高中数学典型例题解析三角函数3

高中数学典型例题解析三角函数3
高中数学典型例题解析三角函数3

第三章 基本初等函数Ⅱ(三角函数)

3.1任意角三角函数

一、知识导学

1.角:角可以看成由一条射线绕着端点从一个位置旋转到另一个位置所形成的几何图形.角的三要素是:顶点、始边、终边.角可以任意大小,按旋转的方向分类有正角、负角、零角.

2.弧度制:任一已知角α的弧度数的绝对值r

l

=

α,其中l 是以α作为圆心角时所对圆弧的长,r 为圆的半径.规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.用“弧度”做单位来度量角的制度叫做弧度制.

3.弧度与角度的换算:rad π2360=

;rad 1745.01801≈=π

;1

30.57180≈??

? ??=πrad .

用弧度为单位表示角的大小时,弧度(rad )可以省略不写.度()

不可省略.

4.弧长公式、扇形面积公式:,r l α=

2||2

1

21r lr S α=

=扇形,其中l 为弧长,r 为圆的半径.圆的周长、面积公式是弧长公式和扇形面积公式中当πα2=时的情形.

5.任意角的三角函数定义:设α是一个任意大小的角,角α终边上任意一点P 的坐标是

()y x ,,它与原点的距离是)0(>r r ,那么角α的正弦、余弦、正切、余切、正割、余割分

别是y

r

x r y x x y r x r y ======

ααααααcsc ,sec ,co t ,t an ,co s ,sin .这六个函数统称为三角函数.

7.三角函数值的符号:各三角函数值在第个象限的符号如图所示(各

象限注明的函数为正,其余为负值)

可以简记为“一全、二正、三切、四余”为正. 二、疑难知识导析

1.在直角坐标系内讨论角

(1)角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就称这个角是第几象限角(或说这个角属于第几象限).它的前提是“角的顶点为原点,角的始边为x 轴的非负半轴.否则不能如此判断某角为第几象限.若角的终边落在坐标轴上,就说这个角不属于任何象限. (2)与α角终边相同的角的集合表示.

{}

Z k k ∈+?=,360

αββ

,其中α为任意角.终边相同的角不一定相等,相等的角终边一

定相同,终边相同的角有无数多个,它们相差

360整数倍. 2.值得注意的几种范围角的表示法 “0

~ 90间的角”指

900<≤θ;“第一象限角”可表示为

{}

Z k k k ∈+?<

θθ;“小于90

的角”可表示为{}

90<θθ.

3.在弧度的定义中

r

l

与所取圆的半径无关,仅与角的大小有关. 4.确定三角函数的定义域时,主要应抓住分母为零时比值无意义这一关键.当终边在坐标轴上时点P 坐标中必有一个为0. 5.根据三角函数的定义可知:(1)一个角的三角函数值只与这个角的终边位置有关,即角α与

)(360Z k k ∈?= β的同名三角函数值相等;(2)r y r x ≤≤,,故有

1s i n ,1c o s ≤≤αα,这是三角函数中最基本的一组不等关系.

6.在计算或化简三角函数关系式时,常常需要对角的范围以及相应三角函数值的正负情况进行讨论.因此,在解答此类问题时要注意:(1)角的范围是什么?(2)对应角的三角函数值是正还是负?(3)与此相关的定义、性质或公式有哪些? 三、经典例题导讲

[例1] 若A 、B 、C 是ABC ?的三个内角,且)2

<

①.C A sin sin < ②.C A cot cot < ③.C A tan tan < ④.C A cos cos < A .1 B.2 C.3 D.4

错解:C A < ∴ C A sin sin <,C A tan tan <故选B

错因:三角形中大角对大边定理不熟悉,对函数单调性理解不到位导致应用错误 正解:法1C A < 在ABC ?中,在大角对大边,A C a c sin sin ,>∴>

法2 考虑特殊情形,A 为锐角,C 为钝角,故排除B 、C 、D ,所以选A .

[例2]已知βα,角的终边关于y 轴对称,则α与β的关系为 . 错解:∵βα,角的终边关于y 轴对称,∴

2

2

π

β

α=

++πk 2,()z k ∈

错因:把关于y 轴对称片认为关于y 轴的正半轴对称. 正解:∵βα,角的终边关于y 轴对称 ∴

)(,2

2

Z k k ∈+=

+ππ

β

α即)(,2z k k ∈+=+ππβα

说明:(1)若βα,角的终边关于x 轴对称,则α与β的关系为)(,2Z k k ∈=+πβα

(2)若βα,角的终边关于原点轴对称,则α与β的关系为)(,)12(Z k k ∈++=πβα (3)若βα,角的终边在同一条直线上,则α与β的关系为)(,Z k k ∈+=παβ

[例3] 已知54

2cos ,532sin

-==θθ

,试确定θ的象限. 错解:∵0542cos ,0532sin <-=>=θθ,∴2

θ

是第二象限角,即

.,22

2z k k k ∈+<<

ππθ

π

从而.,244z k k k ∈+<<ππθπ

故θ是第三象限角或第四象限角或是终边在y 轴负半轴上的角.

错因:导出2θ是第二象限角是正确的,由054

2cos ,0532sin <-=>=θθ即可确定, 而题中54

2cos ,532sin -==θθ不仅给出了符号,而且给出了具体的函数值,通过其值可进

一步确定2θ的大小,即可进一步缩小2θ

所在区间.

正解:∵0542cos ,0532sin <-=>=θθ,∴2

θ

是第二象限角,

又由4

3sin

22532

sin

π

θ

=<=

知z k k k ∈+<<+,22432ππθππ z k k k ∈+<<+

,242

34ππθπ

π,故θ是第四象限角. [例4]已知角α的终边经过)0)(3,4(≠-a a a P ,求ααααcot ,tan ,cos ,sin 的值. 错解:a y x r a y a x 5,3,422=+=

∴=-=

3

434cot ,4343tan ,5454cos ,5353sin -=-=-=-=-=-===

∴a a a a a a a a αααα

错因:在求得r 的过程中误认为a >0

正解:若0>a ,则a r 5=,且角α在第二象限

3

434cot ,4343tan ,5454cos ,5353sin -=-=-=-=-=-===

∴a a a a a a a a αααα 若0

3

4

34cot ,4343tan ,5454cos ,5353sin -=-=-=-==--=-=-=∴a a a a a a a a αααα

说明:(1)给出角的终边上一点的坐标,求角的某个三解函数值常用定义求解; (2)本题由于所给字母a 的符号不确定,故要对a 的正负进行讨论. [例5] (1)已知α为第三象限角,则

2

α

是第 象限角,α2是第 象限角; (2)若4-=α,则α是第 象限角. 解:(1)α 是第三象限角,即Z k k k ∈+

<<+,2

3

22ππαππ

Z k k k ∈+<<

+

∴,4

3

22

ππα

π

π,Z k k k ∈+<<+,34224ππαππ 当k 为偶数时,

为第二象限角 当k 为奇数时,2

α

为第四象限角

而α2的终边落在第一、二象限或y 轴的非负半轴上. (2)因为ππ

-<-<-

42

3,所以α为第二象限角. 点评:α为第一、二象限角时,

2α为第一、三象限角,α为第三、四象限角时,2

α

为第二、四象限角,但是它们在以象限角平分线为界的不同区域.

[例6]一扇形的周长为20cm ,当扇形的圆心角α等于多少时,这个扇形的面积最大?最大面积是多少?

解:设扇形的半径为rcm ,则扇形的弧长cm r l )220(-=

扇形的面积25)5()220(2

1

2+--=?-=

r r r S 所以当cm r 5=时,即2,10===r

l

cm l α时2max 25cm S =.

点评:涉及到最大(小)值问题时,通常先建立函数关系,再应用函数求最值的方法确定最值的条件及相应的最值.

[例7]已知α是第三象限角,化简

α

α

ααsin 1sin 1sin 1sin 1+--

-+。

解:原式=α

ααα2222sin 1)sin 1(sin 1)sin 1(---

-+=αα

αααcos sin 2cos sin 1sin 1=+-+ 又α是第三象限角,0cos <∴α 所以,原式=αα

α

tan 2cos sin 2-=-

点评:三角函数化简一般要求是:(1)尽可能不含分母;(2)尽可能不含根式;(3)尽可能 使三角函数名称最少;(4)尽可能求出三角函数式的值.本题的关健是如何应用基本关系式脱去根式,进行化简.

[例8] 若角α满足条件0sin cos ,02sin <-<ααα,则α在第( )象限 A.一 B.二 C.三 D.四

解:αααααααααα??

??<>????<

[例9] 已知θθcos cos -=,且0tan <θ.

(1)试判断

)

cos(sin )

sin(cos θθ的符号;

(2)试判断)cos lg(sin θθ-的符号.

解:(1)由题意,0cos 1<<-θ,0sin 1>>θ

0)cos(sin ,0)sin(cos ><∴θθ,所以

0)

cos(sin )

sin(cos <θθ.

(2)由题意知θ为第二象限角,1cos sin >-θθ,所以0)cos lg(sin >-θθ. 四、典型习题导练

1.已知钝角α的终边经过点()θθ4sin ,2sin P ,且5.0cos =θ,则α的值为 )

A .??

?

??-

21arctan B .()1arctan

- C .21arctan

-π D .4

2.角α的终边与角β的终边关于y 轴对称,则β为( )

A.-α

B.л-α

C.(2k л+1)л-α(k ∈Z)

D.k л-α(k ∈Z ) 3.若sin αtg α≥0,k ∈Z ,则角α的集合为( )

A .[2k π-

2π,2k π +2π] B.( 2k π-2π,2k π+2π) C.( 2k π-2π,2k π+2

π

)∪}{ππ-k 2 D.以上都不对

4.当0<x <π时,则方程cos (πcosx)=0的解集为( )

A. ?????

?65,6ππ B.??

?

???32,3ππ C.??????3π D.????

??32π 5.下列四个值:sin3,cos3,tg3,ctg3的大小关系是( )

A.cos3<tg3<ctg3<sine

B.sin3>cos3>tg3>ctg3

C.cot3<tan3<cos3<sin3

D.sin3>tan3>cos3>cot3 6.已知x ∈(0,

2

π

),则下面四式: 中正确命题的序号是 . ①sinx <x <tgx ②sin(cosx)<cosx <cos(sinx) ③sin 3x+cos 3x <1 ④cos(sinx)<sin(cosx)<cosx 7.有以下四组角:(1)k π+

π2;(2)k π-π2;(3)2k π±π2;(4)-k π+π

2

(k ∈z)其中终边相同的是( )

A.(1)和(2)

B.(1)、(2)和(3)

C.(1)、(2)和(4)

D.(1)、(2)、(3)和(4)

8.若角α的终边过点(sin30°,-cos30°),则sin α等于( )

A. 12

B.- 12

C.-32

D.-33

9.函数y=1)3

cos(2--π

πx 的定义域是______,值域是______.

10.若点取值范围是( )

A.

B.

C.

D. 3.2三角函数基本关系式与诱导公式

一、知识导学

1.同角三角函数的基本关系式

平方关系:1cos sin 22=+αα;商数关系:α

α

αcos sin tan =

;倒数关系:1cot tan =?αα 同角三角函数的基本关系式可用图表示

(1)三个阴影部分三角形上底边平方和等于1的平方; (2)对角为倒数关系;

(3)每个三角函数为相邻两函数的积.

诱导公式可将“负角正化,大角小化,钝角锐化”. 3.诱导公式解决常见题型

(1)求值:已知一个角的某个三角函数,求这个角其他三角函数;

(2)化简:要求是能求值则求值,次数、种类尽量少,尽量化去根式,尽可能不含分母. 二、疑难知识导析

1.三角变换的常见技巧

“1”的代换;ααcos sin +,ααcos sin -,ααcos sin ?三个式子,据方程思想

知一可求其二(因为其间隐含着平方关系式1cos sin 2

2=+αα);

2.在进行三角函数化简和三角等式证明时,细心观察题目的特征,灵活恰当地选用公式,一般思路是将切割化弦.尽量化同名,同次,同角;

3.已知角α的某个三角函数值,求角α的其余5种三角函数值时,要注意公式的合理选择.在利用同角公式中的平方关系并要开方时,要根据角的范围来确定符号,常要对角的范围进行讨论.解决此类问题时,要细心求证角的范围. 三、典型例题导讲

[例1]已知=∈=

+θπθθθcot 05

1

cos sin ),则,(,__________ 错解:两边同时平方,由,与5

1cos sin 2512cos sin =+-=?θθθθ得5

7cos sin 2549cos sin 4)cos (sin cos sin 4cos cos sin 2sin )cos (sin 2222±=-∴=-+=-+?+=-θθθ

θθθθ

θθθθθθθ ∴.cot 53cos 54sin θθθ,进而可求,-==解得:43cot -=θ 或.cot 54cos 53sin θθθ,进而可求,=-=解得:34cot -=θ 错因:没有注意到条件),0(πθ∈时,由于0cos sin

正解: ),,(,πθθθ05

1

cos sin ∈=

+ 两边同时平方,有联立,与5

1

cos sin 02512cos sin =+<-=?θθθθ 求出,,53cos 54sin -==θθ∴4

3cot -=θ [例2]若sinA=asinB,cosA=bcosB,A 、B 为锐角且a >1,0<b <1,求tanA 的值 错解:由??

?== ② ①B b A B a A cos cos sin sin 得tan A=

b

a

tan B 错因:对题目最终要求理解错误.不清楚最后结论用什么代数式表示 正解:由??

?== ②

①B b A B a A cos cos sin sin ①2+②2得a 2sin 2B+b 2cos 2B=1

∴cos 2

B=2221b a a -- ∴sin 2

B=2

221b a b -- ∴tan 2B=1

122--a b ∵B 为锐角 ∴tan B=1

12

2

--a b

②①得tan A=b a tan B =1

12

2

--a b b a [例3](05年高考重庆卷)若函数)2

cos(2sin )

2

sin(42cos 1)(x

x a x x x f --++=

ππ

的最大值为2,

试确定常数a 的值.

.

15,.

44

4111sin ),sin(441sin 2

cos 212cos

2sin cos 4cos 2)(:2

222±==++=++=+=+=a a a

x a x a

x x

x a x x x f 解之得由已知有满足其中角解???

点评:本试题将三角函数“

απαπ

-+,2

”诱导公式有机地溶于式子中,考查了学生对基

础知识的掌握程度,这就要求同学们在学习中要脚踏实地,狠抓基础. [例4] (05年高考北京卷)已知tan

2

α

=2,求

(1)tan()4πα+的值; (2)6sin cos 3sin 2cos αα

αα

+-的值.

解:(1)∵ tan

2α=2, ∴ 22tan

2242tan 1431tan 2

α

αα?=

==---; 所以tan tan

tan 14tan()41tan 1tan tan 4π

απααπαα+++==--=411347

13

-+=-+; (2)由(I), tan α=-34, 所以6sin cos 3sin 2cos αααα+-=6tan 13tan 2

αα+-=46()1

7346

3()23

-+=--.

点评:本题设计简洁明了,入手容易,但对两角和与差的三角函数、同角间的基本关系式要求熟练应用,运算准确. [例5]化简:)()4

1

4cos()414sin(

z n n n ∈-++--απαπ

错解:原式)]4

(

cos[)]4

(

sin[απ

παπ

π-+++-=n n

)4

cos()4

sin(

απ

απ

--+=)4

cos(

)]4

(

2

sin[απ

απ

π

----=

0)4

cos(

)4

cos(

=---=απ

απ

错因:对三角函数诱导公式不完全理解,不加讨论而导致错误. 正解:原式)]4

(

cos[)]4

(

sin[απ

παπ

π-+++-=n n

(1)当)(12z k k n ∈+=,时 原式)]4

(

2sin[απ

ππ+-+=k +)]4

(

2cos[απ

ππ-++k

)4

sin(

απ

+=)4

cos(

απ

--)4

cos(

απ

-=)4

cos(

απ

--=0

(2)当)(2z k k n ∈=,时 原式)]4

(

2sin[απ

π+-=k +)]4

(

2cos[απ

π-+k

)]4

sin(

απ

+-=+)4

cos(

απ

-=0

[例6](05年高考江苏卷)若316sin =???

??-απ,则??

? ??+απ232cos =( ) A .97-

B .31-

C .31

D .9

7

错解:???

??+απ232cos =)]23(cos[αππ--=)23cos(απ-=1—2)6(sin 2απ-=97

错因:诱导公式应用符号错. 正解:??

?

??+απ232cos =)]23(cos[αππ--

=—)23

cos(

απ

-=—1+2)6

(

sin 2απ

-=—

9

7

.故选A. [例7].(05年高考福建卷)已知5

1cos sin ,02

=

+<<-x x x π

. (1)求sin x -cos x 的值;

(2)求

x

x x

x x x cot tan 2cos 2cos 2sin 22sin 322

++-的值. 解法一:(1)由,251cos cos sin 2sin ,51cos sin 2

2=

++=+x x x x x x 平方得 即 .25

49cos sin 21)cos (sin .2524cos sin 22=-=--=x x x x x x

又,0cos sin ,0cos ,0sin ,02<-><∴<<-

x x x x x π

故 .5

7

cos sin -=-x x (2)x

x x x x x x

x x x x x sin cos cos sin 1

sin 2sin 2cot tan 2cos 2cos 2sin 2sin 3222+

+-=++-

125

108)512()2512()

sin cos 2(cos sin -

=-?-=--=x x x x

解法二:(1)联立方程??

???

=+=+.1cos sin ,

51cos sin 22x x x

由①得,cos 5

1

sin x x -=

将其代入②,整理得,012cos 5cos 252=--x x ???

???

?

=-=∴<<-=-=∴.

54c o s ,53s i n ,02.54c o s 53c o s x x x x x π 或 故

.57

cos sin -=-x x

(2)

x x x x x x cot tan 2cos 2cos 2sin 2sin 32

2++- x x x x

sin cos 1

sin 2sin 22+

+-=

125

108)53542(54)53()

sin cos 2(cos sin -

=+-??-=--=x x x x 点评:本小题主要考查三角函数的基本公式、三角恒等变换、三角函数在各象限符号等基本

知识,以及推理和运算能力.

[例8] (1)化简: sin 2

αsec 2

α-1+1

csc cos 22

-αα+cos 2αcsc 2

α (2)设sin(α+

π2)=-1

4

,且sin2α>0 求sin α,tan α

①②

解:原式=sin2α

tan2α

cos2α

cot2α

+cos2αcsc2α

=cos2α+sin2α+cos2αcsc2α

=1+cot2α

=csc2α

(2)解:由sin(α+π

2

)=-

1

4

∴cosα=-

1

4

∵sin2α>0∴2kπ<2α<2kπ+π

kπ<α

2

(k∈z)∴α为第一象限或第二象限的角

∵cosα=- 1

4

<0 ∴α为第三角限角

sinα=-1-cos2α=15

4tan α=

sinα

cosα= 15

点评:本题要求同学们熟练掌握同角三角函数之间的关系,在求值过程中特别注意三角函数值的符号的探讨.

[例9].

解:由题意有

点评:有部分同学可能会认为不等式组(*)两者没有公共部分,所以定义域为空集,原因是没有正确理解弧度与实数的关系,总认为二者格格不入,事实上弧度也是实数. [例10] (05年高考天津卷) 已知)3

tan(sin ,2572cos ,1027)4sin(π+αα=α=π-

α及求. 解法一:由题设条件,应用两角差的正弦公式得

)cos (sin 2

2)4sin(1027α-α=π-α= 即5

7

cos sin =

α-α ① 由题设条件,应用二倍角余弦公式得

)sin (cos 5

7

)sin )(cos sin (cos sin cos 2cos 25722α-α-=α+αα-α=α-α=α=

故5

1

sin cos -=α+α ②

由①式和②式得 54cos ,53sin -=α=α.因此,4

3

tan -=α,由两角和的正切公式

.11325483

343344

331433tan 313tan )4tan(-=+-=+

-

=α-+α=π+α 解法二:由题设条件,应用二倍角余弦公式得

α-=α=2sin 212cos 257解得5

3sin ,259sin 2±=α=α即 由5

7

cos sin ,1027)4sin(=α-α=π-

α可得 由于05

7

sin cos ,0cos 57sin <-α=α>α+=

α且, 故α在第二象限,于是5

3

sin =α.

从而5

4

57sin cos -=-

α=α(以下同解法一). 点评:ααcos sin +,ααcos sin -,ααcos sin ?三个式子,据方程思想知一可求其二(因

为其间隐含着平方关系式1cos sin 2

2

=+αα),在求值过程中要注意符号的讨论. 四、典型习题导练

1. 当0<x <л时,则方程cos (лcosx)=0的解集为( ) A. ??????65,

6лл B.??

????32

,3лл C.??????3л D.????

??32л 2.(05年高考全国卷Ⅰ)在ABC ?中,已知C B

A sin 2

tan

=+,给出以下四个论断: ① 1cot tan =?B A

② 2sin sin 0≤

+

③ 1cos sin 22=+B A

④ C B A 222sin cos cos =+

其中正确的是 A .①③

B.②④

C.①④

D.②③

3.(05年全国卷Ⅲ)设02x π≤≤,sin cos x x =-,则

A. 0x π≤≤

B.

74

4x π

π≤≤

C. 544x ππ≤≤

D. 322

x ππ

≤≤

4 A. 增函数

B. 减函数

C. 偶函数

D. 奇函数

5.曲线)4cos()4sin(2ππ

-+

=x x y 和直线2

1

=y 在y 轴右侧的交点按横坐标从小到大依 次记为P 1,P 2,P 3,…,则|P 2P 4|等于( ) A .π

B .2π

C .3π

D .4π

67.已知函数f (x )=2sin x cos x +cos2x .

(1) 求f (

4π)的值; (2) 设α∈(0,π),f (2α),求sin α的值.

8.(05年高考湖南卷)已知在△ABC 中,sinA (sinB +cosB )-sinC =0, sinB +cos2C =0,求角A 、B 、C 的大小. 9.(06年高考安徽卷)已知

310

,tan cot 43

παπαα<<+=- (1)求tan α的值;

(2

)求

2

2

5sin 8sin

cos

11cos 8

2

2

2

2

α

α

α

πα++-?

?- ?

?

?的值。

3.3三角函数的恒等变换

一、知识导学

1.两角和、差、倍、半公式

(1) 两角和与差的三角函数公式

βαβαβαs i n c o s s i n s i n )s i n

(±+=± βαβαβαs i n s i n c o s c o s )c o s

( =± β

αβ

αβαt a n t a n 1t a n t a n )t a n

( ±=±

(2) 二倍角公式

αααcos sin 22sin =

ααααα2

2

2

2

sin 211cos 2sin cos 2cos -=-=-=

α

α

α2

tan 1tan 22tan -=

(3) 半角公式

2cos 12sin

2

αα

-=

, 2c o s 12c o s 2αα+= , αααcos 1cos 12tan 2+-= α

α

αααsin cos 1cos 1sin 2tan -=+=

2.恒等变形主要是运用三角公式对式子进行等价变形,常见于化简求值和恒等式证明.恒等

式证明就是利用公式消除等式两边的差异,有目的地化繁为简,使左右相等,常用方法为:(1)从一边开始证得它等于另一边,一般由繁到简;(2)证明左右两边都等于同一个式子(或数值).

二、疑难知识导析 1.两角和与差的三角函数公式的内涵是揭示同名不同角的三角函数的运算规律,常用于解决求值、化简和证明题.

2.倍角公式的内涵是揭示具有倍数关系的两个角的三角函数的运算规律.如

αααcos sin 22sin =成立的条件是“α是任意角,αα是2的2倍角”,精髓体现在角的“倍

数”关系上.

3.公式使用过程中(1)要注意观察差异,寻找联系,实现转化,要熟悉公式的正用逆用

和变形使用,也要注意公式成立的条件.例)tan tan 1)(tan(

tan tan βαβαβα ±=±、22cos 1sin 2αα-=

、2

2cos 1cos 2

αα+=等. 4. 三角公式由角的拆、凑很灵活.如)()(2βαβαα-++=、ββαα-+=)(、

2

2

β

αβ

αβ+-

+=

)2

(

)2

(2

βα

β

αβ

α+--

=-等,注意到倍角的相对性.

5.化为三角函数式,常见的思路为化“三同”即同名、同角、同次,切割化弦、特殊值与

特殊角的三角函数互化等.

6. 三角恒等式的证明包括无条件恒等式和有条件恒等式

(1)无条件恒等式证明,要认真分析等式两边三角函数的特点,角度和函数关系,找出差异寻找突破口.

(2)有条件的等式证明,常常四寻找条件与需证式的区别与联系,对条件或须证式进行变形.采用消去法或基本量法等求证.

三、典型例题导讲

[例1] 在?ABC 中,2sinA+cosB=2,sinB+2cosA=3,则∠C 的大小应为( )

A .

6

π

B .

3

π

C .

6

π或π65

D .

3π或3

错解:C

错因:求角C 有两解后未代入检验. 正解:A

[例2] 已知tan α tan β是方程x 2

+33x+4=0的两根,若α,β∈(-2

,2π

π),则α+β=( )

A .

3

π

B .

3

π或-π32

C .-

3

π或π32

D .-π3

2

错解:B.

错因:未能准确限制角的范围. 正解:D.

[例3] )

A. 1

B. 区间(0,1)

C.

D. 不能确定

错解:C

错因:此题极易认为答案A最不可能,

C或D.

正解:解法一

A

解法二:用赋值法,

A

[例4] △ABC 中,已知cosA=135,sinB=5

3

,则cosC 的值为( ) A.6516 B.6556 C.6516或6556 D.65

16-

错解:C

错因:是忽略对题中隐含条件的挖掘. 正解:A

[例5] 已知53sin +-=

m m θ,524cos +-=m m θ(πθπ

<<2

),则=θtan ( ) A 、324--m m B 、m m 243--± C 、12

5- D 、12543--或

错解:A

错因:是忽略1cos sin 2

2

=+θθ,而解不出m 正解:C

[例6]解:答32-

解法一

解法二

(余同解法一)

…原式==?=

++=-+-+

=

158cos 15cos 28cos 15sin 27cos 23cos 7sin 23sin )

7cos 23(cos 2

1

7cos )7sin 23(sin 21

7sin tg

[例7]

A.

B.

C.

D. 解:选A.

[例8]βαβαβα2cos 2cos 2

1

cos cos sin sin 2222?-?+?化简

分析:对三角函数式化简的目标是: (1)次数尽可能低; (2)角尽可能少;

(3)三角函数名称尽可能统一; (4)项数尽可能少.

观察欲化简的式子发现:

(1)次数为2(有降次的可能); (2)涉及的角有α、β、2α、2β,(需要把2α化为α,2β化为β); (3)函数名称为正弦、余弦(可以利用平方关系进行名称的统一); (4)共有3项(需要减少),由于侧重角度不同,出发点不同,本题化简方法不止一种. 解法一:(复角→单角,从“角”入手) 原式)1cos 2)(1cos 2(2

1

cos cos sin sin 222

2

2

2

--?-

?+?=βαβαβα

高中数学三角函数知识点(复习)

三角函数知识点复习 §1.1.1、任意角 1、正角、负角、零角、象限角的概念. 2、 与角终边相同的角的集合: . §1.1.2、弧度制 1、把长度等于半径长的弧所对的圆心角叫做1弧度的角. 2、 . 3、弧长公式:. 4、扇形面积公式:. §1.2.1、任意角的三角函数 1、设是一个任意角,它的终边与单位圆交于点,那么: 2、 设点为角终边上任意一点,那么:(设),,, 3、 ,,在四个象限的符号和三角函数线的画法. 正弦线:MP; 余弦线:OM; 正切线:AT 5、特殊角0°,30°,45°,60°, 1、平方关系:. 2、商数关系:. 3、倒数关系: §1.3、三角函数的诱导公式 (概括为“奇变偶不变,符号看象限”) 1、 诱导公式一: (其中:)

2、 诱导公式二: 3、诱导公式三: 4、诱导公式四: 5、诱导公式五: 6、诱导公式六: §1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象: 2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大 最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图. 在上的五个关键点为:

§1.4.3、正切函数的图象与性质 图表归纳:正弦、余弦、正切函数的图像及其性质

图象

定 义 域 值 域 [-1,1][-1,1] 最 值 周 期 性 奇 偶 性 奇偶 单调性在上单调递增 在上单调递减 在上单调递增 在上单调递减 对称性对称轴方程: 对称中心 对称轴方程: 对称中心

1、记住正切函数的图象: 2、记住余切函数的图象:

高中数学公式三角函数公式大全

高中数学公式:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全: 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a

=sin(2a+a) 页 1 第 =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 cos(2α))/2=versin(2α)/2sin^2(α)=(1- cos^2(α)=(1+cos(2α))/2=covers(2α)/2 -cos(2α))/(1+cos(2α))tan^2(α)=(1 推导公式 tanα+cotα=2/sin2α 2cot2α-cotα=-tanα s2α=2cos^2α1+co 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα /2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina 页 2 第 =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa

高中数学典型例题详解和练习- 求分段函数的导数

求分段函数的导数 例 求函数?????=≠=0 ,00 ,1sin )(2 x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当 0≠x 时,)(x f 的关系式是初等函数x x 1 sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1 sin lim ) 0()(lim )0(0200 ===-='→?→?→?x x x x x x f x f f x x x 当 ≠x 时, x x x x x x x x x x x x x x x f 1 cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0 0x g x g x x →=,但如 果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为 )(lim )0(0 x f f x →='. 指出函数的复合关系 例 指出下列函数的复合关系. 1.m n bx a y )(+=;2.32ln +=x e y ; 3.)32(log 322+-=x x y ;4.)1sin(x x y +=。 分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常

见的基本函数,逐步确定复合过程. 解:函数的复合关系分别是 1.n m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,322+-===x x v v u y u ; 4..1,sin ,3x x v v u u y +=== 说明:分不清复合函数的复合关系,忽视最外层和中间变量都是基本函数的结构形式,而最内层可以是关于自变量x 的基本函数,也可以是关于自变量的基本函数经过有限次的四则运算而得到的函数,导致陷入解题误区,达不到预期的效果. 求函数的导数 例 求下列函数的导数. 1.43)12(x x x y +-=;2.2 211x y -= ; 3.)3 2(sin 2π +=x y ;4.21x x y +=。 分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体,就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数.

高中数学三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈g x 轴上角:{}()180k k Z αα=∈o g y 轴上角:{}()90180k k Z αα=+∈o o g 3、第一象限角:{}()036090360k k k Z αα? ?+<<+∈o g g 第二象限角:{}()90 360180360k k k Z αα??+<<+∈o o g g 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈o o g g 第四象限角: {}()270 360360360k k k Z αα??+<<+∈o o g g 4、区分第一象限角、锐角以及小于90o 的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈o g g 锐角: {}090αα<

,2 4 , 0π απ ≤ ≤=k ,2 345, 1παπ≤≤=k 所以 2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号

高中数学三角函数知识点总结(非常好用)

高中数学三角函数知识点总结 1.特殊角的三角函数值: 2.角度制与弧度制的互化:,23600π= ,1800π= 1rad =π 180°≈°=57°18ˊ. 1°= 180 π≈(rad ) 3.弧长及扇形面积公式 弧长公式:r l .α= 扇形面积公式:S=r l .2 1 α----是圆心角且为弧度制。 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: x y + O — — + # x y O — + + — + y O ) | — + + —

sin α cos α tan α 5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1。(2)商数关系:αα cos sin =tan α (z k k ∈+≠ ,2 ππ α) 6.诱导公式:记忆口诀:2 k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号 看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ' ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2π αα??+= ???,cos sin 2παα?? +=- ??? . 口诀:正弦与余弦互换,符号看象限. 7正弦函数、余弦函数和正切函数的图象与性质

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

高中数学经典例题错题详解

高中数学经典例题、错 题详解

【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M到N的映射是() M N A M N B M N C M N D 映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。 函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A到集合B的一个函数。(函数的本质是建立在两个非空数集上的特殊对应) 映射与函数的区别与联系: 函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。 映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。 映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射方向性 上题答案应选 C 【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。 本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。 【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→(x+1、x2),(1)求2在B 中的对应元素;(2)(2、1)在A中的对应元素 【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2+1、1);(2)由题意得:x+1=2,x2=1 得出x=1,即(2、1)在A中的对应元素为1 【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数() 【分析】如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B的映射共有n m 个;集合B到集合A的映射共有m n个,所以答案为23=9;32=8 【例4】若函数f(x)为奇函数,且当x﹥0时,f(x)=x-1,则当x﹤0时,有() A、f(x) ﹥0 B、f(x) ﹤0 C、f(x)·f(-x)≤0 D、f(x)-f(-x) ﹥0 奇函数性质: 1、图象关于原点对称;? 2、满足f(-x) = - f(x)?; 3、关于原点对称的区间上单调性一致;? 4、如果奇函数在x=0上有定义,那么有f(0)=0;? 5、定义域关于原点对称(奇偶函数共有的)

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

高中数学经典题型50道(另附详细答案)

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵|sin x|≤1, ∴|t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。

2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4 万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与地球 的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的 方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得????? ??+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2 万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识

人教版 高中数学必修4 三角函数知识点

高中数学必修4知识点总结 第一章 三角函数(初等函数二) ?? ?? ?正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<, 则sin y r α= ,cos x r α= ,()tan 0y x x α= ≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α=M P ,cos α=O M ,tan α=AT . 12、同角三角函数的基本关系:()2 2 1sin cos 1αα+=

高中数学典型例题分析

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

高中数学三角函数知识点总结(珍藏版)

高中数学三角函数知识点总结 1.特殊角的三角函数值: 2.角度制与弧度制的互化: ,23600π= ,1800 π= 1rad =π 180°≈57.30°=57°18ˊ 1°= 180 π≈0.01745(rad ) 3.弧长及扇形面积公式 (1)弧长公式:r l .α= α----是圆心角且为弧度制 (2)扇形面积公式:S=r l .2 1 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: 记忆口诀:一全正,二正弦,三两切,四余弦

sin α cos α tan α 5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1 (2)商数关系:ααcos sin =tan α(z k k ∈+≠,2 ππ α) 6.诱导公式: 记忆口诀:把2 k π α±的三角函数化为α的三角函数,概括为:奇变偶不变,符号看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2π αα??+= ???,cos sin 2παα?? +=- ??? . 口诀:正弦与余弦互换,符号看象限. x y O — + + — + y O — + + —

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

高一数学必修三知识点总结及典型例题解析

新课标必修3概率部分知识点总结及典型例题解析 ◆ 事件:随机事件( random event ),确定性事件: 必然事件( certain event )和不 可能事件( impossible event ) ? 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()n m A P ≈ 说明:① 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一 ② 不可能事件和确定事件可以看成随机事件的极端情况 ③ 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率 ④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果 ⑤ 概率是频率的稳定值,频率是概率的近似值 ? 概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P ② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用③如果事件 ()()()B P A P B A P B A +=+:,则有互斥和 ? 古典概率(Classical probability model ):① 所有基本事件有限个 ② 每个基本事件发生的可能性都相等 满足这两个条件的概率模型成为古典概型 如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是n 1,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为 ()n m A P = ? 几何概型(geomegtric probability model ):一般地,一个几何区域D 中随机地取一点, 记事件“改点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为 ()的侧度 的侧度D d A P = ( 这里要求D 的侧度不为0,其中侧度的意义由D 确定,一般地,线段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积 ) 几何概型的基本特点:① 基本事件等可性 ② 基本事件无限多 颜老师说明:为了便于研究互斥事件,我们所研究的区域都是指的开区域,即不含边界,在区域D 内随机地取点,指的是该点落在区域D 内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的侧度成正比,而与其形状无关。 互斥事件(exclusive events):不能同时发生的两个事件称为互斥事件

高中数学三角函数

三角函数常见题 1、A,B,C为三角形内角,已知1+cos2A-cos2B-cos2C=2sinBsinC,求角A 解:1+cos2A-cos2B-cos2C=2sinBsinC 2cos2A-1-2cos2B+1+2sin2C=2sinBsinC cos2A-cos2B+sin2(A+B)=sinBsinC cos2A-cos2B+sin2Acos2B+2sinAcosAsinBcosB+cos2Asin2B=sinBsinC cos2A-cos2Acos2B+2sinAcosAsinBcosB+cos2Asin2B=sinBsinC 2cos2AsinB+2sinAcosAcosB=sin(180-A-B) 2cosA(cosAsinB+sinAcosB)-sin(A+B)=0 Sin(A+B)(2cosA-1)=0 cosA=1/2 A=60 2、证明:(1+sinα+cosα+2sinαcosα)/(1+sinα+cosα)=sinα+cosα <===>1+sina+cosa+2sinacosa=sina+cosa+(sina+cosa)2 <===>1+sina+cosa+2sinacosa=sina+cosa+1+2sinacosa <===>0=0恒成立 以上各步可逆,原命题成立 证毕 3、在△ABC中,sinB*sinC=cos2(A/2),则△ABC的形状是? sinBsin(180-A-B)=(1+cosA)/2 2sinBsin(A+B)=1+cosA 2sinB(sinAcosB+cosAsinB)=1+cosA sin2BsinA+2cosAsin2B-cosA-1=0 sin2BsinA+cosA(2sin2B-1)=1 sin2BsinA-cosAcos2B=1 cos2BcosA-sin2BsinA=-1 cos(2B+A)=-1 因为A,B是三角形内角 2B+A=180 因为A+B+C=180 所以B=C 三角形ABC是等腰三角形 4、求函数y=2-cos(x/3)的最大值和最小值并分别写出使这个函数取得最大值和最小值的x的集合 -1≤cos(x/3)≤1 -1≤-cos(x/3)≤1 1≤2-cos(x/3)≤3 值域[1,3] 当cos(x/3)=1时即x/3=2kπ即x=6kπ时,y有最小值1此时{x|x=6kπ,k∈Z} 当cos(x/3)=-1时即x/3=2kπ+π即x=6kπ+3π时,y有最小值1此时{x|x=6k π+3π,k∈Z} 5、已知△ABC,若(2c-b)tanB=btanA,求角A [(2c-b)/b]sinB/cosB=sinA/cosA 正弦定理c/sinC=b/sinB=2R代入

高中数学必修三角函数知识点与题型总结

高中数学必修三角函数知 识点与题型总结 Last updated on the afternoon of January 3, 2021

三角函数典型考题归类 1.根据解析式研究函数性质 例1(天津理)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84?? ????,上的最小值和最大值. 【相关高考1】(湖南文)已知函数2πππ()12sin 2sin cos 888f x x x x ????? ?=-++++ ? ? ?????? ?. 求:(I )函数()f x 的最小正周期;(II )函数()f x 的单调增区间. 【相关高考2】(湖南理)已知函数2π()cos 12f x x ? ?=+ ?? ?,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值.(II )求函数()()()h x f x g x =+的单调递增区间. 2.根据函数性质确定函数解析式 例2(江西)如图,函数π 2cos()(00)2 y x x >ωθωθ=+∈R ,,≤≤的图象与y 轴相交于点(0,且 该函数的最小正周期为π. (1)求θ和ω的值; (2)已知点π02A ?? ??? ,,点P 是该函数图象上一点,点00()Q x y ,是PA 的中点,当0y = 0ππ2x ?? ∈???? ,时,求0x 的值. 【相关高考1】(辽宁)已知函数2 ππ()sin sin 2cos 662x f x x x x ωωω??? ?=++--∈ ? ???? ?R ,(其中0ω>),(I )求函数()f x 的值域;(II )(文)若函数()y f x =的图象与直线1y =-的两个相邻交 点间的距离为 π 2 ,求函数()y f x =的单调增区间.

高中数学典型题型与解析

高中数学典型题型与解析 一、选择题 1.设,21,a b R a b +∈+=、则2224ab a b --有( ) A .最大值 1 4 B .最小值14 C .最大值 212 - D .最小值54- 2. 某校有6间不同的电脑室,每天晚上至少开放2间,欲求不同安排方案的种数,现有四 位同学分别给出下列四个结果:①2 6C ;②6 65 64 63 62C C C C +++;③726 -;④2 6A .其中 正确的结论是( ) A .仅有① B .仅有② C .②和③ D .仅有③ 3. 将函数y =2x 的图像按向量a →平移后得到函数y =2x +6的图像,给出以下四个命题:① a →的坐标可以是(-3.0);②a →的坐标可以是(0,6);③a →的坐标可以是(-3,0)或(0, 6);④a →的坐标可以有无数种情况,其中真命题的个数是( ) A .1 B .2 C .3 D .4 4. 不等式组? ??>->-a x a x 2412,有解,则实数a 的取值范围是( ) A .(-1,3) B .(-3,1) C .(-∞,1) (3,+∞) D .(-∞,-3) (1,+∞) 5. 设a >0,c bx ax x f ++=2 )(,曲线y =f (x )在点P (0x ,f (0x ))处切线的倾斜角 的取值范围为[0,4π ],则P 到曲线y =f (x )对称轴距离的取值范围为( ) A .[0,]1a B .0[,]21a C .0[,|]2|a b D .0[,|]21 |a b - 6. 已知)(x f 奇函数且对任意正实数1x ,2x (1x ≠2x )恒有 0) ()(2 121>--x x x f x f 则一定正确的是( ) A .)5()3(->f f B .)5()3(-<-f f C .)3()5(f f >- D .)5()3(->-f f 7. 将半径为R 的球加热,若球的半径增加R ?,则球的体积增加≈?V ( ) A . R R ?3 π3 4 B .R R ?2π4 C .2π4R D .R R ?π4 8. 等边△ABC 的边长为a ,将它沿平行于BC 的线段PQ 折起,使平面APQ ⊥平面BPQC ,若折叠后AB 的长为d ,则d 的最小值为( ) A . a 43 B .a 45 C .4 3a D . a 410 9. 锐角α、β满足β α βα2424sin cos cos sin +=1,则下列结论中正确的是( ) A .2π≠ +βα B .2π<+βα C .2π>+βα D .2 π=+βα

高中数学三角函数知识点

高中数学第四章-三角函数知识点汇总 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: {}Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{}Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{}Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈57.30°=57°18ˊ. 1°= 180 π≈0.01745(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:2 11||2 2 s lr r α= = ?扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 r y =α sin ; r x = αcos ; x y = α tan ; y x = α cot ; x r = α sec ;. y r = α csc . 5、三角函数在各象限的符号:(一全二正弦,三切四余弦) 正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. 7. 三角函数的定义域: SIN \C O S 三角函数值大小关系图 1、2、3、4表示第一、二、三、四象限一半所在区域 (3) 若 o

高一三角函数知识点梳理总结

高一三角函数知识 §1.1任意角和弧度制 ?? ? ??零角负角:顺时针防线旋转正角:逆时针方向旋转 任意角..1 2.象限角:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3.. ①与α(0°≤α<360°)终边相同的角的集合:{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{ } Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:Z k k ∈-=,βα 360 ⑧若角α与角β的终边关于y 轴对称,则α与角β的关系:Z k k ∈-+=,βα 180360 ⑨若角α与角β的终边在一条直线上,则α与角β的关系:Z k k ∈+=,βα 180 ⑩角α与角β的终边互相垂直,则α与角β的关系:Z k k ∈++=, 90180βα 4. 弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角所对 的弧长为l ,则其弧度数的绝对值|r l = α,其中r 是圆的半径。 5. 弧度与角度互换公式: 1rad =(π 180)°≈57.30° 1°=180 π 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 6.. 第一象限的角:? ?? ? ??∈+<

相关文档
最新文档