钯催化的碳氢键活化反应、钯催化的脂肪醇的芳基化反应等的机理。 关键词:过渡金属催化偶联反应钯催化机理 1.引言 进入二十一世纪以后,钯催化的偶联反应已经建立了比较完整的理论体系,研究的侧重点也和以前有所不同化学键的断裂和形成是有机化学的核心问题之一。在众多化学键的断裂和形成方式中,过渡金属催化的有机反应有着独特的优势:这类反应通常具有温和的反应条件,产率很高并有很好的选择性(包含立体、化学、区域选择性)。很多常规方法根本无法实现的化学反应,采用了过渡金属催化后可以很容易地得到实现。在众多过渡金属中,金属钯是目前研究得最深入的一个。自上世纪七十年代以来,随着Kumada,Heck,Suzuki,Negishi [1]等偶联反应的陆续发现,钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用。 2.钯催化各反应机理的研究 2.1.钯催化的交叉偶联反应 自上世纪七十年代以来,随着Kumada,Heck,Suzuki,Negishi 等偶联反应的陆续发现[1],钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用[2]。交叉偶联,就是两个不同的有机分子通过反应连在了一起(英文中交叉偶联为crosscoupling,同种分子偶联为homo coupling)。 2.1.1Heck反应 Heck 反应是不饱和卤代烃和烯烃在强碱和钯催化下生成取代烯烃的反应,是一类形成与不饱和双键相连的新C—C 键的重要反应[3]。反应物主要为卤代芳烃(碘、溴)与含

相关文档
最新文档