沉淀—电位滴定法测定混凝土中氯离子含量

沉淀—电位滴定法测定混凝土中氯离子含量
沉淀—电位滴定法测定混凝土中氯离子含量

Hans Journal of Civil Engineering 土木工程, 2016, 5(1), 21-26

Published Online January 2016 in Hans. https://www.360docs.net/doc/de17550363.html,/journal/hjce

https://www.360docs.net/doc/de17550363.html,/10.12677/hjce.2016.51003

Utilization of Precipitation-Potentiometric

Method for the Measurement of Chloride Ion Content in Concrete

Lin Yang*, Wei Sun, Yunsheng Zhang#, Guojian Liu

Jiangsu Key Laboratory for Construction Materials, Southeast University, Nanjing Jiangsu

Received: Dec. 10th, 2015; accepted: Jan. 23rd, 2016; published: Jan. 29th, 2016

Copyright ? 2016 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

https://www.360docs.net/doc/de17550363.html,/licenses/by/4.0/

Abstract

Precipitation-Potentiometric Method was used for the measurement of chloride ion content in concrete. Effect of solution alkalinity on the testing results was investigated, meanwhile, which was also compared with the results obtained by ion chromatography (IC). The research indicates that the results obtained by Precipitation-Potentiometric Method have great difference with the IC results when the solution was not neutralized by dilute sulphuric acid, and the maximum devia-tion is closed to 30%. After neutralizing, however, the titration results are very near to the IC re-sults and the maximum deviation is merely 5.3%. All of these show that the Precipitation-Poten- tiometric Method has the features of high reliability, low cost and easy operation, which can be used as the standard method for measuring the chloride ion content in cement-based materials.

Keywords

Concrete, Chloride Ion, Corrosion of Steel Bar, Durability

沉淀–电位滴定法测定混凝土中氯离子含量

杨林*,孙伟,张云升#,刘国建

东南大学,江苏省土木工程材料重点实验室,江苏南京

*第一作者。

#通讯作者。

杨林等

收稿日期:2015年12月10日;录用日期:2016年1月23日;发布日期:2016年1月29日

摘要

探究以沉淀–电位滴定法测定混凝土中氯离子含量的可靠性,研究了待测溶液的碱度对测试结果的影响,并与离子色谱法测得结果进行比较。结果表明:当待测溶液未中和时,采用沉淀–电位滴定法测得结果与离子色谱法结果偏差较大,最大偏差接近30%;而将待测溶液用稀硫酸中和后,其滴定结果与离子色谱法测得结果极为接近,最大偏差仅为5.3%。该方法具有较高的可靠度和经济性,且操作简单,可作为测试水泥基材料氯离子含量的标准方法。

关键词

混凝土,氯离子,钢筋锈蚀,耐久性

1. 前言

钢筋混凝土已成为世界上应用最为广泛的结构材料,然而大量的结构在未达到设计使用寿命前就出现了耐久性问题,混凝土结构的过早失效给国家造成巨大的经济损失,同时危机人们的生命财产安全。

钢筋锈蚀被列为造成结构破坏的第一大元凶,而诱使钢筋锈蚀的主要原因是服役环境中氯盐的侵入[1] [2]。

我国东南沿海绵延上万公里的海岸线且包括众多岛屿,西北地区拥有察尔汗盐湖、茶卡盐湖、巴里坤盐湖等众多盐湖及盐渍土,海洋与盐湖环境中氯盐的存在将严重威胁到钢筋混凝土结构的安全性。随着我国西部大开发战略和向海洋进军计划的实施,越来越多的混凝土结构被用在严酷环境中,如已投入使用的杭州湾跨海大桥、兰新高铁、正在建设的港珠澳大桥等,如何保证混凝土结构服役期间的安全性、耐久性将是一大挑战。因此,加强氯盐环境下混凝土结构的耐久性研究,探明氯离子在混凝土中的传输行为与过程成为科研者工作面临的重大课题。

研究氯离子在混凝土中传输的关键是确定氯离子在混凝土中的浓度分布,目前测定氯离子浓度的常用方法有化学滴定法和直接电位法[3] [4]。化学滴定法是以AgNO3标准溶液作滴定剂、以指示剂颜色变化判定终点,该方法的不足之处是指示剂颜色判定因人而异,滴定终点判断不准。直接电位法是预先制定标准氯盐溶液浓度与其电位的标准曲线,利用电极测得待测溶液的电位通过查找标准曲线获得对应的氯离子浓度,该方法易受待测溶液中其他离子的干扰,误差较大。沉淀–电位滴定法仍是以AgNO3标准溶液作滴定剂使氯离子形成AgCl沉淀,以滴定过程中溶液电位的突变判定终点,该方法相比于化学滴定法和直接电位法准确度较高、结果客观、效率高,目前已在水检、药检、石油化工等行业得到广泛应用。

本研究尝试采用沉淀–电位滴定法测定混凝土中氯离子含量,为研究氯盐环境下混凝土中氯离子浓度分布提供可靠手段。

2. 试验部分

试剂:0.005 mol/L的AgNO3标准溶液;0.5%的酚酞溶液(0.5 g酚酞,95 mL无水乙醇+ 5 mL蒸馏水);稀硫酸(浓硫酸:蒸馏水= 1:50,体积比);0.01 mol/L的NaCl标准溶液。

混凝土试样的制备:所用混凝土的配合比及基本性能如表1所示,成型试样为100 mm立方块,经24小时脱模后在标准条件下(RH ≥ 95%,20℃)养护60天,然后浸泡于3% NaCl溶液中。当浸泡时间分

杨林 等

Table 1. Mix proportion and basic properties of concrete 表1. 混凝土配合比及基本性能

配合比/kg/m 3

基本性能

水灰比 水泥 砂 石灰石 水 坍落度/mm

28d 抗压强度/MPa

0.35

355

703

1147

195

160

37.3

别为3个月、6个月和1年时,取出试样,采用立式钻床钻取深度为0~5 mm 的粉末,分别标记为样品1、样品2和样品3。

仪器设备:自动电位滴定仪(ZDJ-4A ,上海雷磁),配备银电极(指示电极)和甘汞电极(参比电极);离子色谱仪(IC-881,瑞士万通);电子天平,精确至0.0001 g 。

试验过程:1) 将钻取的混凝土粉末在105℃下干燥24小时,然后用0.15 mm 方孔筛筛除大颗粒后备用;2) 用电子天平称取2 g 左右粉末置于三角瓶中,加入50 mL 蒸馏水浸泡24小时,且在浸泡过程中振荡三角瓶3~5次;3) 将浸泡后的溶液用中速定性滤纸进行过滤,用移液管移取10 mL 滤液置于玻璃杯中,滴加1滴酚酞溶液作指示剂,用稀硫酸中和至无色,然后将玻璃杯置于自动电位滴定仪上用已知浓度的AgNO 3标准溶液进行滴定,滴定过程中玻璃杯底部有搅拌子进行搅拌。

3. 试验原理

沉淀–电位滴定法以已知浓度的AgNO 3溶液作滴定剂,使待测溶液中的氯离子形成AgCl 沉淀,以滴定过程中溶液电位的突跃判定终点。进行电位滴定时,被测溶液中同时插入银电极和甘汞电极,分别用作指示电极和参比电极,以此组成工作电池。随着滴定剂的加入,不断生成AgCl 沉淀,氯离子浓度不断降低,溶液的电位E 也相应地发生变化,当滴定至终点时,溶液中的氯离子浓度会连续变化多个数量级,引起电位的突跃,此时记录所消耗的AgNO 3溶液的体积[5]。待测溶液中氯离子的浓度可通过以下公式计算:

31

AgNO 2

x V C C V =×

(1) 其中:x C ——待测溶液中氯离子浓度(mol/L);3AgNO C ——所用AgNO 3标准溶液的浓度(mol/L);1V ——所消耗的AgNO 3标准溶液的体积(mL);2V ——移取的待测溶液的体积(mL)。

若将结果表示为粉末样品中氯离子的含量,则:

3AgNO 10235.45

100%1000

C V V P

m V ??×=×?× (2)

其中:P ——样品中氯离子质量百分数(%);3AgNO C ——所用AgNO 3标准溶液的浓度(mol/L);0V ——浸泡样品所用蒸馏水体积(mL);1V ——所消耗的AgNO 3标准溶液的体积(mL);2V ——移取的待测溶液的体积(mL);m ——称取的粉末样品的质量(g)。

为进一步阐明沉淀–电位滴定法及验证其结果的可靠性,采用该方法连续两次滴定浓度为0.01 mol/L 的NaCl 标准溶液。如图1所示,随着AgNO 3溶液体积的增加,溶液的电位呈上升趋势。将电位E 对AgNO 3溶液体积V 进行求导,则得到微分曲线。显而易见,微分曲线上存在明显的峰值点,即所谓的突跃点(滴定终点),依据此点得到消耗的AgNO 3标准溶液的体积量分别为19.94 mL 、19.96 mL 。利用式(1)计算得到所测NaCl 溶液的浓度分别为0.0097 mol/L 、0.0098 mol/L ,与实际浓度的偏差分别为3%、2%,其结果可靠性高,重复性强。

杨林 等

(a) (b)

Figure 1. The titration of standard NaCl solution. (a) For the first time; (b) for the second time 图1. NaCl 标准溶液的滴定. (a) 第一次;(b) 第二次

4. 试验结果与分析

众所周知,水泥水化产生大量的Ca(OH)2和碱金属氢氧化物,溶液呈强碱性,其硬化水泥浆体仍然保持较高的碱度(通常pH > 13) [6]。本研究中钻取的三个混凝土粉末样品加入蒸馏水浸泡后,其滤液的pH 皆大于12.5。为研究溶液的碱度对滴定结果的影响,在滴定前设计了两组试验进行对比:一组未用稀硫酸中和,直接滴定;另一组采用稀硫酸中和,以酚酞溶液作指示剂。图2和图3分别是未中和与中和后待测溶液的滴定结果。从图2和图3可以看出,无论待测溶液中和与否,在滴定的过程中都能出现电位的突跃(滴定终点),但是达到滴定终点时所消耗的AgNO 3溶液的体积量不同,未中和溶液消耗的AgNO 3溶液的体积量整体上大于中和后的溶液。根据式(2)将结果表示为粉末样品的氯离子含量,如表1所示。为进一步评价中和与否对滴定结果的影响,本研究同时采用离子色谱(IC)对同一滤液中的氯离子浓度进行测试,并以此结果对采用沉淀-电位滴定法得到的结果进行评判。

如表2所示,当待测溶液未中和时采用沉淀–电位滴定法测得的氯离子含量与离子色谱法测得结果偏差较大,其中样品3的偏差已接近30%;而将待测溶液用稀硫酸中和后,其滴定结果与离子色谱法测得结果极为接近,最大偏差仅为5.3%。分析其原因,未中和溶液呈强碱性,在滴定过程中Ag +易与OH ?结合形成AgOH 沉淀,但AgOH 在常温条件下极不稳定,易分解为微溶于水的褐色Ag 2O 固体,其反应过程如式(3)所示,这一反应的存在影响了滴定结果。图4是中和与未中和溶液滴定后的颜色对比,可以看出,中和后的溶液生成了白色的AgCl 沉淀,而未中和溶液滴定后呈褐色,该现象佐证了以上的理论分析。

222Ag 2OH 2AgOH Ag O H O +?+→→+ (3)

5. 结论

采用沉淀–电位滴定法可以测定混凝土中的氯离子含量,待测溶液的碱度影响其测试结果的准确性;当待测溶液未中和时,采用沉淀–电位滴定法测得结果与离子色谱法结果偏差较大,最大偏差接近30%;而将待测溶液用稀硫酸中和后,其滴定结果与离子色谱法测得结果极为接近,最大偏差仅为5.3%。该方法操作简单、结果可靠性高、使用性强,且相比于离子色谱法具有较高的经济性,可以作为标准方法用于测试水泥基材料中的氯离子含量。

杨林等

(a) (b)

(c)

Figure 2. Titration results of non-neutralized solution. (a) Sample 1; (b) Sample 2; (c) Sample 3

图2. 未中和溶液的滴定结果。(a) 样品1;(b) 样品2;(c) 样品3

(a) (b)

(c)

Figure 3. Titration results of neutralized solution. (a) Sample 1; (b) Sample 2; (c) Sample 3

图3. 中和溶液的滴定结果。(a) 样品1;(b) 样品2;(c) 样品3

杨林等

Table 2. Experiment results and deviation

表2. 试验结果与偏差

样品

氯离子含量(%) 偏差(%)

IC 未中和中和未中和中和

1 2 3

0.085

0.151

0.372

0.096

0.143

0.473

0.087

0.143

0.372

12.9

?5.3

27.2

2.4

?5.3

4.3

Figure 4. Color contrast of non-neutralized solution and neu-tralized solution after titrating

图4. 中和与未中和溶液滴定后颜色对比

基金项目

国家重点基础研究发展计划(973计划) (2015CB655102);国家自然科学基金(51178106, 51378116 & 51408597);中国铁路总公司科技发展项目(2013G001-A-2)。

参考文献(References)

[1]黄涛. 荷载作用下混凝土碳化与氯离子侵蚀相互影响试验研究[D]. 杭州: 浙江大学, 2013.

[2]港口工程结构设计实用年限调查专题研究报告[R]. 广州四航工程技术研究院, 2004.

[3]水运工程混凝土试验规程, J270-98. 中华人民共和国交通部, 1998.

[4]水工混凝土试验规程, SL 352-2006. 中华人民共和国水利部, 2006.

[5]https://www.360docs.net/doc/de17550363.html,/link?url=XngFtl-ve1UfhMigFwgefCREppjLIZk14TkSjpn0-CiQuRoh4bnqKRopS5OQsj_ksbL

L778J_ZXd6dZBwTa0l_

[6]沈威. 水泥工艺学[M]. 武汉: 武汉理工大学出版社, 2008: 177.

混凝土外加剂氯离子含量试验报告.docx

湖南中天土木工程检测中心混凝土外加剂氯离子含量试验报告委托单位委托单号 工程名称样品编号 施工部位环境条件温度:°C 湿度: % 样品名称混凝土高性能外加剂质量标准GB8076-2008 样品描述淡黄色粘稠液体仪器名称电位测定仪、电极、搅拌器代表数量6t 试验方法电位滴定法 样品批号样品来源 生产厂家试验日期 序号试验项目规定值试验结果 1 氯离子含量X Cl(%)0.1 0.08 结论:经检测,所测指标符合《混凝土外加剂》GB8076-2008标准及《xxx工程混凝土外加剂的质量标准》的要求。 备注:

谢谢观赏 谢谢观赏 批准: 审核 试验: 批准日期: 年 月 日 湖南中天土木工程检测中心 混凝土外加剂氯离子含量试验记录表 委托单位 委托单号 工程名称 样品编号 施工部位 环境条件 温度: °C 湿度: % 样品名称 混凝土高性能外加剂 试验依据 GB8077-2012 样品描述 淡黄色粘稠液体 仪器名称 电位测定仪、电极、搅拌器 代表数量 6t 试验日期 外加剂类型 GOR 型高性能减水剂 试验次数 1 2 外加剂试样质量m (g ) 2.1280 2.2260 硝酸银溶液当量浓度c (mol/L ) 0.10 0.10 空白液 加10mL 氯化钠标准液消耗 硝酸银溶液体积V 01(mL ) 10.48 10.43 加20mL 氯化钠标准液消耗 硝酸银溶液体积V 02(mL ) 20.37 20.43 加外 加剂 试验 加10mL 氯化钠标准液消耗 硝酸银溶液体积V 1(mL ) 13.33 13.34 加20mL 氯化钠标准液消耗 硝酸银溶液体积V 2(mL ) 18.35 18.53 氯离子所消耗的硝酸银溶液体积:V=[(V 1-V 01)+(V 2-V 02)]/2 0.42 0.51 氯离子含量:X Cl =[(c ·V ×35.45) / m ]×0.1 0.07 0.08 氯离子含量平均值X Cl (%) 0.08 备注:

电位滴定法测定水中氯离子的含量

电位滴定法测定水中氯离子的含量 1 / 1 电位滴定法测定水中氯离子的含量 一 实验目的:学习电位滴定法的基本原理和操作技术 掌握了解氯离子的测定过程和现象 二 实验原理 利用滴定分析中化学计量点附近的突跃,以一对适当的电极对监测滴定过程中的电位变化,从而确定滴定终点,并由此求得待测组分的含量的方法称为电位滴定法。本实验根据Nerst 方程E = E θ- RT/nF lgC Cl- ,滴定过程中, Cl - + Ag + = AgCl ↓,使得氯离子浓度降低,电位发生改变,接近化学计量点时,氯离子浓度发生突变,电位相应发生突变,而后继续加入滴定剂,溶液电位变化幅度减缓。以突变时滴定剂的消耗体积(mL )来确定滴定终点(AgNO 3标准溶液的体积)。 三 仪器和试剂 酸度计(mv 计),磁力搅拌器,转子。KNO 3甘汞参比电极,银电极,滴定管,烧杯(电解池),0.05mol·L -1NaCl ,0.05mol·L -1AgNO 3,KNO 3固体 四 实验内容和步骤 1 0.05mol·L -1AgNO 3标准溶液的标定 准确移取0.05mol.L -1NaCl 标准溶液10.00mL 于烧杯中,加蒸馏水20mL ,KNO 3固体2g ,搅拌均匀。 开启酸度计,开关调在mv 位置,加入滴定剂,记录溶液电位随滴定剂的体积变化情况。随着AgNO 3标准溶液的滴入,电位读数将不断变化,读数间隔可先大些(1-2mL ),至一定量后,电位读数变化较大,则预示临近终点,此时应逐滴加入AgNO 3标准溶液(0.5-0.2mL ),并记录电位变化,直至继续加入AgNO 3标准溶液后电位变化不再明显为止。做E(mv)-V(mL)曲线,求得终点时所消耗AgNO 3标准溶液的确切体积。 2水中氯离子含量的测定 准确移取水样10.00mL 于烧杯中,加蒸馏水20mL ,KNO 3固体2g ,搅拌均匀。加入滴定剂,记录溶液电位随滴定剂的体积变化情况。同标定的步骤,做E(mv)-V(mL)曲线,求出与水样中氯离子反应至终点所消耗的AgNO 3标准溶液的确切体积。 五数据处理 根据实验数据做E(mv)-V(mL)曲线,从两个图中获得终点所消耗的AgNO 3标准溶液体积,从而根据物质反应平衡公式C Cl-V Cl-=V Ag+C Ag+计算求出水中氯离子的含量(mol·L -1)。 实验过程中的注意事项:1参比电极所装电解液应为饱和KNO 3溶液。 2甘汞电极比银电极略低些,有利于提高灵敏度。 3读数应在相对稳定后再读数,若数据一直变化,可考虑读数时降低转子的转数。 问题:实验中KNO 3的作用? 终点滴定剂体积的确定方法有哪几种?

混凝土氯离子含量检测作业指导书

混凝土氯离子含量检测作业指导书 一、引用标准 1.1 JTJ270-1998 水运工程混凝土试验规程 1.2 GB50164-2011 混凝土质量控制标准 1.3 GB/T50476-2008 混凝土结构耐久性设计规范 二、混凝土水溶性氯离子含量测定方法 2.1 主要仪器设备 2.1.1 DY-2501A型氯离子检测仪 2.2 实验前的准备 2.2.1 电极的处理 取下探头的橡胶帽,检查并添加探头中的电极溶液,保证溶液不少于容积的四分之三,在测量时打开填充孔的口子是电极溶液处于正常大气压下。将探头放入蒸馏水中活化,活化时间为30分钟到1个小时。 2.2.2 配制标准溶液 配制浓度为0.5%和1%CL-的NaCl标准溶液。 2.2.3 将氯离子测试探头接到检测仪的主机端口。 2.2.4 接上电源线,按下电源开关,准备进行标定。 2.3 检测仪的标定 2.3.1 检测仪在使用前要先进行活化和标定。 2.3.2 按“Power”键开启主机,进入测试准备就绪模式。

2.3.3 打开加液孔的盖子,将氯离子测试探头用蒸馏水冲洗干净,用棉纸彻底擦干。 2.3.4 将测试探头浸入配制好的0.5% NaCl标准溶液中,摇晃探头五次左右,选择“CAL”进入标定模式,按“TEST”键开始标定,LCD 显示屏显示“Calibration 0.5%”,按“TEST”开始标定。当显示屏底部出现“Calibration 0.1%”,说明0.5%标定结束。 2.3.4 重新使用清洗液清洗探头,用棉纸彻底擦干,然后将测试探头浸入0.1% 标定溶液中,摇晃探头五次左右,按“TEST”键开始0.1%标定,当显示屏显示“Calibration End”,说明0.1%标定结束。2.3.5 查看标定SLP值,其正常允许范围在90%-110%之间,超出正常范围,检查探头表面和标定溶液状态,用砂纸打磨探头或者更换标定溶液,然后进行重新标定。 2.4 新拌混凝土拌合物氯离子的测定 2.4.1 将探头冲洗干净并用滤纸吸干待用。 2.4.2 选择“MODE”键,用方向键选择“Water”模式,选择“FUNCT”进入设定模式,分别按“4(DATE)”、“5(DATA)”、“6(CL-/NaCl)”设定日期时间,质量和测试模式。 2.4.3 将探头插入混凝土中,待探头稳定下来,按“TEST”键开始重复测试(设置仪器为四次连续测试)。 2.4.4 按“PRINT”键打印试样测试结果报告,或按“MEMORY”保存结果。

水中氯化物含量的测定.doc

成绩 评语 Scor e 教师签字日期 Comment 学时 Signature of Tutor________________ Date:_______ 2 Time 班 组别姓名学号级 Grou Name Student No. Cla p ss 项目编号项目名称 实验三:水中氯化物的测定(沉淀滴定法)Item No. Item 课程名称教材 Course Textbook 一、实验时间、地点 二、实验目的 1.学会用硝酸银标准溶液来滴定水中的氯化物; 2.掌握用莫尔法测定水中氯化物的原理和方法。 三、实验原理 在中性或弱减性溶液中,以铬酸钾为指示剂,用硝酸银滴定氯化物时,由于氯化银的溶解度小于 铬酸银的溶解度,Cl -首先被完全沉淀后,铬酸银才以铬酸银形式沉淀出来,产生砖红色,指示Cl - 滴定的终点。 +- 2- →Ag CrO↓ 沉淀滴定反应如下:Ag +Cl ? AgCl↓ 2Ag++CrO 4 24 铬酸根离子的浓度,与沉淀形成的迟早有关,必须加入足量的指示剂。 且由于有稍过量的硝酸银与铬酸钾形成铬酸银沉淀的终点较难判断,所以需要以蒸馏水作空白滴定, 以作对照判断( 使终点色调一致) 。 四、实验内容

用移液管移取L 氯化钠标准溶液,加蒸馏水,加一毫升K2CrO4,指示剂。在玻璃棒的不断搅动下,用硝酸银标准溶液滴定至淡橘红色,即为终点。同时做空白试验。根据氯化钠标准溶液的浓度和滴定中所消耗硝酸银溶液的体积,计算硝酸银溶液的准确浓度。 五、实验器材 1.棕色酸式滴定管一支, 25ml; 2.瓷坩埚一个, 250ml; 3.移液管一支, 50ml; 4.烧杯一支, 250ml; 5.玻璃棒 1 支; 6.滴定台、滴定夹。 六、实验步骤 步骤 1: 取水样 25ml 到 250ml 瓷坩埚中,在用量筒量入25ml 的自来水稀释,滴加1ml K CrO 用玻璃棒搅匀; 24, 步骤 2:在滴定管装满水后,扭开活塞,检查滴定管的严密性。检查完毕后,将L 的硝酸银溶液倒入滴定管中; 步骤 3:用烧杯将瓷坩埚固定住,在玻璃棒的搅拌下,用硝酸银溶液滴定至淡橘红色,即为终点。根据氯化钠 标准溶液的浓度和滴定中所消耗硝酸银溶液的体积,计算硝酸银溶液的准确浓度。

ASTM水中氯离子含量测定标准方法D 512-04

Designation: D 512-04 Standard Test Methods for Chloride Ion In Water 水中氯离子含量测定标准方法 1.范围 1.1 该测试方法适用普通水、废水(仅测试方法C)和盐水中氯离子的确定。包括以下三种测试方法: 1.2 测试方法A,B,和C在操作方法D 2777-77下有效,仅测试方法B 还需满足操作规程D 2777-86。更多信息参考14,21和29节。 1.3 该标准试验方法没有包含所有的安全问题,即便要,也应联系实际需要。在试验前确定合适的安全、健康守则和决定其规章制度适用的局限性是试验者的责任。对于特需危险说明,见26.1.1。 1.4 先前的比色试验方法已经终止。参考附录X1获取历史信息。 2. 参考文件

3. 术语 3.1 定义-用于这些试验方法的术语定义,参考术语D 1129和D 4127。 4. 意义和作用 4.1 水中氯离子处在管理中,因此必须精确地测量。氯离子对于高压锅炉系统和不锈钢是非常有害的,因此为防止破坏,监测是很重要的。氯离子分析作为一种工具广泛用于估计集中循环,例如应用在冷却塔中。处理水和食品加工工业中的分选液同样需要可靠的氯离子分析方法。 5. 试剂的纯度 5.1 试剂的化学等级在所有试验中适用。除非有其它说明,所有试剂应遵从美国化学界分析性试剂的规范委员会要求,有关规范都可从委员会取得。可能使用其它等级,倘若首先确定试剂纯度高得足以允许使用而不用降低确定的精度。 5.2 水的纯度-除非另有说明,参照水应理解为符合规范D 1193的Ⅰ型试剂水。其它类型的试剂水可能使用,倘若首先能确定水纯度高得足以允许使用而不影响试验方法的精度和偏差。Ⅱ型水在该试验方法中的循环测试时使用。 6. 取样 6.1 按照操作规程D 1066和D 3370的要求采集试样。 TEST METHOD A-MERCURIMETRIC TITRATION 测试方法A-汞液滴定法 7. 范围 7.1 该测试方法能用于确定水中离子,假设干扰可忽略(见小节9)。 7.2 尽管在研究报告中没有明确说明,精度表述是假设使用Ⅱ试剂水。在未经试验的地方确定该测试方法的有效性是分析者的责任。 7.3 该测试方法对于氯离子浓度在8.0-250mg/L的范围有效。 8. 测试方法概要 8.1 将稀释汞滴定液加入一份酸性试样中,该试样为混合二苯偶氮碳酰肼(diphenylcarbazone)-溴苯酚的蓝色指示剂。滴定的最后为蓝-紫罗兰颜色的二苯偶氮碳酰肼(diphenylcarbazone)化合物。 9. 干扰 9.1 通常在水中发现的阴离子和阳离子不会干扰测试。锌、铅、镍、亚铁的

水中氯离子含量的测试方法

测定水中氯离子含量的测试方法 1.适用范围* 1.1如下三个测试方法包括了水、污水(仅测试方法C)及盐水中氯离子含量的测定: 部分 测试方法A(汞量滴定法)7~10 测试方法B(硝酸银滴定法)15~21 测试方法C(离子选择电极法)22~29 1.2测试方法A、B和C在应用(practice)D2777-77下有效,仅仅测试方法B在应用D2777-86下也同样有效,详细的信息参照14、21和29部分。 1.3本标准并不意味着罗列了所有的,如果存在,与本标准的使用有关的安全注意事项。本标准的使用者的责任,是采用适当的安全和健康措施并且在使用前确定规章制度上的那些限制措施的适用性。明确的危害声明见26.1.1。 1.4以前的比色法不再继续使用。参照附录X1查看历史信息。 2.参考文献 2.1ASTM标准 D1066蒸汽的取样方法2 D1129与水相关的术语2 D1193试剂水的规范2 D2777D-19水委员会应用方法的精确性及偏差的测定2 D3370管道内取水样的方法2 D4127离子选择电极用术语2 3.专用术语 3.1定义——这些测试方法中使用的术语的定义参照D1129和D4127中的术语。 4.用途及重要性 4.1氯离子是,因此应该被精确的测定。它对高压锅炉系统和不锈钢具有高度危害,所以为防止危害产生监测是必要的。氯分析作为一个工具被广泛的用于评估循环浓度,如在冷却塔的应用。在食品加工工业中使用的处理水和酸洗溶液也需要使用可靠的方法分析氯含量。 5.试剂纯度 5.1在所有的试验中将使用试剂级化学物质。除非另有说明,所有试剂应符合美国化学品协会分析试剂委员会的规范要求。如果能断定其他等级的试剂具有足够高的纯度,使用它不会减少试验的精度,则这种等级的试剂也可以使用。 5.2水的纯度——除非另有说明,关于水的标准应理解为指的是如Specification D1193中由第二类所定义的试剂水。 6.取样 6.1根据标准D1066和标准D3370取样。

电位滴定法测定水中氯离子的含量

电位滴定法测定水中氯离子的含量 一实验目的:学习电位滴定法的基本原理和操作技术 掌握了解氯离子的测定过程和现象 二实验原理 利用滴定分析中化学计量点附近的突跃,以一对适当的电极对监测滴定过程中的电位变化,从而确定滴定终点,并由此求得待测组分的含量的方法称为电位滴定法。本实验根据Nerst方程E = Eθ- RT/nF lgC Cl- ,滴定过程中,Cl- + Ag+ = AgCl↓,使得氯离子浓度降低,电位发生改变,接近化学计量点时,氯离子浓度发生突变,电位相应发生突变,而后继续加入滴定剂,溶液电位变化幅度减缓。以突变时滴定剂的消耗体积(mL)来确定滴定终点(AgNO3标准溶液的体积)。 三仪器和试剂 酸度计(mv计),磁力搅拌器,转子。KNO3甘汞参比电极,银电极,滴定管,烧杯(电解池),·L-1NaCl,·L-1AgNO3,KNO3固体 四实验内容和步骤 1 ·L-1AgNO3标准溶液的标定 准确移取标准溶液于烧杯中,加蒸馏水20mL,KNO3固体2g,搅拌均匀。 开启酸度计,开关调在mv位置,加入滴定剂,记录溶液电位随滴定剂的体积变化情况。随着AgNO3标准溶液的滴入,电位读数将不断变化,读数间隔可先大些(1-2mL),至一定量后,电位读数变化较大,则预示临近终点,此时应逐滴加入AgNO3标准溶液(),并记录电位变化,直至继续加入AgNO3标准溶液后电位变化不再明显为止。做E(mv)-V(mL)曲线,求得终点时所消耗AgNO3标准溶液的确切体积。 2水中氯离子含量的测定 准确移取水样于烧杯中,加蒸馏水20mL,KNO3固体2g,搅拌均匀。加入滴定剂,记录溶液电位随滴定剂的体积变化情况。同标定的步骤,做E(mv)-V(mL)曲线,求出与水样中氯离子反应至终点所消耗的AgNO3标准溶液的确切体积。 五数据处理 根据实验数据做E(mv)-V(mL)曲线,从两个图中获得终点所消耗的AgNO3标准溶液体积,从而根据物质反应平衡公式C Cl-V Cl-=V Ag+C Ag+计算求出水中氯离子的

混凝土水溶性氯离子含量测定作业指导书

混凝土水溶性氯离子含量测定作业指导书 1.目的 测定混凝土中水溶性氯离子含量 2操作程序 电极的活化处理,将氯离子选择电极放入自来水中,浸泡2hrs。 配置5×10-3、5×10-4Mol/L的标准NaCL溶液。 提示: 仪器校准前请将倒入烧杯中的5×10-3、5×10-4Mol/L溶液中倒入3—5ml 的0.1mol/l的硝酸钠溶液做为稳定液。 电极校准步骤 1 清洗电极:将(活化好的)电极置于去离子水清洗瓶中冲洗三次,清洗后水倒 掉,电极不宜浸泡超过60秒,否则严重影响测试结果; 2 用滤纸小心拭干电极表面; 3 打开测试仪电源开关,进入测试界面,如下图 图3-1 4 选择“数字键选择标定仪器”,按键开始仪器标定。依次 标定溶液浓度为5?10-4、5.?10-3 Mol/L NaCl。(电极校准过程对测量的精确度起着很重要的作用,请用户按照校准溶液由稀到浓的顺序校准。) 注: 电极校准过程对测量的精确度起着很重要的作用,请用户按照校准溶液由稀到浓的顺序校准。二次校准之间必须严格清洗电极,清洗用的蒸馏水不能重复使用。 5 仪器标定完成时,按键返回到主界面(图3-1)。 6 选择“数字键选择“测量浓度”。。 6-1 选择键择进入“液体溶液”检测;输入检测试样的时间日

期,按键。输入“试样编号”后按键开始检测试样,检测试样完毕时按键,选择:“保存”“打印”结果。 6-2 选择键择进入“固体粉末”检测;输入检测试样的时间日期,按键。输入“试样编号”后按,输入“固体粉末”质量(默认为20g)和“液体体积”(默认为100ml),输入完毕按键进行检测,检测试样完毕时按键,选择:“保存”“打印”结果。

氯离子的测定方法(精)

氯离子的测定方法 氯离子的测定是在 PH5~9条件下测定的。 试剂与材料 : 酚酞指示剂:1%乙醇溶液 铬酸钾指示剂:50g /L水溶液 硝酸:1+300的硝酸溶液 硝酸银标准溶液:C (AgNO 3 =0.0141 mol/L,称取预先干燥并已恒重过的硝酸银 2.3996g 溶于水中,转移至 1L 棕色容量瓶中定容。摇匀,置于暗处(不用标定。 测定步骤:移取 25ml 水样于 250ml 锥形瓶中, 加入 2~3滴酚酞指示剂, 用硝酸调至无色。加入 1ml 铬酸钾指示剂,用硝酸银滴定至橙红,同时做空白试验。 计算公式 : X(mg/L=(V-V O ×C×0.03545÷V 样 ×106 式中:V —滴定时消耗硝酸银标准溶液的体积, ml V —空白试验时消耗硝酸银标准溶液的体积, ml V 样

—水样的体积, ml c —硝酸银标准溶液的浓度, mol/L 0.03545——与 1mlAgNO 3 标准溶液 c (AgNO 3 =1 .000mol/L相当的以克表 示的氯的质量。 钙镁离子的测定方法 1.方法提要 钙离子测定是在 PH12~13时,以钙 -羧酸为指示剂,用 EDTA 与标准滴定溶液测定水样中钙离子含量。滴定 EDTA 与溶液中游离的钙离子反应形成络合物, 溶液颜色变化由紫色变为亮蓝色时即为终点。 镁离子测定是在 PH 为 10时,以铬黑 T 为指示剂用 EDTA 标准滴定溶液测定钙、镁离子合量, 溶液颜色由紫色变为纯蓝色时即为终点, 由钙镁合量中减去钙离子含量即为镁离子含量。 2.试剂与材料 2.1 硫酸:1+1溶液 2.2 过硫酸钾:40g/L溶液,贮存于棕色瓶中(有效期 1个月。 2.3 三乙醇胺:1+2水溶液 2.4 氢氧化钾:200g/L。

实验三 水中氯离子的测定-沉淀滴定法和电位滴定法

实验三、水中氯离子的测定(沉淀滴定法和电位滴定法) 1.沉淀滴定法 此法依据《水质氯化物的测定硝酸银滴定法》(GB 11896-89) 一、实验目的和要求 学习银量法测定氯含量的原理和方法; 掌握AgNO3标准溶液的配制和标定方法。 二、实验原理 在中性至弱碱性范围内(pH6.5—10.5),以铬酸钾为指示剂,用硝酸银滴定氯化物时,由于氯化银的溶解度小于铬酸银的溶解度,氯离子首先被完全沉淀出来后,然后铬酸盐以铬酸银的形式被沉淀,产生砖红色,指示滴定终点到达。该沉淀滴定的反应如下: Ag++Cl—→AgCl↓ 2Ag++CrO4→Ag2CrO4↓(砖红色) 三、实验仪器和设备 (1)锥形瓶,250mL; (2)滴定管,25mL,棕色; (3)移液管,10mL,25mL,50mL; (4)容量瓶,100mL,1000mL。 四、实验试剂和材料 分析中仅使用分析纯试制及蒸馏水或去离子水。 (1)氯化钠标准溶液,C(NaCl)=0.0141mol/L,相当于500mg/L氯化物含量:将氯化钠(NaCl)置于瓷坩埚内,在105℃下烘干2h。在干燥器中冷却后称取8.2400g,溶于蒸馏水中,在容量瓶中稀释至1000mL。用移液管吸取10.0mL,在容量瓶中准确稀释至100mL。 1.00mL此标准溶液含0.50mg氯化物(C1-)。 (2)硝酸银标准溶液,C(AgNO3)=0.0141mol/L:称取2.3950g于105℃烘半小时的硝酸银(AgNO3),溶于蒸馏水中,在容量瓶中稀释至1000mL,贮于棕色瓶中。 用氯化钠标准溶液(1)标定其浓度:用移液管准确吸取25.00mL氯化钠标准溶液于 250mL或100mL锥形瓶中,加蒸馏水25mL。另取一锥形瓶,量取蒸馏水50mL作空白。各加入1mL铬酸钾溶液(3),在不断的摇动下用硝酸银标准溶液滴定至砖红色沉淀刚刚出现为终点。计算每毫升硝酸银溶液所相当的氯化物量,然后校正其浓度,再作最后标定。1.00mL 此标准溶液相当于0.50mg氯化物(C1—)。 (3)铬酸钾溶液,50g/L:称取5g铬酸钾(K2CrO4)溶于少量蒸馏水中,滴加硝酸银溶液(2)至有红色沉淀生成。摇匀,静置12h,然后过滤并用蒸馏水将滤液稀释至100mL。 (4)高锰酸钾,C(1/5KMnO4)=0.01mol/L。 (5)过氧化氢(H2O2),30%。 (6)硫酸溶液,C(1/2H2SO4)=0.05mol/L。 (7)氢氧化钠溶液,C(NaOH)=0.05mol/L。 (8)乙醇(C6H5OH),95%。

水中氯离子测定方法

测定氯离子的方法 硝酸银滴定法 一、原理 在中性介质中,硝酸银与氯化物生成白色沉淀,当水样中氯离子全部与硝酸银反应后,过量的硝酸银与铬酸钾指示剂反应生成砖红色铬酸银沉淀,反应如下:NaCl + AgNO3 →AgCl ↓+ NaNO3 2 AgNO 3 + K2CrO 4 →Ag2CrO4↓+ KNO3 二、试剂 1、0.05%酚酞乙醇溶液:称取0.05g的酚酞指示剂,用无水乙醇溶解,称重至100g。 2、0.1410 mol/L氯化钠标准溶液:称取4.121g于500~600℃灼烧至恒重之优级纯氯化钠,溶于水,移至500ml容量瓶中,用水稀释至刻度。此溶液每毫升含 5mg氯离子。 3、0.01410 mol/L氯化钠标准溶液:吸取上述0.1410mol/L标准溶液50ml,移入500ml容量瓶中,用水稀释至刻度。此溶液每毫升含0.5mg氯离子。 4、硝酸银标准溶液:称取2.3950g硝酸银,溶于1000ml水中,溶液保存于棕色瓶中。 5、硝酸银标准溶液的标定:吸取0.01410mol/L(即1毫升含0.5mg氯离子)的氯化钠标准溶液10毫升,体积为V1,于磁蒸发皿中,加90ml蒸馏水,加三滴酚酞指示剂,用氢氧化钠调至红色消失,加约1ml10%铬酸钾指示剂,此时溶液呈纯黄色。用待标定的硝酸银溶液滴定至砖红色不再消失,且能辨认的红色(黄中带红)为止,记录消耗体积为V。以相同条件做100ml蒸馏水空白试验,消耗待标定的硝酸银的体积为V0。 浓度计算如下: C= V1×M×1000 V -V0 式中:C-硝酸银标准溶液的浓度,摩尔/升;

V1-氯化钠标准溶液的吸取量,毫升; M-氯化钠基准溶液的浓度,摩尔/升; V-滴基准物硝酸银溶液消耗的体积,毫升; V0-空白试验,硝酸银溶液消耗的体积,毫升。 调整硝酸银浓度使其摩尔浓度正好为0.0141mol/L。此溶液滴定度为1ml硝酸银溶液相当于0.5mg氯离子。 三、仪器 白磁蒸发皿:150ml 棕色滴定管 四、分析步骤 取50~100ml水样于蒸发皿中,加三滴酚酞指示剂,用0.02mol/L氢氧化钠溶液调成微红色,再加0.05mol/L硝酸调整至红色消失,再加入1滴管(约0.5~1ml)10%铬酸钾指示剂,此时溶液呈黄色,用硝酸银标准溶液滴定至所出现的铬酸银红色沉淀不再消失(即溶液呈黄中带红)为终点,以同样方法做空白试验,终点红色要一致。 五、分析结果的计算 水样中氯离子含量为X(毫克/升),按下式计算: X = (V2-V0)×M×35.45×1000 V W 式中:V2—滴定水样时硝酸银标准溶液的消耗量,毫升; V0—空白试验时硝酸银标准溶液的消耗量,毫升; M—硝酸银标准溶液浓度,摩尔/升; V w水样体积,毫升; 35.45—为氯离子摩尔质量,克/摩尔。 六、注意事项: 1、本方法适用于不含季胺盐的循环冷却水和天然水中氯离子的测定,其范围小于100mg/L。

混凝土中氯离子的危害及预防措施

混凝土中氯离子的危害及预防措施 我国新水泥标准中增加氯离子检验人手,分析了混凝土中氯离子的来源和带来途径。指出了氯离子对混凝土的影响和危害,提出了怎样才能避免混凝土中氯离子超标的几个措施,最后说明了有关各行业应研究怎样才能使混凝土中氯离子的含量最少。这应是有关的技术T 作者的一种责任。 引言 《通用硅酸盐水泥》报批稿,在2006年9月就已完成,随后经过若干次的建材生产与建一E使用的协商讨论,终于2007年底发布,国家标准 175—2007《通用硅酸盐水泥》于2008年6月1日实施,这个标准的正式实施,是我国水泥行业的大事,也是建筑施工行业的大事,它涉及到水泥产品的生产、流通、应用、科研与设计的各个方面。尤其是水泥生产企业,无论是产品品种的确定、配料方案的设计、化学分析及物理检验仪器设备的购置、校验、使用,还是生产工艺过程中的技术参数调整与控制,都必须进行必要的变更与适应,只有这样才可能满足新标准的要求,保证新标准的正常平稳过渡。 早在2002年4月1日,国家建没部和同家质检总局就联合发布实施了 500102002((混凝土结构设计规范》,其3.4耐久性规定的章节中,就对混凝土中最大氯离子的含量作了具体的规定;2004年l2月1日,两部局又联合发布实施了/T 503442004《建筑结构检测技术标准》,这个标准的附录C,对混凝土中氯离子的含量测定方法作了规范;2006年6月1日国家建设部发布实施了 522006((普通混凝土用砂、石质量

及检验方法标准》,这个标准在3.1.10条中对混凝土用砂的氯离子含量也作了规定。这些标准和规范的配套实施,必将对水泥的生产、使用和建设工程的质量提高起到积极的推动和保证作用。 1 混凝土中氯离子的来源 1.1 水泥中的氯离子 氯盐是廉价而易得的丁业原料,它在水泥生产中具有明显的经济值。它可以作为熟料煅烧的矿化剂,能够降低烧成温度,有利于节能高产;它也是有效的水泥早强剂,不仅使水泥3 d强度提高50%以上,而且可以降低混凝土中水的冰点温度,防止混凝土早期受冻。氯离子的来源主要是原料、燃料、混合材料和外加剂,但由于熟料煅烧过程中,氯离子大部分在高温下挥发而排出窑外,残留在熟料中的氯离子含培极少。如果水泥中的氯离子含量过高,其主要原冈是掺加了混合材料和外加剂(如:工业废渣、助磨剂等)。因此,在我国水泥新标准中增加了“水泥生产中允许加入≤0.5%的助磨剂和水泥中的氯离子含量必须≤O.06%”的要求,这主要是为了保证水泥不对混凝土质量产生过多负面影响。 1.2砂子中的氯离子 在天然砂中,特别是天然海砂中,因为海水中氯离子较高,使得海砂的表面吸附的氯离子也比较多,导致海砂中氯离子的含量较大,如果不加处理用在混凝土中,将会使混凝土中的氯离子含垣增多。 1.3水中的氯离子 在混凝土拌制中,水是不可缺少的原材料之一。如果用饮用的自

使用自动电位滴定仪测定水中氯离子含量

使用自动电位滴定仪测定水中氯离子含量和COD Mn值1.相关标准 《GB/T 13025.5-2012 制盐工业通用试验方法氯离子的测定》 《GB/T 15453-2008 工业循环冷却水和锅炉用水中氯离子的测定》 《GB/T 24890-2010 复混肥料中氯离子含量的测定》 《NY/T 1121.17-2006 土壤检测第17部分:土壤氯离子含量的测定》 《MT/T 201-2008 煤矿水中氯离子的测定》 《ASTM D4458-2009 半咸水、海水和盐水中氯离子的试验方法》 2.测量原理 样品溶液调至中性,用硝酸银标准溶液滴定溶液,通过离子选择性电极的电位突变指示终点。 3.仪器设备 实验仪器:ZDJ-5型自动滴定仪,或其他型号自动电位滴定仪。 实验电极:216-01型银电极+217-01型参比电极(二级参比填充液:饱和硝酸钠溶液)。 其他一般实验室仪器。 4.试剂和溶液 4.10.01mol/L氯化钠标准溶液:称取0.5844克已于600℃灼烧至恒重的氯 化钠基准试剂,溶解于去离子水中,移入1000ml容量瓶中,并用水稀 释至刻度,摇匀。 氯化钠标准溶液的浓度按式(1)计算: (1) 式中: c(NaCl),氯化钠标准溶液的浓度,单位为摩尔每升(mol/L); m,称取氯化钠的质量,单位为克(g) V,配制溶液的体积,单位为升(L) 4.20.01mol/L硝酸银溶液:称取1.70克分析纯的硝酸银,溶解于去离子水 中,移入1000ml容量瓶中,并用水稀释至刻度,摇匀,溶液保存在棕 色瓶中。 5.操作过程 5.1仪器准备,参照ZDJ-5或其他型号自动滴定仪说明书 5.2参数设置(推荐参数) 最小滴定体积:0.02ml。最大滴定体积:0.2ml,预滴定 突跃量:中,80mV。 5.3氯化钠标准溶液的标定:吸取10.00 ml 氯化钠标准溶液,置于150 ml 烧 杯中,使用硝酸银溶液滴定,同时需进行空白实验。

自动电位滴定法测定氯化物含量

自动电位滴定法测定氯化物含量 一、实验目的 1、了解自动电位滴定的原理及实验方法。 2、熟悉和学猩ZD-2型自动电位滴定仪的使用。 二、实验原理 若溶液本身具有很深的颜色,影响指示剂的变色,故一般容量滴定不能进行。虽然可用重量法测定;仍太麻烦。用电位滴定法测定,其方法方便,快速、被确。电位电位法测Cl -,通常采用AgNO 3作滴定剂,以银离子选择性电极作为指示电极,饱和甘汞电极为参比电极,滴定反应为: Ag -十Cl -= Ag C l ↓ 在滴定过程中,随着Cl -的浓度变化E 也在同步变化, 滴定至预定终点时,仪器发出一控制信号,使自动电位滴定仪停止滴定。最后由用去的AgNO 3体积计算出Cl -含量。 终点电位计算: △E = E e.p -E SCE = 0.276V 三、仪器与试剂 ZD-2型自动电位滴定仪 216型银离子选择性电极 232型饱和甘汞电极 AgNO 3标准溶液0.0100mo1/L 未知试样 四、实验步骤 1. 调试仪器,预置滴定终点 调试好仪器后,将终点预置在276mV 。 2. 未知试样测定 取10 mL 未知试样于100 mL 烧杯中,加蒸馏水稀释至50 mL 。平行测定三次。 3. 自来水样测定 取50 mL 自来水于烧杯中,按照上述方法,平行测定三次。 4. 实验后处理 用蒸馏水吹洗电极、毛细管。 五、数据处理 按下述方法计算Cl -含量 10005.35)(3 12???-=-V N V V Cl AgNO 其中:V 1滴定前读数; V 2滴定后读数。 V 为水样体积

五、问题讨论 1、电位滴定与一般容量滴定有何不同? 2、试写出该电池的表达式。 3、分析本实验可能的误差。 4、怎样配制0.0100mo1/L AgNO3标准溶液?

标准溶液配制、混凝土中氯离子含量测定

附录C 混凝土中氯离子含量测定 C.0.1 试样制备应符合下列要求: 1 将混凝土试件(芯样)破碎,剔除石子; 2 将试样缩分至50g,研磨至全部通过0.08mm的筛; 3 用磁铁吸出试样中的金属铁屑; 4 将试样置于105℃~110℃烘箱中烘干2h,取出后放入干燥器中冷却至室温备用。 C.0.2 检测用试剂应按下列规定置备: 1 将5g铬酸钾溶于100mL蒸馏水中,混匀,配制成浓度为50g/L铬酸钾指示液; 2 将氯化钠基准试剂于500℃~600℃烧至恒重,并在干燥状态下冷却至室温,称取冷却后的氯化钠基准试剂0.1461g置于250mL烧杯中,用不含Cl-的蒸馏水溶解,移入250mL溶量瓶中,再稀释至标线,摇匀,配制成浓度为0.01mol/L的氯化钠标准溶液; 3 称取1.7g硝酸银,用不含Cl-的蒸馏水溶解后稀释至1L,混匀,配制成浓度为0.01mol/L 的硝酸银标准溶液,贮存于棕色瓶中。 4 硝酸银标准溶液的标定:用移液管吸取氯化钠标准溶液25mL(V1),放入300mL三角瓶中,加入蒸馏水70mL制成标定溶液。在强烈振荡下,用硝酸银标准溶液滴至标定溶液出现淡橙色即为终点,记下消耗的硝酸银标准溶液的毫升数(V)。 硝酸银标准溶液的浓度按下式计算:C(AgNO3)=(C(NaCl) .V1)/(V-V1) (附C.0.3) 式中C(AgNO3)―硝酸银标准溶液的浓度(mol/L);C(NaCl)―氯化钠标准溶液的浓度(mol/L);V―滴定时消耗硝酸银标准溶液的体积(mL);V1―吸取氯化钠标准溶液的体积(mL)。 C.0.3 Cl-含量的测定应按下列要求进行: 1 称取20g试样(m,精确至0.01g),置于磨口三角瓶中,加入300mL蒸馏水剧烈振荡3min~4min,浸泡24h或在90℃的水浴锅中浸泡3h,然后用定性滤纸过滤得到试样溶液。 2 用移液管分别取50mL试样溶液置于三个250 mL锥形瓶中,并将提取试样溶液的pH值调整到7~8。调整pH值时用硝酸溶液调整酸度,用碳酸氢钠或氢氧化钠调整碱度。 3 在试样溶液中加入浓度为50g/L的铬酸钾指示剂10~12滴,制成标准试样溶液。 4 用浓度为0.01mol/L的硝酸银标准溶液滴定,边滴边摇,直至标准试样溶液呈现不消失的淡橙色为终点。记下消耗硝酸银标准溶液的毫升数V3。 5 同时做空白试验;空白试验方法:取70mL无Cl-的蒸馏水放入300mL三角瓶中,加入1mL浓度为50 g/L铬酸钾指示液制成空白试验溶液。在强烈振荡下,用硝酸银标准溶液滴至空白试验溶液呈淡橙色即为终点,记下消耗硝酸银标准溶液的毫升数(V2)。 C.0.4 试样中Cl―含量可按下式计算: Wcl=[ C(AgNO3)*(V3-V2)*0.0355*6]/m (附C.0.5) 式中C(AgNO3)―硝酸银标准溶液的浓度(mol/L);V3―滴定时消耗硝酸银标准溶液的体积(mL);V2―空白试验消耗硝酸银标准溶液的体积(mL);m―试样质量(g)。Cl―含量的测试结果以三次试验的平均值表示,计算精确至0.001%。 B.0.5 测试结果,可提供Cl―含量占试样质量的百分比,也可根据混凝土配合比将上述Cl―含量的测试结果换算成占水泥质量的百分比或Cl―含量占混凝土质量的百分比。

水中氯离子含量测定[1]

标准号:D 512-89 测定水中氯离子含量的测试方法1 1.适用范围* 1.1如下三个测试方法包括了水、污水(仅测试方法C )及盐水中氯离子含量的测定: 部分 测试方法A(汞量滴定法)7~10 测试方法B(硝酸银滴定法)15~21 测试方法C(离子选择电极法)22~29 1.2测试方法A、B和C在应用(practice)D2777-77下有效,仅仅测试方法B在应用D2777-86 下也同样有效,详细的信息参照14、21和29部分。 1.3本标准并不意味着罗列了所有的,如果存在,与本标准的使用有关的安全注意事项。本 标准的使用者的责任,是采用适当的安全和健康措施并且在使用前确定规章制度上的那些限制措施的适用性。明确的危害声明见26.1.1。 1.4以前的比色法不再继续使用。参照附录X1查看历史信息。 2.参考文献 2.1 ASTM标准 D 1066 蒸汽的取样方法2 D 1129 与水相关的术语2 D 1193 试剂水的规范2 D 2777 D-19水委员会应用方法的精确性及偏差的测定2 D 3370 管道内取水样的方法2 D 4127离子选择电极用术语2 3.专用术语 3.1 定义——这些测试方法中使用的术语的定义参照D 1129和D4127中的术语。 4.用途及重要性 4.1 氯离子是,因此应该被精确的测定。它对高压锅炉系统和不锈钢具有高度危害,所以为 防止危害产生监测是必要的。氯分析作为一个工具被广泛的用于评估循环浓度,如在冷却塔的应用。在食品加工工业中使用的处理水和酸洗溶液也需要使用可靠的方法分析氯含量。 5.试剂纯度 5.1在所有的试验中将使用试剂级化学物质。除非另有说明,所有试剂应符合美国化学品协 会分析试剂委员会的规范要求。如果能断定其他等级的试剂具有足够高的纯度,使用它不会减少试验的精度,则这种等级的试剂也可以使用。 5.2 水的纯度——除非另有说明,关于水的标准应理解为指的是如Specification D1193中 由第二类所定义的试剂水。

氯离子检测方法

氯离子测定方法小结 1、摩尔法 测定范围 适用于天然石、循环冷却水、以软化水为补给水的锅炉炉水中氯离子含量的测定测定范围为5mg/L~150mg/L。 测定原理 以铬酸钾为指示剂在pH为5~的范围内用硝酸银标准滴定溶液滴定。硝酸银与氯化物作用生成白色氯化银沉淀当有过量硝酸银存在时则与铬酸钾指示剂反应生成砖红色铬酸银表示反应达到终点。 方法来源 GB/T15453-2008?工业循环冷却水和锅炉用水中氯离子的测定摩尔法 注意事项 测定终点因人而异误差较大。 2、电位滴定法 测定范围 适用于天然石、循环冷却水、以软化水为补给水的锅炉炉水中氯离子含量的测定测定范围为5mg/L~150mg/L。 测定原理 以双液型饱和甘汞电极为参比电极以银电极为指示电极用硝酸银标准滴定溶液滴定至出现电位突跃点即理论终点即可从消耗的硝酸银标准滴定溶液的体积算出氯离子含量。 方法来源 GB/T?15453-2008?工业循环冷却水和锅炉用水中氯离子的测定电位滴定法 注意事项 需要额外配备电磁搅拌器、电位滴定计、双液型饱和甘汞电极、银电极。溴、碘、硫等离子存在干扰。 3、共沉淀富集分光光度法 测定范围 适用于除盐水、锅炉给水中氯离子含量的测定测定范围为10μg/L~100μg/L。 测定原理 基于磷酸铅沉淀做载体共沉淀富集痕量氯化物经高速离心机分离后以硝酸铁-高氯酸溶液完全溶解沉淀加硫氰酸汞-甲醇溶液显色用分光光度法间接测定水中痕量氯化物。 方法来源 GB/T?15453-2008工业循环冷却水和锅炉用水中氯离子的测定共沉淀富集分光光度法 注意事项 需要额外配备分光光度计460nm波长、30mm吸收池、高速离心机转速5000r/min配有250mL聚乙烯离心管。 4、汞盐滴定法 测定范围 适用于天然水、锅炉水、冷却水中氯离子含量的测定测定范围为1mg/L~100mg/L超过100mg/L时可适当地减少取样体积稀释至100mL后测定。 测定原理 在~的水溶液中氯离子与汞离子反应生成微解离的氯化汞。过量的汞离子与二苯卡巴腙二苯偶氯碳酰

氯离子含量快速测定仪使用说明书

氯离子含量快速测定仪使用说明书 氯离子含量快速测定仪概述 氯离子是诱发钢筋锈蚀的重要因素,为了避免钢筋过早锈蚀,混凝土原材料中氯离子含量的控制相当严格。我国部分规范明确要求混凝土在选配砂子、骨料、水泥、外加剂、拌和水等混凝土原材料的时候,必须进行氯离子含量的测试,从根本上避免将过量氯离子带入混凝土中。我公司生产的氯离子快速测定仪正是测定新拌混凝土中氯离子浓度的实验室电化学分析仪器,氯离子选择电极为指示电极,再辅以适当的参比电极,一起插入待测溶液中,构成供测定用的电化学系统。 氯离子含量快速测定仪适用范围及执行标准 执行标准:《水运工程混凝土试验规程》JTJ270-98 测试指标:氯离子浓度、质量百分比 适用范围:实验室检测氯离子含量,控制及防止钢筋发生过早腐蚀,快速检测混凝土、砂石子、水泥等无机材料的水溶性氯离子含量,结合混凝土中氯离子扩散系数,可对混凝土结构寿命、钢筋锈蚀寿命进行预测。 氯离子含量快速测定仪功能特点 采用采用离子选择电极法(ISE[工业电器网-cnelc]法),人机界面采用一键式编码开关和128*64液晶显示面板,高速低噪热敏式微打。一键快速测试,全中文导航式提示菜单,操控直观方便。是测定混凝土、砂石子、外加剂、拌和水等材料水溶性氯离子含量的最佳选择。产品具有运行快、操作简单,稳定性高、应用范围广等特点,同时适合于科研、检测、和实验室做水溶性氯离子含量检测与测试。 氯离子含量快速测定仪主要技术参数 1、氯离子浓度测量范围:5*-1mol/L。 2、pH范围:2---6 pH

3、温度范围:室温 4、响应时间:2分钟 5、输出方式:可选配打印输出 6、输入电源:AC/220V 7、分辨率:1mV 8、输入阻抗:1 1012 氯离子含量快速测定仪配置 1、氯离子选择电极 2、参比电极:饱和甘汞电极(L) 3、两种溶液(L和L)各250ml 4、电极支架 5、制样用化学试剂(用户选配) 氯离子含量快速测定仪操作规程 (一)电极校准 1、检查设备连接,打开软件。 2、清洗电极:将活化好的电极置于清洗瓶中,用去离子水清洗3次,清洗后的水倒掉。 3、用滤纸小心拭干电极表面。 4、打开CLU-H测试软件,点击“工具”菜单下的“仪器校准”选项,确认标准溶液的个数为两种。

混凝土中氯离子含量测定

混凝土中砂浆的水溶性氯离子含量测定 1.目的测定硬化混凝土中砂浆的水溶性氯离子含量,为查明钢筋锈蚀原因及判定混凝土密实性提供依据 2.试验设备和化学药品 天平:称量100g ,感量0.01g ;称量200g ,感量0.001g ;称量200g ,感量0.0001g 各1 台 棕色滴定管25mL 或50mL 三角烧瓶250ml 容量瓶100mL;1000mL 移液管20mL 标准筛孔径0.63mm 化学药品:硫酸密度1.84Kg/L )乙醇(95%);硝酸银铬酸钾酚酞(以上均为化学纯) 氯化钠(分析纯) 3.试剂配制 3.1配制浓度约5% 铬酸钾指示剂 称取5g 铬酸钾溶于少量蒸馏水中,加入少量硝酸银溶液使出现微红,摇 匀后放置过夜,过滤并移入100mL容量瓶中,稀释至刻度。 3.2配制浓度约0.5% 酚酞溶液 称取0.5g酚酞,溶于75mL乙醇后再加25mL蒸馏水。 3.3配制稀硫酸溶液 以1 份体积硫酸倒入20 份蒸馏水中。 3.4配制0.02mol/L氯化钠标准溶液

把分析纯氯化钠置于瓷坩锅中加热(以玻璃棒搅拌),一直到不再有盐的 爆裂声为止。冷却后称取1.2g左右(精确至0.1mg),用蒸馏水溶解后移入1000mL 容量瓶,并稀释至刻度。 氯化钠溶液标准浓度按下列式子计算 n NaCI C NaC= V! m N NaCL= Mr 式中C Naci ----- 氯化钠溶液的标准浓度mol/L N NaC-——〔的mol V——溶液的体积L Mr ——氯化钠的摩尔质量(g/mol), 取58.45 ; m——氯化钠质量g 3.5配制0.02mol/L 硝酸银溶液(视所测的氯离子含量,也可配成浓度略高的硝酸银溶液)。 称取硝酸银3.4g左右溶于蒸馏水中并稀释至1000mL,置于棕色瓶中保存。用 移液管吸取氯化钠标准溶20mL(V1),于三角烧瓶中,加入10滴铬酸钾指示 剂,用已配制的硝酸银溶液,滴定至溶液刚呈砖红色。记录所消耗的硝酸银毫 升数(V2)。 硝酸根溶液标准浓度应安下式计算 C AgNO3(Clac|*V1/V2 式中OgNO3― 硝酸银溶液的标准浓度,mol/L C Nac l --- 氯化钠标准溶液的标准浓度mol/L V1——氯化钠标准溶液的毫升数mL

相关文档
最新文档