预应力混凝土连续刚构桥

预应力混凝土连续刚构桥
预应力混凝土连续刚构桥

[4] Zuanfeng Pan *, Zhitao Lüand Chung C. Fu

Experimental Study on Creep and Shrinkage of High-Strength Plain Concrete and Reinforced Concrete

Abstract: It is important to accurately estimate creep and shrinkage effects in long-

span continuous box girder bridges. Based on the experiments on creep and shrinkage

of the plain concrete used in the continuous rigid frame of Sutong Bridge, China, the applicability of ACI 209-82, JTG D62-2004, B3 and GL2000 prediction model for

creep and shrinkage on the high-strength concrete is evaluated. Also, a modified

model based upon JTG D62-2004 is presented. Results indicate that the accuracy of

prediction of creep and shrinkage can be enhanced greatly by carrying out short-term

creep and shrinkage measurements on the given concrete and modifying the prediction

model parameters accordingly. Furthermore, the presence of steels can have an impact

on the time-dependent deformations caused by creep and shrinkage, accordingly,

the restraint influence of steels on creep and shrinkage is investigated through the

reinforced specimens with different reinforcement ratio. Formulas of influence

coefficients of steels on creep and shrinkage are derived, and a good agreement is

observed between the calculated values of the influence coefficients of steels on creep

and shrinkage and the measured data in each specimen. The reinforced specimens can

be also used for calibrating the modified model.

摘要:对于大跨度连续箱梁桥重要的是要准确地估计在长期蠕变和收缩的影响。在普通混凝土中基于蠕变和收缩的实验用于中国苏通大桥,中苏通大桥连续刚构使用的适用于ACI 209-82 ,JTG D62 -2004 ,B3和GL2000被评为蠕变性和高强度混凝土的收缩预测模型。此外,修改后的基于JTG D62 - 2004模型出现了。结果表明,通过开展短期预测,可以大大提高蠕变和收缩在给定的具体测量和修改预测的相应的模型参数的测量精度。此外,钢材的存在可以产生影响由收缩和徐变引起的随时间变化的变形,钢材对混凝土徐变和收缩的一直作用通过不同配筋率的钢筋样本调查得到。钢材对徐变和收缩的影响系数可用公式表示,并且由公式得出的钢材对徐变和收缩的影响系数计算值和通过每个试样测得的影响系数符合得很好。钢筋标本也可用于校准修正模型。

[5]Xianmin Li Mengshu Wang Yanhui Liang

Research into Design and Construction Key Technologies of Prestressed Concrete Continuous Rigid Frame Bridge

Abstract—Fengshi River especially big bridge, “The first highest bridge in Zhongyuan”, is the largest large-span concrete continuous rigid frame bridge in Henan express way. The superstructure of main span is the pre-stressed concrete continual rigid frame, and the substructure is rectangle hollow thin wall pier, and the highest pier is 107 meters high and with 2.2 meter width pile group foundation; the self-lifting platform

trap door method of construction is adopte d to construct high pier, and the two “T” synchronous suspending crane construction method, cantilever concreting method, is adopted to construct box girder; for achieving the goal of making formed bridge state of constructing be consistent as the designed bridge state, of making the stress state be reasonable of making the line of formed bridge be smooth, the field construction quality

implementation group is established, and it implements the entire process quality safety control and the technical guarantee such key links as safety, material quality and so on; Thus speed up the construction progress and guaranteed the project quality and the construction security, and accumulated much important project experience for the concrete continual rigid frame bridge structural design and the construction quality control.

摘要冯氏河特大桥,“中原第一高桥,在河南高速公路上,是中原最大的大跨度混凝土连续刚构桥。“上层建筑是主跨预应力混凝土连续刚构,下部结构为矩形空心薄壁墩,最高墩高107米和宽2.2米的群桩基础;高墩采用自升降平台陷阱门施工方法,箱梁是通过构建高两个的“T ”同步悬挂起重机施工方法和悬臂浇筑施工方法,为实现成桥状态与设计的桥梁状态一致,应力状态合理和成桥线形顺利,成立了现场施工质量实施小组,它实现了全过程质量安全控制和技术保障。因此,如何保证关键环节施工安全和材料质量安全等,从而加快施工进度,保证工程质量安全,并积累了非常重要的混凝土连续刚构桥的结构设计和施工质量控制的项目经验。

[6] Wang Guanghui Wei Chenglong Liu Xiaoyan

Research On Key Question Of Joint Of Large Span Pre-Stressed

Box-Girder Concrete Continuous Rigid Frame Bridge With High Piers

ABSTRACT In the construction of a Large Span Pre-stressed Box-girder Concrete Continuous Rigid Frame Bridge with High Piers, the joint plan of the bridge depends

on the construction conditions and design status. In this study, several joint plans

were analyzed using the nonlinear finite element method for finding an optimum

joint plan. In the analysis, the space beam elements were used to simulate the piles,

the piers and the beams, and the link element to simulate pre-stressed reinforcement.

The technology of element life and death was used to simulate the construction

process. The non-line effects associated with big distortion, concrete shrinkage, and

creep were considered in the simulation. Aiming at the high temperature joint of the

bridge, a new technique, namely ‘loading anti-jacking force’, was proposed based on

the analysis of the impaction related to the high temperature joint of the structure. In addition, the formula of the anti-jacking force was given originally. This research demonstrated that the non-linear finite element method is effective in engineering

practice. This research can provide references for the design, the construction, and

the monitoring of similar bridges.

摘要:大跨度预应力混凝土高墩连续刚构桥箱梁施工,桥的联合计划取决于对施工条件和设计状态的研究。在这项研究中,有几个共同的计划,使用非线性有限元方法,找到一个最佳状态进行分析。在分析空间结构时,用单元用来模拟桩,桥墩和梁,用link元素来模拟预应力钢筋。元素的生命和死亡的技术被用来模拟建设的过程。混凝土的收缩引起的非线行与大变形的影响被认为是在模拟蠕变。针对在高温联合桥梁,有一种新技术即“装反顶力” ,提出了一种基于分析与结构的高温联合嵌塞。此外,在最初反顶力的计算公式中也存在。本研究表明,非线性有限元法在工程中是有效的实践。对于类似桥梁本研究可以提供参考设计,施工监测。

100+160+100公路预应力混凝土连续刚构桥毕业设计

100+160+100公路预应力混凝土连续刚构桥毕业设计 目录 第1章绪论 (3) 1.1预应力混凝土概述 (3) 1.2预应力混凝土连续刚构桥 (3) 1.3预应力混凝土连续刚构桥的施工方法 (6) 第2章桥梁总体布置及结构主要尺寸 (8) 2.1方案比选 (8) 2.2设计依据及基本资料 (9) 2.3桥跨布置 (10) 2.4上部结构尺寸拟定 (11) 2.5下部结构尺寸拟定 (15) 2.6特殊节段处理 (18) 第3章桥梁结构内力计算 (20) 3.1概述 (20) 3.2模型的建立 (21) 3.3桥梁恒载内力计算 (26) 3.4桥梁活载内力计算 (30) 第4章预应力钢筋设计 (38) 4.1预应力筋布置 (38) 4.2纵向预应力筋估算 (39) 4.3预应力损失及有效预应力计算 (44) 第5章次内力计算及内力组合 (49) 5.1预应力次内力 (49) 5.2收缩次内力 (50) 5.3徐变次内力 (51) 5.4温度次内力 (53) 5.5基础不均匀沉降次内力 (58) 5.6荷载组合 (60) 第6章主要截面验算 (66) 6.1强度验算 (66) 6.2承载能力极限状态截面验算 (67) 6.3正常使用极限状态截面验算 (68) 6.4变形验算 (73) 第7章抗震分析 (74) 7.1桥梁结构地震反应分析方法 (74) 7.2桥梁结构动力特性 (76)

7.3连续刚构桥的地震反应谱分析 (83) 7.4连续刚构桥的时程分析 (87) 第8章主要工程数量 (91) 8.1混凝土用量 (91) 8.2钢束用量估算 (92) 8.3锚具用量估算 (94) 结论 (96) 致谢 (97) 参考文献 (98)

连续梁连续刚构桥

连续梁、连续刚构桥 一、等截面连续梁 1、等截面连续梁,构造简单施工方便,适用于中等跨径(20~60米),25米以下可选用钢筋混凝土连续梁桥,较大跨径采用预应力混凝土连续梁桥。小跨径布置一般用于高速公路的跨线立交桥、互通立交的匝道桥、环形立交桥及其他异形桥梁,较大跨径多用于接线引桥。可采用预制装配或就地浇筑施工。 2、连续梁桥常采用有支架施工法、逐孔现浇法、架设施工法、移动模架法和顶推施工法。 3、等截面连续梁桥的跨径、截面形式和主要尺寸 等截面连续梁桥的总体布置及主要尺寸见下表 等截面连续梁总体布置及主要尺寸 (1)等截面连续梁可选用等跨和不等跨布置。当标准跨径较大时,为考虑减少边跨正弯矩,可使边跨小于中跨,边跨与中跨的比在0.6~0.8左右。 (2)跨径小于15米,一般选用矩形截面;15~30米可采用T形或工字形截面;大于30米的可采用箱形截面。钢筋混凝土连续梁桥跨度不大时,可首先考虑采用板式(包括空心板)和T形截面。当需要采用箱形断面时,也可以采用低矮的多室箱,很少采用宽的单室箱。 (3)等截面连续梁的梁高,一般高跨比采用1/15~1/25。采用顶推法施工,从施工阶段受力要求考虑,梁高与顶推跨径之比选在1/12~1/17为宜。 (4)截面形式与桥宽关系。对于小跨径的城市高架桥或立交匝道桥,为求最小建筑高度,常用板式或肋板式截面,而在较大跨径时主要采用箱形截面。箱梁在横向布置,主要与桥宽有关。单箱室常用于桥宽在14米以内;单箱双室截面一般用于桥宽12~18米;超过18米的可以采用单箱多室或分离箱。 (5)板厚与梁高。板式截面分为实体截面和空心截面,实体截面多用于小跨径,且以支架现浇施工为主,板厚约为1/22~1/18L(L为跨径);空心截面的板厚为0.8~1.0米,顶、

大跨径预应力混凝土连续刚构桥

大跨径预应力混凝土连续刚构桥 的现状和发展趋势 周军生楼庄鸿 摘要:阐述了连续刚构桥是大跨径梁桥发展的必然趋势,以及要解决的防止过大温度应力及防止船撞的措施;收集和分析了国内外大跨径连续刚构桥的数据和资料,论述了上部构造轻型化和取消落地支架合拢边跨等趋势。 关键词:连续刚构;双壁墩身;上部构造轻型化 分类号:U448.23文献标识码:A 文章编号:1001-7372(2000)01-0031-07 The status quo and developing trends of large-span prestressed concrete bridges with continuous rigid frame structure ZHOU Jun-sheng LOU Zhuang-hong (Beijing Jianda Road & Bridge Consulting Company, Beijing 100101, China) Abstract:Adopting the structure of continuous rigid frame in construction of large-span beam bridge is an inevitable developing trend. The measures for decreasing temperature stress and protecting piers from vessel impacting are described. The data from some of domestic and overseas large-span beam bridges with continuous rigid frame structure are given and analyzed. The superstruture-lightening and non-drop-construction for closing-up of side span are discussed in the paper. Key words:continuous rigid fram; pier with double wall; superstructure-lightening 1 大跨径混凝土梁式桥的发展趋势 随着高速交通的迅速发展,要求行车平顺舒适,多伸缩缝的T型刚构也不能很好满足要求,因此连续梁得到了迅速的发展。悬臂施工时,梁墩临时固结,合拢后梁墩处改设支座,转换体系而成连续梁。连续梁除两端外其他无伸缩缝,有利于行车,但需梁墩临时固结和转换体系;同时需设大吨位盆式支座,费用高,养护工作量大。于是连续刚构应运而生,近年来得到较快的发展。其结构特点是梁体连续、梁墩固结,既保持了连续梁无伸缩缝、行车平顺的优点,又保持了T型刚构不设支座、不需转换体系的优点,方便施工,且有很大的顺桥向抗弯刚度和横向抗扭刚度,能满足特大跨径桥梁的受力要求。国内外一些大跨径的连续刚

(建筑工程管理)连续刚构桥施工工艺

(建筑工程管理)连续刚构 桥施工工艺

连续刚构桥施工工艺 1.连续梁桥、连续刚构桥概念 俩跨或俩跨之上连续梁桥,属超静定体系。连续梁于恒活载作用下,产生支点负弯距对跨中正弯距有卸载作用,使内力状态比较均匀合理。连续梁于连续梁和墩之间设有支座,连续刚构将主梁做成连续梁体和薄臂桥墩固结而成。 2.梁体悬浇施工 预应力混凝土连续梁桥、连续刚构桥采用悬臂施工的方法,需要施工中进行体系转换。即于悬臂浇注混凝土施工时,结构受力状态呈T形刚构、悬臂梁,待主梁合拢后形成连续刚构或连续梁。 预应力混凝土悬臂梁桥、连续梁桥墩梁是铰接(设置支座),不能承受弯距,于悬臂浇注时需采取措施,设置临时支座将墩梁固结,待悬臂施工至合拢状态后才能拆除临时支座形成连续梁桥。T型刚构、连续刚构桥墩梁是固结的,采用悬臂浇注施工时,结构本身已具有承受悬臂梁体重量的抗弯能力,可根据设计和施工要求设置临时托架和挂篮进行悬臂施工。 2.1.悬臂梁体分段 悬臂浇筑施工时,梁体壹般要分四大部分浇筑,0#段(即墩顶段)、0#段俩侧对称分段悬臂浇注部分和不平衡梁段、边孔于支架上浇注部分、中跨和边跨合拢部分。 2.2.悬浇程序(墩梁铰接) 1、于墩梁间设置临时固结系统,然后于托架上浇注0#段。 2、于0#段上安装悬臂挂篮,向俩侧依次浇注对称梁段和不平衡梁段。 3、于临时支架上浇注边跨梁段。 4、于挂篮上浇注中跨和边跨合拢段。 2.3.施工工艺 2.3.1.0#段施工 0#段结构复杂,预埋件、钢筋、各向预应力钢束及其孔道、锚具密集交错,梁面有纵横坡度,端面和待浇段密切相连,要精心施工。混凝土浇注顺序先底板、再腹板、后顶板。 施工程序如下: (1)安装墩顶托架平台(如梁底距离地面较小,可立钢管支架,如距离较大,则墩顶预埋型钢作为牛腿支架); (2)浇注支座垫石及临时支座; (3)安装永久盆式橡胶支座; (5)安装底板部分堵头模板; (6)托架平台试压。 (7)调整模板位置及标高; (8)绑扎底板和腹板的伸入钢筋; (9)安装底板上的竖向预应力管道和预应力筋; (10)绑扎腹板、横隔板钢筋及管道定位筋; (11)安装腹板纵向预应力管道及预应力钢筋。 (12)安装全套模板。 (13)绑扎顶板底层钢筋网及管道定位筋。 (14)安装顶板纵向预应力管道及横向预应力管道和预应力筋。 (15)安装顶板上层钢筋网。 (16)浇注梁体混凝土。 (17)拆模,俩端混凝土连接面凿毛。 (18)预应力钢筋张拉及孔道压浆。

预应力混凝土刚构桥的发展

预应力混凝土刚构桥的发展 摘要:预应力混凝土刚构桥在我国发展的50多年中,不断创新,实现了更大跨径,总结其原因是工程材料的改进,预应力技术的发展与普及、设计方法与施工技术的不断发展。这也为今后预应力混凝土刚构桥的发展指引了方向。 关键词:预应力混凝土;刚构桥;发展;原因 Abstract: Prestressed Concrete Rigid Frame Bridge Development in China for over 50 years, continuous innovation, and realize a greater span, summarizes its reason is the improved prestressed engineering materials, the development and popularization of technology, design method and construction technology development. It also for future prestressed concrete rigid-frame bridge development direction direction. Keywords: prestressed concrete ;rigid frame bridge; development; reasons; 预应力混凝土刚构桥在我国应用非常广泛,其快速发展,特别是从20世纪60年代在我国发展以来的50年中,可以看出预应力钢构桥的跨径从几十米发展到270米,这是预应力技术不断创新的丰硕成果。大跨度预应力钢构桥的发展,如高速公路的快速发展,河流通航要求的提高,首先与当代世界各国经济发展有关,从而对桥梁的使用荷载、跨度和使用性能等提出更高的要求。而工程材料的改进,预应力技术的发展与普及、设计方法与施工技术的不断发展等促进了刚构桥的发展。归纳起来有以下几个原因。 建筑材料的发展与改进。 高强度等级混凝土和其它高性能混凝土的研究与应用 预应力混凝土桥梁结构要求高强度等级混凝土。过去一般常用C40混凝土,目前国内外已开始广泛采用C50、C60混凝土,甚至C80混凝土。减水剂和早强剂的大量推广使悬臂施工在确保质量的前提下加快施工速度,特别是早强水泥的使用更可使混凝土在24小时达到混凝土强度的70%以上,为加快施工速度创造了条件。 高性能混凝土概念的提出至今已有10多年时间,它是伴随着高强混凝土问世的。1993年美国混凝土协会定义高性能混凝土的性质,它需要满足特定性能和匀质性要求,其“高性能”包括:易浇捣而不离析,长期力学性能良好,强度高,异常坚硬,高体积稳定性或严酷环境中使用寿命长久(如海上建筑结构中必须使用)。和高强度一样,各国对高性能混凝土的要求也有所不同,但新拌混凝土的工作性、硬化混凝土的强度和耐久性,是高性能混凝土的基本要素。高性能混凝土在配合比上的特点是低用水量(水胶比低于0.4,而且单方混凝土用水量低于

连续刚构桥施工工艺

连续刚构桥施工工艺 1. 连续梁桥、连续刚构桥概念 两跨或两跨以上连续梁桥,属超静定体系。连续梁在恒活载作用下,产生支点负弯距对跨中正弯距有卸载作用,使内力状态比较均匀合理。连续梁在连续梁与墩之间设有支座,连续刚构将主梁做成连续梁体与薄臂桥墩固结而成。 2. 梁体悬浇施工 预应力混凝土连续梁桥、连续刚构桥采用悬臂施工的方法,需要施工中进行体系转换。即在悬臂浇注混凝土施工时,结构受力状态呈T形刚构、悬臂梁,待主梁合拢后形成连续刚构或连续梁。 预应力混凝土悬臂梁桥、连续梁桥墩梁是铰接(设置支座),不能承受弯距,在悬臂浇注时需采取措施,设置临时支座将墩梁固结,待悬臂施工至合拢状态后才能拆除临时支座形成连续梁桥。T型刚构、连续刚构桥墩梁是固结的,采用悬臂浇注施工时,结构本身已具有承受悬臂梁体重量的抗弯能力,可根据设计和施工要求设置临时托架和挂篮进行悬臂施工。 2.1. 悬臂梁体分段 悬臂浇筑施工时,梁体一般要分四大部分浇筑,0#段(即墩顶段)、0#段两侧对称分段悬臂浇注部分和不平衡梁段、边孔在支架上浇注部分、中跨和边跨合拢部分。 2.2. 悬浇程序(墩梁铰接) 1、在墩梁间设置临时固结系统,然后在托架上浇注0#段。 2、在0#段上安装悬臂挂篮,向两侧依次浇注对称梁段和不平衡梁段。 3、在临时支架上浇注边跨梁段。 4、在挂篮上浇注中跨和边跨合拢段。 2.3. 施工工艺 2.3.1. 0#段施工 0#段结构复杂,预埋件、钢筋、各向预应力钢束及其孔道、锚具密集交错,梁面有纵横坡度,端面与待浇段密切相连,要精心施工。混凝土浇注顺序先底板、再腹板、后顶板。 施工程序如下: (1)安装墩顶托架平台(如梁底距离地面较小,可立钢管支架,如距离较大,则墩顶预埋型钢作为牛腿支架); (2)浇注支座垫石及临时支座; (3)安装永久盆式橡胶支座; (5)安装底板部分堵头模板; (6)托架平台试压。 (7)调整模板位置及标高; (8)绑扎底板和腹板的伸入钢筋; (9)安装底板上的竖向预应力管道和预应力筋; (10)绑扎腹板、横隔板钢筋及管道定位筋; (11)安装腹板纵向预应力管道及预应力钢筋。 (12)安装全套模板。 (13)绑扎顶板底层钢筋网及管道定位筋。 (14)安装顶板纵向预应力管道及横向预应力管道和预应力筋。 (15)安装顶板上层钢筋网。 (16)浇注梁体混凝土。 (17)拆模,两端混凝土连接面凿毛。

连续刚构桥工程设计方案

连续刚构桥工程设计方案第一章概述 1.1 地质条件 图1-1 桥址纵断面图 1.2 主要技术指标 桥面净宽:2×12m+0.5m (分离式) 设计荷载:公路-I级 行车速度:80km/h 桥面横坡:2% 通航要求:无 温度:最高年平均温度34℃,最低年平均温度-10℃。 1.3 设计规范及标准 1、《公路桥涵设计通用规范》(JTG D60-2004)。 2、《公路桥涵地基与基础设计规范》(JTG D63-2007)。 3、《公路桥涵施工技术规范》(JTJ 041-2000)。 4、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)。 5、《公路桥涵圬工设计规范》(JTG D61-2005)

第二章方案比选 2.1 概述 桥式方案比选是初步设计阶段的工作重点,一般要进行多个方案比较。各方案均要求提供桥式布置图,图上必须标明桥跨位置,高程布置,上、下部结构形式及工程数量。对推荐方案,还要提供上、下部结构的结构布置图,以及一些主要的及特殊部位的细节处理图。 设计方案的评价和比较,要全面考虑各项指标,综合分析每一方案的优缺点,最后选定一个符合当前条件的最佳推荐方案。有时,占优势的方案还应吸取其他方案的优点进一步加以改善。 2.2 比选原则 设计从安全性、技术适用性、施工难度、设计施工周期、经济性、实用性和观赏性等几方面对各比选方案进行评比,其中安全性为主要因素。 2.3 比选方案 根据设计任务要求,依据现行公路桥梁设计规范,综合考虑桥位地质地形条件,拟定了三个比选方案: 方案一:预应力混凝土连续刚构桥 方案二:上承式钢管混凝土拱桥 方案三:独塔斜拉桥 2.3.1预应力混凝土连续刚构桥 1.结构受力特点 ⑴在高墩大跨径桥梁中,与其它结构体系比较,预应力混凝土连续刚构桥常成为最佳的桥型方案。 ⑵预应力砼充分发挥了高强材料的特性,具有强度高、刚度大、变形小以及抗裂性能好的优点。 ⑶结构伸缩缝数量少,高速行车平顺舒适,维修工作量小,维护简单。 ⑷可最大限度的应用平衡悬臂施工法,施工技术成熟,易保证工程质量。 ⑸采用水平抗推刚度较小的双薄壁墩,可以减小水平位移在墩中产生的弯矩,且薄壁墩底承受的弯矩、梁体内的轴力随着墩高的增大而急剧减小。 ⑹连续钢构除了保持连续梁的优点外,墩梁固结节省了大型支座的昂贵费用,减少了墩和基础的工程量,并改善了结构在水平荷载(例如地震荷载)作用下的受力性能,适用于中等以上跨径的高墩桥梁。

预应力混凝土连续刚构桥(计算书)

预应力混凝土连续刚构桥 计算书 课程名称:大跨度桥梁 学院:土木与建筑学院 任课教师:/教授 学生姓名 学生学号: 专业方向:建筑与土木工程 (桥梁与隧道工程) 日期:2017年1月10日

目录 一、基本信息 (3) 1.1 工程概况 (3) 1.2 技术标准 (3) 1.3 主要规范 (4) 1.4 结构概述 (4) 1.5 主要材料及材料性能 (6) 1.6 计算原则、内容及控制标准 (6) 二、模型建立与分析 (7) 2.1 计算模型 (7) 2.2 主要钢筋布置图及材料用表 (10) 2.3 截面特性及有效宽度 (12) 2.4 荷载工况及荷载组合 (12) 三、内力图 (13) 3.1 内力图 (13) 四、持久状况承载能力极限状态验算结果 (50) 4.1 截面受压区高度 (50) 4.2 正截面抗弯承载能力验算 (50) 4.3 斜截面抗剪承载能力验算 (50) 4.4 抗扭承载能力验算 (51) 4.5 支反力计算 (51) 五、持久状况正常使用极限状态验算结果 (53) 5.1 结构正截面抗裂验算 (53) 5.2 结构斜截面抗裂验算 (53) 六、持久状况构件应力验算结果 (54) 6.1 正截面混凝土法向压应力验算 (54) 6.2 正截面受拉区钢筋拉应力验算 (54) 6.3 斜截面混凝土的主压应力验算 (55) 七、短暂状况构件应力验算结果 (55) 7.1 短暂状况构件应力验算 (55) 八、详细计算表格 (55)

一、基本信息 本人学号16202030383,根据教学要求,设计的桥型主跨为128m(120+学号倒数第二位),桥宽为12.3m(12+学号倒数第一位/10),施工方法采用悬臂浇筑。计算要求包括:考虑施工过程,计算恒载、活载、温度、温度梯度、支座沉降等作用下内力和组合内力,出计算书。图纸要求包括:方案布置图和上部结构一般构造图。 1.1 工程概况 本设计采用85+128+85m三跨预应力混凝土连续刚构桥结构体系。两端悬臂长度均为85m,相应的悬臂根部梁高为7m,梁端梁高为2.7m。中跨跨中梁高2.7m。形成一个通航孔,桥面最大纵坡 2.43℅。主梁截面全部使用单箱单室截面。下部结构基础分别采用明挖扩大基础及灌注混凝土,墩身为实腹长方形截面。 本方案技术较先进,工艺要求较严格,主梁上部结构施工方法采用悬臂浇筑。采用移动式挂篮作为主要施工设备,以桥墩为中心,对称地向两岸利用挂篮浇筑节段的混凝土,待混凝土达到要求强度后,便张拉预应力束,然后移动挂篮,进行下一节段施工。 本方案属于超静定结构,该连续刚构桥既保持了连续梁无伸缩缝、行车平顺的优点,又保持了T构不须设大吨位支座的优点,同时避免了连续梁(存在临时固结和体系转换)和T构(存在伸缩缝问题)两者的缺点,养护工作量小。此外,连续钢构施工稳固性好,减少或避免边跨梁端搭架合龙的难度。 但此桥型对地基承载力的要求更高,若地基发生过大的不均匀沉降,连续梁可通过调整墩顶支座的高程,抵消下沉来补救,而连续刚构则做不到。当其主墩刚度过大时,中跨梁体因会产生过大的温差拉力而对结构受力不利。此外,梁墩联结处应力复杂也是连续刚构的一个缺点。 1.2 技术标准 (1)主跨径:128m(此为桥墩中距)。 (2)桥宽:12.3m(2×净5.5m(车行道)+0.9m(中央分隔带)+2×0.2m(及护栏)=12.3m)。 (3)设计荷载:公路-Ⅰ级(汽车-超20级,挂车-120级)。 (4)防撞栏杆:单侧按每延米9.0KN。 (5)截面:主梁采用变截面单箱单室的箱形截面,桥墩采用实腹长方形截面。 (6)桥面纵坡:左2.43℅,中0,右2.40℅。 (7)桥面横坡:1.5℅,并适当设置路拱。 (8)地质情况:河中为大范围紫红色砂岩。 (9)墩高:40m。

连续钢构施工方案设计

氏河特大桥主跨160m连续刚构施工组织设计 一、工程概况 (一)简介 氏河特大桥跨氏河90+160×4+90m预应力混凝土连续梁,一联全长820m;桥梁双幅总宽为34.5米,单幅宽17.25米,0.5米(防护栏)+15.25米(行车道)+3.0(防护栏)+15.25米(行车道)+0.5米(防护栏)。 单幅桥面总宽16.9m,梁部截面为单箱双室、变截面结构,箱底外宽11.4m;中支点处梁高10m,梁端及跨中梁高3.5m。顶板厚30~50cm,腹板厚从45cm 变化到80cm,底板厚从30cm变化至120cm。箱梁采用三向预应力体系,梁部采用C50聚丙烯纤维混凝土。 主梁采用挂蓝悬臂现浇法施工。各单“T”除0号块外分为22对梁端,其纵向分段长度为5×2.5m+5×3m+6×3.5m+6×4m,对于边跨梁,增加了一段(4m)不对称段施工。0#块总长13m,中跨、边跨合拢段长度均为2m,边跨现浇段为4.6m。悬臂现浇梁段最大重量为228吨,挂篮自重按120吨考虑。 桥面铺装层为10cm厚的沥青混凝土+8cm厚的C40混凝土,混凝土铺装掺加聚丙烯纤维。桥面横坡为双向2%,由箱梁顶面形成,箱梁底板横向保持水平。 氏河特大桥主跨160m连续梁基本数据统计表表1 1、技术含量高,施工复杂 氏河特大桥连续梁为单箱双室结构,采用三项预应力体系,聚丙烯纤维混凝土,最大跨度为160m,技术含量高,施工过程控制困难。 2、施工安全要求高

160m连续梁由于墩高均在86m以上,施工时,对于安全及安全防护要求高,时刻监督检查施工中存在的安全隐患。 二、施工计划安排 (一)总体施工计划安排 氏河特大桥90+160×4+90m连续梁2009年11月1日开始施工,到2011年03月31日结束(包括底板拉完成),计划13月的时间。 (二)各主要分项工程施工计划安排表表2 三、总体施工方案 该连续梁的主要施工工序和关键技术包括:0#梁段支架的设计与搭设、0#梁段混凝土浇筑施工、挂篮设计拼装、连续梁悬臂灌注、合拢段施工、预应力施工、边孔现浇段施工、边孔不均衡段施工。该连续梁的总体施工方案为: 主墩施工完成后在墩顶上搭设型钢托架,支护0#梁段模板、绑扎钢筋,

连续梁、连续刚构桥梁施工

连续梁、连续刚构桥梁施工 《铁路预应力混凝土连续梁(刚构)悬臂浇筑施工技术指南》TZ324-2010 该标准为推荐性标准,施工单位可选择使用 术语 连续梁:沿梁长方向有三处或三处以上由支座支承的梁; 连续刚构:梁与中间墩刚性连接的连续梁结构; 《高速铁路桥涵工程施工技术指南》铁建设[2010]241号术语 连续梁、连续刚构、刚构桥,施工方法均可采用悬臂浇筑法,主要的设备为挂篮,施工前根据施工图纸,设计挂篮形式并经过计算。 第117页第13章混凝土连续梁、连续刚构 模板、钢筋、混凝土应按照《铁路混凝土施工技术指南》(铁建设[2010]241号)施工要求规范施工 连续刚构施工时,挂篮焊接拼装和高空立体交叉作业较多,施工过程中应加强控制各个关键节点的工序质量及安全管控措施。严格执行现行规范《铁路桥涵工程施工安全技术规程》TB10303-2009 3.1.6 桥涵工程施工按照《铁路工程施工组织设计指南》(铁建设[2009]26号)的规定编制施工组织设计,加强控制工程、重难点及高风险工程的管理。 重难点及高风险体现在具体的工程条件,如高墩、超高墩连续刚构,或者施工条件极端不利的工程均属于重难点工程范畴,高墩悬臂浇筑采用拼装挂篮,本身高空作业频繁,属于高风险工程,施工时应加强施工过程的管控。

施工时应根据具体的工程条件编制详细的施工组织设计和相应的专项施工方案、安全施工专项方案及应急预案。 3.4.3 施工单位应编制实施性施工组织设计及关键工序的作业指导书,明确施工作业标准和要求。 4.3.1 桥涵工程开工前,应根据设计文件、施工调查报告和承包合同编制施工组织设计。 一般以单独的一座大桥或特大桥为单位工程编制详细的施工组织设计。详细的规定以《高速铁路桥涵工程施工质量验收标准》TB10752-2010,3.2工程施工质量验收单元划分; 施工时应根据每座桥梁的复杂程度,编制各个分部工程的专项施工方案。 高墩翻模属于墩台身专项施工方案,空心高墩、实体墩台模板设计应单独编制模板设计计算书及设计图纸,作为方案的附件; 模板验算时需要用到的数据 《铁路混凝土施工技术指南》铁建设[2010]241号 模板工程第10页至第15页 模板设计《钢结构设计规范》GB50017,《木结构设计规范》GB50005,4.2.6 模板及支架的刚度应符合: 结构外露表面和直接支承混凝土重力的模板计算挠度不得大于构件跨度的1/400; 承台尺寸较大时,模板承受混凝土侧压力较大,应对模板刚度、强度进行验算,确定采用的模板类型及型式,采用钢模板强度、刚度较大,

预应力砼连续刚构公路桥总体设计及主要尺寸

桥梁设计参考资料之二 预应力砼连续刚构公路桥 总体设计及主要尺寸 中交公路规划设计院编

目录 1连续刚构桥的适用范围-------------------------------------------------1 2 连续刚构与连续梁的混合体系-----------------------------------------1 3 墩高对连续刚构桥的影响-----------------------------------------------1 4 孔跨布置--------------------------------------------------------------------2 4.1三跨连续刚构---------------------------------------------------------2 4.2 两跨T构--------------------------------------------------------------3 4.3多跨连续刚构---------------------------------------------------------4 4.4小边跨连续刚构------------------------------------------------------4 5 主梁构造与尺寸-----------------------------------------------------------6 5.1箱梁高度---------------------------------------------------------------6 5.2 箱梁顶、底板和腹板厚度-----------------------------------------9 5.3箱梁横隔板-----------------------------------------------------------10 6 主墩构造与尺寸----------------------------------------------------------10 6.1设计原则---------------------------------------------------------------10 6.2墩身结构型式及尺寸------------------------------------------------11 6.3墩身设计参数的优化------------------------------------------------12 6.4部分连续刚构桥主墩S值和b值---------------------------------12 6.5桥墩防撞设计---------------------------------------------------------13 6.6桥墩抗渗设计---------------------------------------------------------13 7其他方面-------------------------------------------------------------------14 7.1箱梁的管养、检修通道---------------------------------------------14 7.2 箱内泄水孔-----------------------------------------------------------14 7.3 箱内通气孔-----------------------------------------------------------14 7.4 梁段结合面上剪力齿-----------------------------------------------14 7.5 预留更换支座的空间-----------------------------------------------15

连续刚构施工方案

连续刚构施工方案 一、工程概况 琼江河大桥主桥上部结构为48m+80m+48m预应力混凝土连续刚构,梁体为单箱单室变高度变截面箱形截面。箱梁为三向预应力混凝土结构,采用全预应力;箱梁顶板宽度为12m,底板宽度6m,顶面设置2.0%的单向排水坡。 琼江河大桥主桥(0#~3#台)为三跨连续刚构体系,在两个主墩上按“T构”用挂篮分段对称悬臂浇筑的梁段、吊架上浇筑的跨中合拢段及落地支架上浇筑的边跨现浇段组成。墩顶0#块长为9.0m,两个“T构”的悬臂各分为9个块件,其梁段数及梁段长度从根部至跨中各为:3×3.5m、6×4m,共有一个2.0m长的主跨跨中合拢段和两个2.0m长的边跨合拢段,两个7.0m长的边跨现浇段。墩顶0#梁段梁高4.5m(梁高为裸梁箱梁边缘线处竖直距离计),底板厚度从0#块~9#块为从90cm~30cm渐变,跨中合拢段及边跨合拢段、现浇段梁高为2.2m,底板厚度为30cm,其余梁底下缘及底板厚度按抛物线变化;0#中部箱梁顶板厚度在墩顶为62cm,0#块边缘至9#块合拢段以及边跨现浇段为42cm;腹板厚度0#块中部为80cm,0#块边缘~5#块为60cm,6#~9#块、合拢段、现浇段为40cm。 80m刚构主墩顶箱梁综合考虑受力和变形要求在箱梁内设横隔板,为了满足施工和管理需要在主墩墩顶横隔板处设置人洞,另外在边跨现浇段底板亦设置了人洞。在每个梁段的两侧腹板中间各设置一个直径10cm的通气孔,以减少箱内外温差。梁体全部采用 C50混凝土。 悬臂浇筑段最大混凝土量为44.23m3, 重量为115T。 主桥纵向预应力钢束均设置顶板束、中跨底板束和边跨底板束共三种,采用两端张拉方式。纵向钢束均采用ASTMA4167-97标准270级标准强度为1860MPa的15.24-15型低松弛钢铰线,张拉控制力为2929.5KN,相应锚具均采用OVM15-15型锚具。合拢束均采用ASTMA416-92标准270级标准强度为1860MPa的15.24-12型低松弛钢铰线,张拉控制力为2343.6KN,相应锚具均采用OVM15-12型锚具。顶板预留4个备用孔道,底板跨中预留2个备用孔道,底板边跨预留2个备用孔道。

高速公路桥梁梁体预应力混凝土连续刚构悬灌施工

桥梁梁体预应力混凝土连续刚构悬灌施工 1、桥梁构造 磨子潭7 号桥、8 号桥、10号、11号桥部分上部结构为预应力混凝土连续刚构,均采用挂篮悬浇法施工。其中7 号桥、8 号桥跨径布置为46m+5×80m+46m,10 号桥、11 号桥跨径布置为46m+4×80m+46m。中跨主梁为单箱单室截面,顶板宽11.80m,底宽6.5 m;悬浇段梁高为4.5m,箱梁顶板厚25cm,底板厚度0#块为80cm,合拢段长为2m,底板按2 次抛物线变化,箱梁梁高按1.8 次抛物线变化;梁段除梁端外腹板厚度为50 cm;主桥0#块为4.0 m,悬臂现浇分块长度为4.0 m、3.0 m,悬臂浇注梁段最大重量为94.3T。中跨及左边跨合拢为2m,左边跨现浇段为4.82m。磨子潭7 号桥、8 号桥、11 号桥引桥采用架设预制箱梁现浇桥面砼形成。 主桥主梁采用纵、横、竖三向预应力体系:纵向预应力钢束采用大吨全群锚体系,分为顶板束、底板束和下弯束三种类型,纵向预应力采用16Φj15.24(顶板束)及12Φj15.24(下弯束)的高强低松弛钢绞线;竖向预应力布设于箱梁腹板内,主桥箱梁竖向预应力采用直径32mm 冷拉Ⅳ级钢筋布置双排预应力,锚具为YGM-32 型;横向预应力采用公称直径32mm 冷拉精轧螺纹粗钢筋,在箱梁顶板两侧张拉,钢绞线纵向间距为30cm。 主要工程数量如下: C50 混凝土:19811.5m3;普通钢筋:2893.88t; Φj15.24 钢绞线:956.6t;32mm 精轧螺纹钢:241.03t; YM15-12、YM15-16、锚具:3136 套; YMP15-12 锚具:128 套; YGM32 锚具:11004 套;波纹管:99820m; 2、施工方案 上部连续刚构采用平衡悬臂挂篮浇筑法施工,由于主墩“T”构数量大,分三批开工。墩顶0#、1#块长度为10m,拟在墩顶托架上现浇,其余分段块采用悬臂挂篮对称浇注而成,待“T”构均施工完毕后,先与桥台进行边跨合拢,同时引桥上部箱梁拆除支架进行压重,最后进行中跨合拢和体系转换。 上部箱梁连续刚构的施工是本标段施工的一个重点,为确保工程质量及业主要求工期,拟投入16 个挂蓝设备同时作业。 3、工期安排 主梁计划施工工期为:2006 年1 月20 日---2007 年6 月14 日。 4、主要施工机械设备 主要机械设备计划表

midas计算预应力连续刚构桥梁工程课程设计

预应力混凝土连续刚构桥结构设计书 1.结构总体布置 本部分结构设计所取计算模型为三跨变截面连续箱梁桥,根据设计要求确定桥梁的分孔,主跨长度为80m,取边跨46m,边主跨之比为0.575。设计该桥为三跨的预应力混凝土连续梁桥(46m+80m+460m),桥梁全长为172m。大桥桥面采用双幅分离式桥面,单幅桥面净宽20m (4X3.75行车道+1m左侧路肩+3.0m右侧路肩人行道+2X0.5m防撞护栏),两幅桥面之间的距离为1m,按高速公路设计,行程速度100Km/h。桥墩采用单墩,断面为长方形,长14米,宽3.5米,高25米。 上部结构桥面和下部结构桥墩均采用C50混凝土,预应力钢束采用Strand1860钢材。 桥梁基本数据如下: 桥梁类型 : 三跨预应力箱型连续梁桥(FCM) 桥梁长度 : L =46 + 80 + 46 = 172 m 桥梁宽度 : B = 20 m (单向4车道) 斜交角度 : 90?(正桥) 桥梁正视图 桥梁轴测图

2.箱梁设计 主桥箱梁设计为单箱单室断面,箱梁顶板宽20m,底板宽14m,支点处梁高为h支= (1/15 ~ 1/18)L中= 4.44 ~5.33m,取h支=5.0m,高跨比为1/16,跨中梁高为h中= (1/1.5~1/2.5) h 支= 2~ 3.33m,取h中=2.30m,其间梁底下缘按二次抛物线曲线变化。箱梁顶板厚为27.5cm。底板厚根部为54cm,跨中为27cm,其间分段按直线变化,边跨支点处为80cm,腹板厚度为80cm 具体尺寸如下图所示: 箱梁断面图 连续梁由两个托架浇筑的墩顶0号梁段、在两个主墩上按“T构”用挂篮分段对称悬臂浇

预应力混凝土连续刚构箱梁桥

浅谈预应力混凝土连续刚构箱梁桥几种常用受力分析方法的对 比 【摘要】随着我国交通事业的迅速发展,公路桥梁与城市桥梁的修建也日益增多。同时由于技术的进步与成熟,桥型也由之前的简支转变为结构受力比较先进,跨度更大的连续梁或者连续刚构。当桥梁跨径加大时,结构性能优良的箱形截面往往是合宜的横截面选择。因此,对箱梁桥的受力分析方法的研究就显得很有必要。本文首先对箱梁截面的优点进行简要阐述,然后重点针对学者们对预应力混凝土连续钢构箱梁公路桥梁受力的几种常用分析方法进行阐述并加以对比,着重阐述了解析法和数值法在预应力箱梁受力分析中的原理和应用,并进一步得出相应结论。 1前言 箱型截面主要优点是截面抗弯、抗扭刚度大,结构在施工和使用过程中都具有良好的稳定性;顶板和底板都具有较大的混凝土面积,能有效抵抗正负弯矩,满足配筋的构造要求,并能很好适应管线等公共设施的布置;同时,箱形截面适应现代化施工方法的要求,如悬臂施工法、顶推法等,这些施工方法要求截面必须具备较厚的底板;而且,箱形截面承重结构和传力结构相结合,使各部件共同受力,截面效率高,并适合预应力混凝土结构空间布束,达到经济效果。其中箱梁由于具有较大的截面抗扭强度及抗弯强度、弯曲应力图形合理、剪应力小、稳定性好、行车平稳舒适、施工速度快和造价低等优点,能够很好的满足高等级公路行车高速、平稳、舒适的要求。在国内外得

到了十分迅速的发展和广泛的应用。 预应力混凝土的研究已有一百余年的历史。近三十年来,预应力混凝土桥梁的发展速度异常迅猛,不但在跨径上己跻身于大跨径之列,而且在建桥数量上亦遥遥领先,有关预应力的研究也愈来愈成熟。预应力混凝土连续钢构箱梁桥一般采用空间受力分析法,概括起来,主要是解析法和数值法。 2 解析法在预应力箱梁受力分析中的原理及应用 解析法是为了把问题简化,往往采用一些假定和近似处理方法。如将作用于箱形梁的偏心荷分解成对称荷载与反对称荷载。对称荷载作用时,按梁的弯曲理论求解;反对称荷载作用时,按薄壁杆件扭转理论分析;然后将二者计算结果叠加而得。扭转分析又根据截面的刚度区分为截面不变形(刚性扭转)和截面变形(畸变)两种不同情况。通过这些荷载分解,就单项问题进行较深入的探讨。采用若干假定,是解析法的另一特点,如对位移模式的假定等。 箱形梁剪力滞的分析方法有“加劲板”理论、比拟杆法以及Eleissnen根据能量原理的分析方法等。关于箱形梁的扭转分析,前苏联学者符拉索夫和乌曼斯基在这方面建立了完整的理论。对于箱形梁的畸变应力分析,有广义坐标法、等代梁法、弹性地基梁比拟法等。弹性地基梁比拟法具有物理概念清晰、受力分析明确、计算简便等特点,所以得到普遍推广应用。对于箱形梁的横向弯曲,分析方法有影响面法和框架分析法。影响面法计算较为繁琐,而框架分析法是一种颇为简便的方法。

预应力混凝土连续刚构桥毕业设计计算书

预应力混凝土连续刚构桥 第一部分方案简介及上部结构尺寸拟定 一.本设计经方案比选后,桥跨布置为:全桥采用80米+135米+80米预应力混凝土变截面连续刚构结构,,全长295米。上部结构桥面宽采用净—9+2*1.5 m。截面形式采用单箱单室。 图1 桥位地形图 二.桥型布置 1.主跨径的拟定 主跨径定为135m,边跨采用0.59倍的中跨径 80m,桥梁全长为: 80+135+80=295(m) 2.顺桥向梁的尺寸拟定 (1)墩顶处梁高:根据规范,梁高为1/16~1/20L,取L/18.75, 约取偏安全的7.2 m。 (2)跨中梁高:根据规范,梁高为 L/45,即3.0 m。 (3)梁底曲线:选用二次抛物线。 以跨中梁底为原点,曲线方程:Y=-0.0011008X2。 3.横桥向的尺寸拟定 图2 主梁截面尺寸图 顶板厚取28cm;跨中处底板厚32cm,以便布置预应力束,支点处底板厚为

120cm,中间底板板厚成抛物线性变化;腹板厚度由于要布置预应力钢束锚头,故采用70cm;顶板承托尺寸采用45cmX45cm和30cmX60cm,底板承托尺寸采用45cm ×45cm;横隔板共设4道,两支点各两道,厚度取100cm,板上留有人孔,尺寸为200cm×200cm;人行道板具体尺寸如图3所示。 图3 人行道板构造 4.桥面铺装 桥面铺装:根据《桥梁工程》(上)选用8cm厚的防水混凝土作为铺装层,上加2cm厚的沥青混凝土磨耗层,共计10cm厚。 桥面横坡:根据规范规定为1.5%~3.0%,取2.0%,该坡度由箱梁顶板坡度控制。5.下部构造 桥墩采用双薄壁形式,桥墩壁厚3.0米,宽7米,两壁中心距为7米。。基础均为桩基础。桥台为埋置式桥台,放置在基岩上。 三.施工要点及注意事项 1.桥梁上部采用挂篮悬臂浇注施工,施工时要对称浇注,应注意立摸高程的合 理设置,准确控制悬浇高程,主梁边中跨合拢高差应控制在1cm以内。 2.施工后的主梁备用预应力束孔处理如下:顶板束孔灌浆封填,底板束孔留下 备用,但不穿预应力束。 3.箱梁悬浇施工时在底板上的施工孔不封堵,作为箱梁的通气孔。 四.本桥主要材料 参照规范规定,该桥材料取用如下。 1.混凝土 箱梁采用50号,墩身采用40号,承台、盖梁、耳背墙、防撞护栏、人行道采用30号。 2.钢材 1) 纵、横向预应力采用ASTMA416-92-270级钢绞线,标准强度为1860Mpa, 直径为15.24mm,面积140mm2,弹性模量为1.9×105Mpa,采用OVM锚具。 2) 带肋钢筋应符合《钢筋混凝土用热轧带肋钢筋》GB1499-91的规定、

塔山连续刚构桥(主桥)预应力混凝土

V形墩施工组织设计 (一)、编制依据 1.杭州城建设计研究院编制的《青田县塔山大桥工程施工图》; 2.《公路桥涵施工技术规范》(JTJ014-2000); 3.《公路工程质量检验评定标准》(JTJ071-98)。 (二)、工程概况: 塔山大桥主桥采用预应力混凝土V型墩连续刚构桥,跨径组合为80米+120米+80米,长280米;本桥7号、8号墩为V型墩。V型墩结构由两个斜腿和其顶部主梁组成倒三角结构。V型墩斜腿为板式预应力钢筋混凝土结构,墩身纵桥向厚度150厘米,横桥向宽度11米,两斜撑夹角为75o,斜撑长20.55米(20.10米),一个V型墩混凝土数量为700立方米,重约1750吨;V型墩顶0号块梁长37米,0号块梁体混凝土数量为1116立方米,重约2790吨。V型墩预应力布置在墩身中心位置,张拉端设在V型墩墩顶横梁倒角位置、固定端设于承台混凝土内。 7号、8号墩处于瓯江主河道内。本地区降水量集中在4-9月份,具有山区河流特点,河水暴涨暴落,洪水期水位剧增,枯水期水位剧降。桥位处水流流速较快,冲刷作用明显。 (三)、V型墩总体施工方案: 根据V型墩结构特点及现场实际施工条件,V型墩斜腿施工支架由万能杆件平衡架和斜腿外侧万能杆件及内外侧横梁(槽钢)组成。V型墩内侧横梁采用固定在精轧螺纹钢上。斜腿外侧横梁采用2[22,横梁在外侧的万能杆件与模板之间,通过φ32精扎螺纹钢、φ20拉杆与T字形万能杆 件形成一个整体。内侧模板的固定主要通过横梁固定,模板整体固定通过Φ32精轧螺纹钢筋与外侧万能杆件与内侧万能杆件相连。两斜腿新浇混凝土产生的重力通过拉杆传至内侧万能杆件平衡架上。V型墩斜腿分两次浇筑,每次均采用水平分层法施工;0号块梁体混凝土分两次浇筑完成。0号块梁体施工以

相关文档
最新文档